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ABSTRACT
The optimal spatial adaptation (OSA) method [1] proposed

by Boulanger and Kervrann has proven to be quite effective

for spatially adaptive image denoising. This method, in ad-

dition to extending the Non-Local Means(NLM) method of

[2], employs an iteratively growing window scheme, and a

local estimate of the mean square error to very effectively re-

move noise from images. By adopting an iteratively growing

space-time window, the method was recently extended to 3-D

for video denoising in [3]. In the present paper, we demon-

strate a simple, but effective improvement on the OSA method

in both 2- and 3-D. We demonstrate that the OSA implicitly

relies on a locally constant model of the underlying signal.

Thereby, removing this constraint and introducing the possi-

bility of higher order local regression models, we arrive at a

relatively simple modification that results in an improvement

in performance. While this improvement is observed in both

2-D and 3-D, we concentrate on demonstrating it in 3-D for

the application of video denoising.

Index Terms— video denoising, regression, patch-based

restoration

1. INTRODUCTION

Recently, the so-called Non-Local Means method (NLM) has

been proposed by Buades et al. [2] where a weighed averag-

ing scheme was used to perform image denoising by making

use of the fact that in natural images many structural simi-

larities are present in different parts of the image. Since its

advent, the idea of NLM for denoising purposes has inspired

a significant number of researchers to modify and improve

NLM. The so-called optimal spatial adaptation (OSA) method

proposed by Kervrann et al.[1] is one such example, which

improves upon the earlier NLM by iteratively growing the lo-

cal analysis window size along with a pixel-wise local stop-

ping rule based on a local estimate of the mean square error

[1]. OSA was further extended to 3-D [3] for video denoising

by applying iteratively growing space-time window, which at

the time of its publication, apparently achieved state-of-art
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video denoising performance. In this paper, we demonstrate

a simple, but effective improvement on the OSA method in

both 2- and 3-D. We demonstrate that the OSA implicitly re-

lies on a locally constant regression model of the underlying

signal. Thereby, removing this constraint and introducing the

possibility of higher order local regression models, we arrive

at a relatively simple modification that results in significant

improvement in performance. In Section 2, we review the

kernel regression framework in 2-D and 3-D and show how

OSA in 2-D and 3-D can be extended by kernel regression

using higher order signal models. In Section 3, we examine

and demonstrate its performance in video denoising. Finally,

Section 4 summarizes the contributions of this paper.

2. HIGHER ORDER OPTIMAL SPACE-TIME
ADAPTATION APPROACH

2.1. Kernel Regression Framework

In the kernel regression framework proposed by Takeda et
al.[4], the data model is defined for data in N -D as

yi=z(xi)+ εi, i = 1, · · · , P, xi = [x1i, x2i, · · · , xNi]T,(1)

where yi is a noisy sample at xi, z(·) is the (hitherto unspec-

ified) regression function to be estimated, εi is an i.i.d zero

mean noise, P is the total number of samples in a neighbor-

hood (window) of interest. In this paper, we are interested in

the case of N = 3 for the most part, as this relates to process-

ing of video.

While the particular form of z(·) is unspecified, we use a

generic expansion of the function about a sampling point xi

as a model within the window of interest. Specifically, we

have the, say, M -th order Taylor series

z(xi) ≈ z(x) + {∇z(x)}T (xi − x)

+
1
2
(xi − x)T {Hz(x)}(xi − x) + · · · (2)

= β0+βT
1(xi−x)+βT

2 vech
{
(xi−x)(xi−x)T

}
+· · · ,(3)

where ∇ and H are the gradient (2 × 1) and Hessian (2 × 2)

operators, respectively, and vech(·) is the half-vectorization

operator which lexicographically orders the lower triangular

portion of a symmetric matrix.
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With this generic model, we wish to estimate the unknown

parameters {βn}M
n=0 of the model from the given data. It

is worth noting that in the end, we are only really interested

in the first unknown β0, which represents the estimate of the

pixel of interest. Nevertheless, considering the higher order

model is useful as it provides a mechanism for capturing more

complex behavior and relationships between similar pixels

both spatially and radiometrically.

In order to solve for the unknowns of interest, one may

naturally pose a weighted least squares formulation:

min
{βn}N

n=0

P∑
i=1

[
yi − β0 − βT

1 (xi − x)

−βT
2 vech

{
(xi − x)(xi − x)T

} − · · ·
]2

·K(xi − x, yi − y), (4)

where the kernel function K(xi − x, yi − y) gives higher

weight to measured pixels that are in some way more simi-

lar to the center pixel in the analysis region.

