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ABSTRACT

We exploit recent advances in the physical design of fast op-
tical systems which enable active imaging with “ballistic”
light. In this modality, fast bursts of optical energy are prop-
agated into a medium, and the ballistic component of light
(which travels with minimal diffusive distortion) is detected
after transmission through the target and the medium. To im-
prove the detection rate of the common single pixel optimal
detectors, we exploit sampling at a diversity of locations in
space, and develop a multi-scale algorithm based upon the
Generalized Likelihood Ratio Test (GLRT) framework, which
takes advantage of the spatial correlation of nearby samples.
Experimental results show that objects of different size and
shape that are completely unrecognizable using the common
single pixel detection techniques, are detectable with very
high accuracy using the said multi-scale GLRT technique.

Index Terms— Ballistic Photons, Poisson Statistics, Adap-
tive Reconstruction, GLRT, Coherent Imaging, Turbid Media.

1. INTRODUCTION

High resolution imaging and detection of objects hidden in
a turbid (scattering) medium have long been challenging and
important problems with many industrial, military, and med-
ical applications. While turbid media such as fog, smoke,
haze, or body tissue are virtually transparent to radar range
electromagnetic waves, the resolution of radar-based imaging
systems is often insufficient for many practical applications.
On the other hand, while the resolution of imaging systems
using ultra short wavelengths (e.g. X-rays) is very desirable,
there exist potential health hazards for imaging subjects and
technicians alike.

As an alternative, imaging systems working in the optical/
infra-red spectrum range (laser scanners) are potentially able
to produce high resolution images without the likely health
hazards. Unfortunately, even a very thin and powerful colli-
mated laser beam quickly diffuses as it travels in turbid me-
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dia, similar to a car’s headlights in fog. Therefore, a naive
approach to optical imaging of objects hidden inside a turbid
medium results in very blurry images, where targets are often
indistinguishable from each other or the background.

Fortunately, the advent of the new tunable solid state lasers
and ultra-fast optical detectors has enabled us to acquire high-
quality images through turbid media where the resolution is
only limited by diffraction. While many efficient imaging
systems for capturing high-resolution images through turbid
media have been proposed through the years, in this paper
we mainly focus on ultra-fast time-gated or coherent imaging
systems first introduced in [1].

Ultra-fast time-gated imaging is based on scanning the
region of interest (ROI) point-by-point by sending very fast
bursts of optical energy (laser pulses) and detecting the un-
scattered (coherent) photons that have passed through the
medium or reflected from the object. Although most of the
photons in a laser pulse are either randomly scattered (los-
ing their coherence) or absorbed as they travel through tur-
bid media, across short distances, a few photons keep their
coherence and pass through in straight lines without being
scattered. These coherent photons are commonly referred to
as the ballistic photons. Aside from the diffusive and ballistic
photons, the photons that are slightly scattered retaining some
degree of coherence are referred to as snake photons. Since
the diffusive and ballistic photons have different path lengths,
a femto-second laser pulse generator and an ultra fast time
gate can be paired to separate the relatively slow (delayed)
diffusive photons from the ballistic ones.

In what follows in this paper, we focus on studying and
improving the performance of ballistic imaging systems. In
Section 2, we describe a statistical model for the signal and
noise in a typical ballistic imaging scenario. In Section 3, we
study optimal single pixel detection systems and show that
better detection rates are achievable using a multi-pixel detec-
tion technique which is based on the GLRT principle. Section
4 concludes this paper.

