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ABSTRACT

In this paper, we study the fundamental performance limits

of image denoising where the aim is to recover the original

image from its noisy observation. Our study is based on a

general class of estimators whose bias can be modeled to be

affine. A bound on the performance in terms of mean squared

error (MSE) of the recovered image is derived in a Bayesian

framework. In this work, we assume that the original image

is available, from which we learn the image statistics. Per-

formances of some current state-of-the-art methods are com-

pared to our MSE bounds for some commonly used experi-

mental images. These show that some gain in denoising per-

formance is yet to be achieved.

Index Terms— Image denoising, estimation, Bayesian

Cramér-Rao lower bound, mean squared error.

1. INTRODUCTION

With the advent of affordable hardware, it is now possible

for anyone to capture images of considerably high resolution

with devices like cell phones, webcams, digital cameras, etc.

However, the observed images are often noisy and further en-

hancement is required. Such post-processing is usually car-

ried out by denoising algorithms where the objective is to in-

fer the actual image from its degraded observation. Most al-

gorithms perform such a task by decomposing the image into

small blocks or patches and estimating the image patches zi

from the noisy observations

yi = zi + ηi, (1)

where ηi is the noise that arises in the image acquisition pro-

cess. This estimation problem is highly ill-posed and most

denoising algorithms use some sort of prior information about

the original image and the noise to converge to an acceptable

recovered image. In this work, we assume that the noise is

zero mean independent identically distributed (IID) Gaussian

with patch-wise covarianceσ2I (although, our framework can

be used for other noise distributions just as well.)

Here, we are interested in studying the fundamental per-

formance limits for this estimation problem. Studying such
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performance bounds will allow us to understand the difficul-

ties involved in image denoising, and to compare the perfor-

mance of the current state-of-the-art algorithms to the theo-

retical limits. More importantly, it will allow us to ascertain

if further improvements are possible and even identify ways

of achieving the same. Recently, Treibitz et al. [1] studied

the recovery limits for particular objects or regions in an im-

age under pointwise degradation. Voloshynovskiy et al. [2]

briefly analyzed the performance of MAP estimators for the

denoising problem. However, our bounds are developed in a

much more general setting and to the best of our knowledge,

no such study exists for a general image denoising framework.

In the next section, we develop the bounds in a Bayesian

Cramér-Rao lower bound (B-CRLB) framework assuming

that the image patches are geometrically similar, although,

they may vary in patch intensity (Fig. 1). Later in that sec-

tion, we extend our bounds formulation for general images

using a clustering mechanism based on geometric similarity

of patches [3]. In Sec. 3, the formulation is experimentally

validated and compared to the current state-of-the-art denois-

ing methods [3–6]. Finally, in Sec. 4, we conclude with a few

words on further research on this topic.

2. MSE BOUND

In this section we develop an expression for the bound on the

MSE for biased estimators, since such estimators can yield a

lower MSE than an unbiased one [7]. Moreover, unbiased es-

timators for an inverse problem like denoising will invariably

lead to an unpleasant denoised image with unacceptably large

variance. We model the bias function b(z) using a first order

approximation of the Taylor expansion around zi = 0:

b(z) = b(zi) + {∇b(zi)}T (z − zi) + higher order terms

⇒ b(z) ≈ {∇b(0)}T z + b(0) = Mz + u (2)

where ∇ denotes the gradient operator, M = ∇b(0) is the

(symmetric) gradient matrix of the bias and u is the bias when

zi = 0. Thus, we model the bias function to be locally1 affine

1By locality here, we mean within a group of geometrically similar

patches. The actual patch intensities, though, may be quite different. Later in

this section, we extend our bounds formulation to general images containing

diverse patch geometry. There, the bias for geometrically similar patches can

be modeled to be locally affine within a cluster, as can be seen in Fig. 1.
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with model parameters M and u. Such a model has been

shown to be effective when the noise-free image patches are

geometrically similar [8, 9].