A special case of the above formulation is the NLM or

OSA frameworks. In particular, if we set the order of the re-

gression (M ) to zero (that is, consider a 0th order model), and

use the non-local exponentially weighted similarity functions

for K(·, ·), as suggested in the work of Buades et al. [2], we

arrive at the NLM formulation. To be more specific, given

data points yi, i = 1, ..., P , the standard NLM procedure re-

sults from the weighted least squares formulation which leads

to

β̂0 = ẑ(xi) =
∑P

i=1 yi KNLM (xi − x, yi − y)∑P
i=1 KNLM (xi − x, yi − y)

. (5)

An iterative version of this, as elaborated below, with the

adaptive window size, is the basis of the superior OSA for-

mulation of Boulanger et al. in [1, 3]. It is important to point

out that the application of the OSA algorithm in 3-D for the

purpose of video denoising does not require explicit motion

estimation, as also indicated in [5, 6]. The same comment

applies to the extensions of OSA which we propose in this

paper. Indeed, in this paper, we argue that by using a higher

order model (M > 0), improvements to the OSA algorithm

can be arrived at with relatively little additional computational

cost.

2.2. Higher Order Optimal Spatial Adaptation Method

The key idea behind the (standard, 0th order) OSA in both

2-D and 3-D is to iteratively grow the size of a local search

window Δi starting with a small size at each pixel and to stop

the iteration at an “optimal” window size. The dimensions

of the search window in 2-D grow as (2� + 1) × (2� + 1)
where � is the number of iterations while, in the 3-D case, the

spatial and temporal extent are alternately increased until a

related stopping rule is satisfied at each iteration. To be more

Fig. 1. Block diagram of the Optimal Spatial Adapatation

Fig. 2. Iteratively growing local search window in 2D and 3D

specific, suppose that ẑ
(0)

(xi) and v̂
(0)

i are the initial estimates

of the pixel value and the local noise variance at xi, which are

initialized as

ẑ
(0)

(xi) = yi, v̂
(0)

i = σ̂2, (6)

where σ̂ is an estimate of the noise standard deviation. (Fig.

1 illustrates a block diagram of OSA.) In each iteration, the

estimate of each pixel is updated using the noisy signal and

patch-based weights calculated from the previous estimate as

follows:

β̂
(�+1)
0 = ẑ

(�+1)
(xi) =

∑P
i=1 yi KH(�) (ẑ

(�)

pi
− ẑ

(�)

c )∑P
i=1KH(�) (ẑ(�)

pi
− ẑ(�)

c )
, (7)

where ẑ
(�)

pi
and ẑ

(�)

c are column-stacked vectors that contain

the estimated pixels in a neighborhood patch pi and the center

patch of interest at �th iteration respectively, H(�) = hr(V̂(�))−
1
2 ,

and hr is the smoothing parameter. The matrix V̂(�) contains

the harmonic means of estimated local noise variances:

V̂(�)=
1
2
diag

⎡⎣ (v̂
(�)

pi,1
)2(v̂

(�)

c,1
)2

(v̂(�)

pi,1
)2 + (v̂(�)

c,1
)2

, · · · ,
(v̂

(�)

pi,J
)2(v̂

(�)

c,J
)2

(v̂(�)

pi,J
)2 + (v̂(�)

c,J
)2

⎤⎦ , (8)

where J is the total number of pixels in a patch pi, and K is

defined as the Gaussian kernel function:

KH(�) (ẑ
(�)

pi
−ẑ

(�)

c ) = exp

{
− (ẑ

(�)

pi
− ẑ

(�)

c )T (V̂(�))−1(ẑ
(�)

pi
− ẑ

(�)

c )
h2

r

}
.

(9)

A patch size J is selected so as to be able to capture the local

geometry and texture in the image or video and is generally

fixed at a relatively small size (5×5 or 7×7 in 2-D or 3×3×3)
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while the size of a local search window Δi grows iteratively,

described in Fig. 2, a point-wise statistically-based stopping

rule is applied to determine when to stop the algorithm.

What we do next is to extend the above framework to the

case where the local model has higher order (M > 0). As

such, as we alluded to earlier, the optimization problem (4)

associated with kernel (9) can be expressed in matrix form as

a weighted least-squares optimization problem,

b̂ = arg min
b

||y − Hb||2Wd

= arg min
b

(y − Hb)T Wd(y − Hb), (10)

where
y = [y1, y2, · · · , yp]T , b = [β0, β

T
1 , · · · , βT

M ]T , (11)

Wd = diag[KH(�) (ẑ
(�)

(x1 − x) − ẑ
(�)

(x)),

KH(�) (ẑ
(�)

(x2 − x) − ẑ
(�)

(x)), · · · ,

KH(�) (ẑ
(�)

(xP − x) − ẑ
(�)

(x))], (12)

and

H =

⎡⎢⎣ 1 (x1 − x)T vechT {(x1 − x)(x1 − x)T } · · ·
...

...
...

...