2. STATISTICAL MODEL FOR BALLISTIC
IMAGING SYSTEMS

To have a better understanding of the practical issues involved
in photon limited imaging via ballistic systems, let us con-



sider the imaging system described in [2], where the pumped
Ti:Sapphire laser radiates 800nm pulses at a repetition rate
of 1 kHz and an average power of 60mW. It is easy to show
that the number of photons in each packet of energy (pulse) is
computed as

I0 =
Pulse Energy

PhotonEnergy
=

60×10−3×1s
1000

2.4830× 10−19
=2.4164×1014. (1)

Due to the statistical nature of pulse propagation, as a
laser beam travels through a diffusive medium, it is possi-
ble that some of the photons emerge without being scattered.
By selecting these unscattered “ballistic” photons, and reject-
ing the scattered (diffused) ones, it is possible to obtain non-
blurred images which are the sharp shadows of targets buried
in the diffusive medium.

As expected, in relatively long distances, the number of
detected ballistic photons is extremely small. Indeed, Beer’s
Law dictates an exponential relationship between the intensity
of the transmitted light, and that of the ballistic component as

Ib = I0exp(− d

L
). (2)

In this expression, I0 is the number of the generated photons
in one laser pulse before entering the turbid medium, Ib is
the number of the ballistic photons which survive traveling
through the medium, d is the distance traveled through the
medium, L = 1

µt
is the mean free path (MFP) length (average

distance photons travel before being scattered), and µt is the
medium extinction factor. From (1) and (2), it is clear that
for typical laser powers, it is fairly unlikely that any ballistic
photon survive imaging scenarios where the ratio of d/L is
larger than ∼ 30 MFP.

The exponential drop in the number of received photons
is the main prohibitive factor for using such high-resolution
optical imaging systems across long distances. In such imag-
ing scenarios, we are forced to rely on the less informative
snake and diffusive photons. In [3], an accurate yet compu-
tationally manageable mathematical model for diffusive light
propagation in turbid media is presented. An example of such
imaging modality and experimental analysis is presented in
[4] and some excellent literature surveys on the subject of dif-
fusive imaging systems are presented in [5]. However, imag-
ing systems that are able to time-resolve both ballistic and
diffusive photons are rather expensive and are not discussed
in this paper. Here, we focus on imaging systems that detect
ballistic photons only. We exploit these statistical studies to
improve the performance of ballistic imaging systems even in
long distances where the signal power is weak.

It is important to note that due to the stochastic nature of
photon propagation, Ib, calculated in (2), is merely the ex-
pected value of a Poisson random variable that estimates the
number of surviving ballistic photons. Moreover, we assume
that the received signal at the detector is contaminated with
some amount of independent Poisson noise due to shot noise

and other degrading effects. Therefore, since the received sig-
nal at the detector is the unweighted summation of two Pois-
son random variables, it can be modeled as a Poisson random
process with the following expected value

I = I0 e−µtd + Xe = Xs + Xe,

where Xe and Xs are the expected values of the noise and
signal, respectively.

Considering such imaging model, the probability density
function of the received signal is given by

f(y|Xs + Xe) =
N∏

k=1

e−(Xek
+Xsk

)(Xek
+ Xsk

)yk

yk!
, (3)

where yk is the k-th measurement, y = [y1, y2, ..., yk, ..., yN ]T ,
Xe = [Xe1 , Xe2 , ..., Xek

, ..., XeN
]T , and

Xs = [Xs1 , Xs2 , ..., Xsk
, ..., XsN

]T . Note that the laser emits
thousands of pulses per second and in practical implementa-
tion each spatial position is measured N times to improve the
quality of estimation, and therefore the model in (3) is pre-
sented in the vector form. Since the average power of laser or
the detector (and medium) characteristics are assumed not to
be changing abruptly, to simplify notations, we assume that
Xe1 = Xe2 = ... = XeN = Xe, and Xs1 = Xs2 = ... =
XsN

= Xs (extension to the more general time-varying sig-
nal and noise case is straight forward).