An effective performance limit can then be formulated by

studying the lower bound on the MSE for such affine- biased

estimators. To derive this, we first express the conditional

MSE for biased estimators as

E
[
‖z− ẑ‖2 | z

]
= Tr {cov(ẑ|z)} + ‖b(z)‖2

≥ Tr
{

(I + M)J−1 (I + M)T
}

+ ‖Mz + u‖2 (3)

where cov(ẑ|z) is the conditional covariance of the estimate

ẑ, b(z) is the bias function, J is the Fisher information matrix

(FIM), I is the identity matrix, and Tr{.} denotes the trace of

a matrix. The inequality of (3) is obtained using the gener-

alized B-CRLB formulation2 for the covariance of any given

biased estimator [11]. It can be seen that the expression on

the right hand side of (3) can be minimized by optimizing the

bias function [7, 11, 12]. We obtain the lower bound on the

overall Bayesian MSE using the law of total expectation as

E
[
‖z− ẑ‖2

]
=

∫

z

E
[
‖z− ẑ‖2 | z

]
p(z)dz (4)

≥
∫

z

[
Tr

{
(I + M)J−1 (I + M)

T
}

+ (Mz + u)
T

(Mz + u)
]
p(z)dz = Q(M,u). (5)

The lower bound on the MSE can now be calculated by find-

ing the optimal bias parameters, namely M and u, that min-

imize the expression on the right hand side of (4). Taking

derivatives of Q with respect to M and u and equating them

to zeros, we get expressions for the optimal bias parameters

M∗ and u∗ as follows:

u∗ = −M

∫

z

z p(z) dz = −ME [z] (6)

M∗ = −J−1
[
J−1 + cov(z)

]−1
. (7)

Equations 6 & 7 thus give us expressions for the optimal bias

parameters that minimize the MSE bound Q. The minimum

Q can then be obtained as

Qmin =

∫

z

Tr
{
(I + M∗)J−1(I + M∗)T

+ M∗ (z− E [z]) (z − E [z])
T

M∗T
}

p(z) dz

= Tr
{
(I + M∗)J−1(I + M∗)T

}

+ Tr

{
M∗

∫

z

(z − E [z]) (z − E [z])T
p(z) dz M∗T

}

= Tr
{
M∗J−1M∗T + 2M∗J−1 + J−1 + M∗cov(z) M∗T

}

2Although the formulation in (3) is similar in form to the B-CRLB of van

Trees [10], it is not the same since the covariance and the FIM here are both

based on the conditional pdf p(y|z) as opposed to the joint pdf in [10].

= Tr
{
M∗

(
J−1 + cov(z)

)
M∗T + 2M∗J−1 + J−1

}

= Tr
{
J−1 − J−1

(
J−1 + cov(z)

)−1
J−1

}
. (8)

Eq. 8 can be further simplified using the matrix inversion

lemma [13] to express the lower bound on the MSE as

E
[
‖z− ẑ‖2

]
≥ Tr

[(
J + cov−1(z)

)−1
]
. (9)

Before we can compute an expression for the bound, we

need to calculate the FIM J. In many denoising methods,

inference on each zi vector is drawn from multiple (say Ni)

similar observations. For our estimation problem, where the

noise patches ηi are assumed to be sampled from a Gaussian

pdf, we can derive the FIM J as

p(y|z) =
1

(
√

2πσ)n|Ω|
exp





∑

j

−‖yj − zj‖2

2σ2




 (10)

⇒ J = −E

[
∂2ln p(y|z)

∂zi ∂zT
i

]
= Ni

I

σ2
(11)

where |Ω| is the total number of patches3 in the image, n de-

notes the number of pixels in each patch, and the FIM takes

this form from consideringNi radiometrically similar patches

to infer the patch zi. The Ni value for each patch is estimated

from the noise-free image using a nearest neighbor approach.

The bound is thus computed for each patch within the clus-

ter. The bound for the entire cluster is then obtained as the

average bound of all its member patches.