1 (xP − x)T vechT {(xP − x)(xP − x)T · · ·

⎤⎥⎦
(13)

with “diag” defining a diagonal matrix. Regardless of the re-

gression order (M ), since our primary interest is to compute

an estimate of the image or video (pixel values), the necessary

computations are limited to the ones that estimate the param-

eter β0. Therefore, the weighted least-square estimation is

simplified to

ẑ(xi) = e1
T (HT WdH)−1HT Wdyi, (14)

where e1 is a column vector whose elements are all zero ex-

cept for the first element equal to one. This higher order for-

mulation of OSA relaxes the implicit piecewise-constancy as-

sumption by the choice of M > 0. For the sake of complete-

ness, the overall pseudo-code for the general OSA algorithm

described above is given here.

3. EXPERIMENTS

In this section, we compare our proposed higher order OSA

method with standard OSA in 3-D, for the purpose of video

denoising.

We selected a set of six different image sequences. Each

of the six test sets are corrupted with different noise levels.

The peak signal-to-noise ratio defined as PSNR = 10log10

(2552/MSE) was used to measure the quality of the denoised

result ẑ versus the original video z. For a fair evaluation, we

set the parameters in the same way as [3]. In Tables 1 and 2,

we present the PSNR(dB) comparisons of the proposed higher

order OSA and the standard OSA for a few sequences in cases

Algorithm 1 OSA algorithms in 3D

Let { J : Patch size, α : Percentile, � : Parameter for stop-

ping rule, LΔ : Maximum Iteration } be the parameters.

Initialization : compute σ̂2, ẑ
(0)

i , v̂2(0)

i for each xi ∈ G3

Repeat

for every pixel xi ∈ G3 do
−→ compute

W(�)
i =

K
H(�) (ẑ

(�)
pi

−ẑ
(�)
c )∑ P

i=1KH(�) (ẑ
(�)
pi

−ẑ
(�)
c )

→ columnstack weight matrix W = W(�)
i (:)

→ Wd = diag(W)
H1 = [1(�) x(�)

1 x(�)
2 x(�)

3 ]
H2 = [1(�) x(�)

1 x(�)
2 x(�)

3 x2(�)

1 x2(�)

2 x2(�)

3

x(�)
1 x(�)

2 x(�)
1 x(�)

3 x(�)
2 x(�)

3 ]

if mode = “Zeroth Order” then
Kequi = Wd

else {mode = “First Order”}
Kequi = (H1

T WdH1)−1H1
T Wd

else {mode = “Second Order”}
Kequi = (H2

T WdH2)−1H2
T Wd

end if
ẑ

(�)

i = e1
T Kequiyi

v̂2(�)

i = σ̂2e1
T KequiKT

equie1

−→ test the window using

Δ̂(xi) = arg max
Δ

(�)
i ∈LΔ

{|Δ(�)

i | : |ẑ(�)

i − ẑ
(�′)
i | < � v̂

(�′)
i

for all 1 ≤ �′ < �}.
If this rule is violated at iteration �, ẑ

(�−1)

i is accepted as

the final estimate at xi.

−→ increment �
While � ≤ LΔ

end for

where patch size is fixed spatially as 5 × 5 and 7 × 7 respec-

tively. The PSNR per frame was measured and averaged over

the 20 middle frames of the sequence.

Our proposed method (1st order OSA) consistently out-

performs the standard OSA in these tests. The key idea be-

hind the local stopping rule in OSA is to find the smallest es-

timator variance among the various iterations. Through com-

pensation of the bias-variance tradeoff resulting from employ-

ment of higher order regression, we implicitly find the estima-

tor which minimizes the local mean square error(MSE). Be-

sides, considering the computational complexity of the stan-

dard OSA, the fact that 1st order OSA with a 5x5 size of patch

even performs better than the standard OSA with a 7x7 size

of patch for some video sequences indicates that our proposed

method is more efficient than the standard OSA. However,

we point out for some examples that 2nd order OSA did not

improve the standard OSA since the extent of variance in-
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crease was larger than the extent of bias decrease in 2nd order

OSA(M = 2), which led to the increase of local MSE.

Fig. 3. Per-frame PSNR comparison of the proposed

higher order OSA with standard OSA(patch=5x5) on

Coastguard Sequence

Noisy frame 12 (22[dB]) OSA (36.43[dB])

1st order OSA (37.25[dB]) 2nd order OSA (36.09[dB])

Fig. 4. Fragment of the 12th frame of Akiyo sequence de-

noised by the standard OSA, 1st order OSA, and 2nd order

OSA; the noise level(σ = 20). The output PSNR(for this frame

only) is given in parentheses for each of the methods

4. CONCLUSION

We have presented a simple, but effective higher order ex-

tension of OSA in 2- and 3-D and verified that our proposed

method results in improved performance. Our main contri-

bution consists of achieving an improvement upon standard

OSA by overcoming the implicit locally constant regression

model which it employs.
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