3. OPTIMAL DETECTION OF OPAQUE OBJECTS
IN TURBID MEDIA

In this section, assuming that the medium, laser, target, and
turbid medium are accurately calibrated, we present the sta-
tistical optimal detectors of opaque objects hidden in a turbid
medium.
3.1. Single Pixel Optimal Detection

In this subsection, we study the Neyman-Pearson (N.P.) type
statistical test [6] for detecting opaque objects hidden in a tur-
bid medium. In this test, we basically compare the likelihood
of the following two scenarios:

• H0: An opaque object is hidden in the scattering medium,
blocking the laser pulse ( i.e. measurements contain
only noise).

• H1: No opaque object exists in the propagation line of
the laser pulse (i.e. measurements contain noise plus
attenuated laser pulse).

The probability density function of these two scenarios when
such tests are repeated N times are given by

H0 : f(y|Xe) =
N∏

k=1

e−(Xe)(Xe)yk

yk!
,

H1 : f(y|Xs + Xe) =
N∏

k=1

e−(Xe+Xs)(Xe + Xs)yk

yk!
,(4)



and therefore the N.P. test is derived by comparing the log
likelihood ratio to a threshold as:

log
N∏

k=1




e−(Xe+Xs)(Xe+Xs)yk

yk!

e−Xe (Xe)yk

yk!


 H1

≷
H0

γ

=⇒
N∑

k=1

yk

H1

≷
H0

log(γ) + NXs

log(Xe+Xs

Xe
)

= γ′. (5)

Noting that
N∑

k=1

yk is yet another poisson process, the proba-

bilities of false alarm (PFA) and detection (PD) are computed
as

PFA =P{
N∑

k=1

yk > γ′|H0} = 1−
γ′∑

k=0

e−NXe(NXe)k

k!
, (6)

PD = 1−
γ′∑

k=0

e−NXe−NXS (NXe + NXS)k

k!
. (7)

3.2. Multi-pixel GLRT Detection

As explained in Section 1, in ballistic imaging the field of
view is scanned at multiple points to create a 2-D image of
the objects in the ROI. In this section, we propose an effective
algorithm that exploits the spatial correlation of the nearby
samples in a multi-pixel imaging scenario to improve on the
performance of the single pixel optimal detectors developed
in the previous section.

The proposed multi-pixel detection technique generalizes
the single pixel detection techniques and preforms optimal
tests on “super-pixels”, which are the collective intensities of
a set of neighboring pixels in size and shape of the hidden
objects. However, since in general the size and shape of the
hidden objects is not known a priori, we develop a GLRT
based algorithm that simultaneously tests the existence, and
estimates the shape and size of the objects hidden in turbid
media.

The outline of the proposed GLRT algorithm is illustrated
by an example in Fig.1. First, for a given (fixed) false alarm
rate the optimal detectors developed in the previous section
are exploited to test the existence or absence of objects at each
individual pixel. As an illustrative example, this test is applied
to the central pixel (shaded) of Fig.1(a), where the measured
pixel value (0.4) is compared to the N.P. test threshold (0.5).
Of course, the greater the distance of the measurement from
the threshold, the more confident we are in the accuracy of
the test result. Next, we integrate the gray-level values of all
immediate neighboring pixels, and in effect consider them as
one “super-pixel”, as illustrated in Fig.1(b). Since the false
alarm rate is fixed for all scales, the decision threshold is
different than the threshold calculated in the previous step,
which is recalculated based on the grayvalue of the super-
pixel. In the next steps, we repeat this process by fixing the
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Fig. 1. An illustrative example showing the outline of the pro-
posed multi-scale GLRT algorithm. a: Scale 1 measurement.
b,c: Scales 2,3 super-pixels, respectively. d-f: Confidence
values for scales 1-3, respectively. The check marked second
scale gives the highest confidence value for the central pixel.

false alarm rate and considering larger neighborhoods. The
generalized N.P. test for these steps is formulated as follows

yscale
m,l

H1

≷
H0

log(γscale) + NscaleXs

log(Xe+Xs

Xe
)