Note that the expression for the lower bound is a func-

tion of the noise variance as well as the variability in image

patches in each cluster (captured by cov(z)). This is in keep-

ing with the intuition that for a given noise level, images that

are mostly smooth are easier to denoise than ones rich in tex-

ture and sharp edges. The bound also indicates that when

many radiometrically similar patches are present (i.e. large

Ni), a better denoising performance can be expected. This is,

in fact, exploited by several recent methods [3, 4, 6].

Another interesting implication of (9) is that the right

hand side is the Bayesian minimum MSE estimate of z for

Gaussian noise, when the prior pdf p(z) is also assumed to

be Gaussian [13]. However, we make no such assumption

on p(z). In fact, our formulation does not even require com-

plete knowledge of the prior p(z). Moreover, the bound is

an expression for the Linear Minimum MSE that seems to

indicate that, in theory, a linear estimator exists that achieves

the bound. However, such an estimator needs perfect prior

knowledge of the first and second order moments of p(z).
In deriving the MSE bound, we have assumed that the im-

age patches are geometrically similar and, hence, all instances

3For the noise patches η
i
to be independent, the patches in the image need

to be non-overlapping. Our FIM (and hence the bounds) are thus obtained for

non-overlapping patches. For the overlapping case, J may be singular. We

consider that case to be outside the scope of this paper.



(a) Box image (b) Parrot image

(c) Clustering of box image

(d) Clustering of parrot image

Fig. 1. Clustering based on geometric structure of patches in an

image. Note how patches that are mainly smooth or containing edges

in a particular direction are clustered together.

of zi can be thought to be realizations of a random variable

z sampled from some unknown pdf p(z). Note that, in the

formulation of (9), we do not need to learn or assume prior

knowledge of the entire pdf, despite the fact that the deriva-

tion is done using p(z). Specifically, only the first and sec-

ond order statistics of z need to be known or estimated. For

the purposes of this study, we assume that the ground truth

(noise-free image) is available, and we estimate cov(z) from
the image patches using a bootstrapping method [14].

Most general images consist of flat, edge and texture re-

gions and thus geometric homogeneity is not exhibited among

all image patches for such images. To apply our bounds to

such diverse images, we first segment the given noise-free

image into (not necessarily contiguous) clusters where each

cluster consists of patches of similar geometric structure (Fig.

1). For this, we make use of the clustering technique pro-

posed in [3]. Since the image patches are structurally similar

in each cluster, an MSE bound can be calculated indepen-

dently for each cluster. This allows us to study how well each

such structurally similar region can be denoised. However, to

obtain a bound on the MSE of the entire image, these cluster-

wise bounds need to be combined as

Qmin =

K∑

k=1

|Ωk|
|Ω| Q

(k)
min (12)

where |Ωk| is the number of patches in the k-th cluster, K is

the number of clusters, and Q
(k)
min is the bound on the MSE for

the k-th cluster. Although K is a user input, our experiments

suggest that using a value of K within the range of 5 to 10 is

typically optimal for most general images. Fig. 1(d) shows

an example of geometric clustering of a general image where

patches containing edges of roughly similar orientation are

grouped together, irrespective of the pixel intensities.
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(a) Box image (b) Barbara image

Fig. 2. Comparison of some state-of-the-art methods with our

bounds formulation with varying levels of additive white Gaussian

noise for (a) box image, where K = 4; and (b) Barbara image with

K = 5. The patch size used in each case is 11× 11.

3. RESULTS

In this section we experimentally demonstrate the bound by

comparing it to some state-of-the-art denoising methods4 [3–

6]. Such methods identify (radiometrically) similar patches

in the image to perform denoising. The effect of considering

similar patches is captured in the FIM.

We begin our comparison with the simulated box image

(Fig. 1(a)) where the number of clusters (K) that the image

must be divided into is known for certain. It is clear that

the patches in this image can be grouped together based on

whether they contain smooth regions, horizontal or vertical

edges, or corner regions. The clustering based on such geo-

metric similarity is shown in Fig. 1. Also, it can be seen from

Fig. 1(a), several duplicates exist for most patches. We first

compute the bounds separately for each cluster using the ex-

pression in (9). The bound on the overall MSE is then calcu-

lated from Eq. 12. In Fig. 2(a), we show the bounds obtained

for different noise standard deviations. It can be seen there

that the fundamental limits are much lower than the MSE ob-

tained by the BM3D algorithm [4], which is considered the

state-of-the-art technique at present. This is especially true

for lower signal to noise ratios (SNR).