, (8)

where yscale
m,l is the summation of the pixel values in the

Nscale = N(2× scale−1)2 pixels neighborhood around the
pixel [m, l] (note that other neighborhood expansion strate-
gies with different shape and size can be also considered in
this algorithm). Our confidence in the decision made on each
scale is defined as the distance between the summation of
measurements in the super-pixel and that of the threshold set
by the GLRT:

Confidencescale
m,l = |yscale

m,l − log(γscale) + NscaleXs

log(Xe+Xs

Xe
)

| . (9)

Note that the optimal scale is not unique for all pixels, as finer
scales are more suitable for pixels located on the texture or
edge areas, and coarser scales are more suitable for the pixels
located in flat areas. Therefore, we decide on the presence or
absence of the object at a particular pixel based on the test re-
sult of the scale that shows the highest confidence value. The
memory requirement of this technique is independent of the
maximum scale number, since we only need to keep the orig-
inal image, the last estimated image and the corresponding
confidence values.

To have a better understanding of the proposed multi-scale
GLRT technique and its performance, we set up an illustra-
tive controlled imaging scenario. Fig.2(a) shows ideal (noise-
less and deterministic) image of objects of different size and
shape. To depict an experiment at the limit distance where the
signal of interest is very weak, we consider an imaging sce-
nario where the average number of received ballistic photons



for each pixel is one photon. Fig.2(b) shows such Poissonian
random signals (yet free of noise effects). Detection of such
signals becomes more difficult when we consider the system
noise as illustrated in Fig.2(c), where the Poisson noise vari-
ance is 40. Fig.2(d) is an image reconstructed by implement-
ing the point-by-point single pixel detection techniques, con-
sidering a false alarm rate of 0.00125, where none of the ob-
jects are correctly identified. On the other hand, Fig.2(e) is the
result of exploiting the multi-scale GLRT technique, showing
a considerably more accurate detection of such objects.

Fig.2(f) illustrates the scale from which each pixel in the
final image of Fig.2(e) is selected. Note that as expected, the
pixels in the flat area are selected from the coarser scales,
while the pixels on the edge areas are selected from the finer
scales. Fig.2(g) shows the confidence in the detection re-
sult (9) with respect to the corresponding pixels. This figure
shows higher confidence levels in the flat, and less confidence
in the edge areas. Also, in Fig.2(g) we see that the area with
the lowest confidence is the place where most misclassifica-
tions happen. This is good news, since to increase the detec-
tion rate, we may opt to do a second (and very quick) round of
scans, sampling only on these very low-confidence regions. In
Fig.2(h), we plot the misclassification rates at each scale (blue
line), and compare it to the overall multi-scale one (red line).
These experimental plots show that the performance of the
proposed pixelwise GLRT technique (depending on the noise
level) is either very close or even better than the best fixed
scale technique. In Fig.2(i), the performance of single pixel
detection technique is compared with the multi-scale ones via
their corresponding ROC curves (with 25 Monte Carlo exper-
iments). Once again, the multi-scale technique shows the best
or close to the best performance.

4. CONCLUSION

In this paper, we studied a technique for improving the qual-
ity of the ballistic images captured through turbid media.The
novelty of this paper is in combining the recent advances in
optical science with the novel image processing and statistical
signal processing techniques.
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Fig. 2. An ideal deterministic and noise free image of four
objects of different size and shapes is shown in (a). (b) shows
the corresponding image as a Poissonian noise free stochastic
signal, with Xs = 1. (c) is the result of adding Poisson noise
(Xe = 40) to (a). (d) is the result of the single pixel detec-
tion, and (e) is the result of the proposed multi-scale detection
technique. (f) shows an image that corresponds to the selected
scales for the image shown in (e), and (g) shows the corre-
sponding confidence values. (h) shows the misclassification
probability in different scales. ROC plots for the proposed
multi-scale detection scenario are shown in (i). The numerical
labels “1,4,...,23”, correspond to the scale at which detection
tests are performed, and the plot labeled “Final” represents the
performance of the proposed multiscale (fused) technique.
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