For our experiments with general images, we chooseK =
5. As before, the bounds are calculated independently for

each cluster and combined to produce a single lower bound

on the overall MSE for denoising. The bounds are compared

to the MSE obtained by different recently proposed denois-

ing methods in Fig. 2(b). As opposed to the case of the

box image, the bounds can be seen to be only slightly lower

than the MSEs obtained by the denoising methods. It can

be further seen from the comparisons presented in Table 1

that for most complex images the best performing method in

each case produces MSE values that are comparable to the

predicted bounds. These seem to imply that images rich in

texture and edges are already denoised quite well, especially

4Supporting software to compute the bounds, and additional results are

available at http://users.soe.ucsc.edu/˜priyam/bounds/



Table 1. MSE bounds obtained on some frequently used images,

ranked according to denoising difficulty as predicted by our bounds

for noise standard deviation 25.

Image Size5
BM3D K-SVD SKR K-LLD

Bound
[4] [5] [6] [3]

Box 200 49.56 57.78 77.17 53.93 3.42

House 256 33.57 40.05 47.57 42.82 14.82

Peppers 512 42.96 54.07 50.81 48.53 19.21

Lena 512 40.46 48.09 44.09 46.02 19.66

Boat 512 67.17 78.39 78.44 77.45 38.70

Barbara 512 55.62 72.39 87.91 111.58 50.24

Parrot 256 86.98 100.29 98.54 93.64 83.82

Stream 512 158.26 167.29 168.58 157.70 135.46

Mandrill 512 185.60 196.20 195.75 188.84 181.61
5 Size denotes the number of pixels in each direction.

for higher noise levels.

Another interesting observation that can be made by com-

paring the MSE bounds of Figures 2(a) & (b) is that the

bounds are considerably lower for the structurally simpler

simulated box image than those predicted for the Barbara im-

age. This correctly reflects the fact that the box image lacks

much of the texture and structural variability that appears

in the patches of the Barbara image. Difference in denois-

ing performance is also reflected by the MSEs obtained by

the various methods in the two cases. Hence, as an added

application, our bounds formulation can be used to compare

images for their denoising difficulty. In Table 1, we rank some

popular test images based on their denoising difficulty as pre-

dicted by our MSE bounds. It can be seen that, in general,

our bounds can predict the level of difficulty in denoising any

given image in comparison to the other test images without

specific reference to a particular denoising algorithm.

Our experimental comparisons over a vast range of im-

ages, some of which are presented in this paper, indicate that

not much room for improvement exists for the class of much

textured images at high noise levels. At lower noise, how-

ever, there is still some performance to be gained. On the

other hand simpler images can still be better denoised, even

for higher noise levels. On the whole, the results illustrate

that denoising as a research area is not yet dead.

4. CONCLUSIONS

In this paper, we studied the performance limits of image de-

noising. Our formulation accounts for the statistics of the im-

age patches and the noise. We showed that the formulation

makes intuitive sense. Experimental verification on various

images illustrate that denoising is not yet a solved problem.

In our framework, the noise-free image is used for clus-

tering and estimation of intra-cluster variability of the image

structure, as well as in searching for patch redundancy. How-

ever, these information are not accurately estimated when

only the noisy image is available, especially at low SNR. As

a result, the predicted bounds may be unattainable. Thus,

a more interesting problem will be to consider computing

the bounds given only a noisy image to predict how well a

given noisy image can be denoised. Such information will

be useful to camera manufacturers who can use the predicted

bounds to determine if further increase in the noise level can

be effectively handled by denoising algorithms to generate

visually acceptable results. We leave this as a direction of

future research.
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