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Abstract. Single image blind deconvolution aims to estimate the un-
known blur from a single observed blurred image and recover the original
sharp image. Such task is severely ill-posed and typical approaches in-
volve some heuristic or other steps without clear mathematical explana-
tion to arrive at an acceptable solution. We show that a straightforward
maximum a posteriory estimation combined with very sparse priors and
an efficient numerical method can produce results, which compete with
much more complicated state-of-the-art methods.
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1 Introduction

Single channel blind deconvolution amounts to estimating an image u from a
single observed image g satisfying a convolutional degradation model

g = u ∗ h+ n, (1)

where h, called point spread function (PSF), is unknown and n is random addi-
tive noise. Since we have only one observation (Single-Channel) and no knowl-
edge of the PSF, the problem is extremely ill-posed. One way to tackle this
problem is to assume a parametric model of the PSF and search in the space
of parameters and not in the full space of PSFs. Chang et al. in [2] investi-
gated zero patterns in the Fourier transform or in the cepstrum, and assumed
only parametric motion or out-of-focus blurs. More low-level parametric meth-
ods for estimating general motion blurs were proposed in [14, 16]. Unfortunately
real PSFs seldom follow parametric models and this prevents the parametric
methods from finding the exact solution.

This work was supported by GA UK under grant 938213, by GACR under grant
13-29225S, and by AVCR under grant M100751201.



There has been a considerable effort in the image processing community in
the last three decades to find a reliable algorithm for SC blind deconvolution with
general (non-parametric) PSFs. First algorithms appeared in telecommunication
and signal processing in early 80’s [6]. For a long time, the problem seemed too
difficult to be solvable for arbitrary blur kernels. Proposed algorithms usually
worked only for special cases, such as symmetric PSFs or astronomical images
with uniform black background, see [1].

Over the last few years, SC blind deconvolution based on the Bayesian
paradigm experiences a renaissance. In probabilistic point of view, simultaneous
recovery of u and h amounts to solving standard MAP (Maximum A Posteriori)
estimation

P (u, h|g) ∝ P (g|u, h)P (u, h) = P (g|u, h)P (u)P (h)

where P (g|u, h) ∝ exp(−γ2 ‖u ∗ h − g‖
2) is the noise distribution (in this case

assumed Gaussian) and P (u), P (h) are the prior distributions on the latent
image and blur kernel, respectively. The key idea of new algorithms is to address
the ill-posedness of blind deconvolution by characterizing the prior P (u) using
natural image statistics and by a better choice of estimators.

Levin et al. in [10, 9] claim that a proper estimator matters more than the
shape of priors. They showed that marginalizing the posterior with respect to
the latent image u leads to the correct solution of the PSF h. The marginalized
probability P (h|g) can be expressed in a closed form only for simple priors that
are, e.g., Gaussian. Otherwise approximation methods such as variational Bayes
[11] or the Laplace approximation [5] must be used. A frantic activity in this
area started with the work of Fergus et al. [4], who applied variational Bayes to
approximate the posterior P (u, h|g) by a simpler distribution q(u, h) = q(u)q(h).
Other authors [7, 8, 13, 15] stick to the “good old” alternating MAP approach,
but by using ad hoc steps, which often lack rigorous explanation, they converge
to the correct solution.

The main contribution of our paper is to show that a simple alternating MAP
approach without any ad hoc steps results in an efficient blind deconvolution al-
gorithm that outperforms sophisticated state-of-the-art methods. The novelty
is to use image priors P (u) that are more heavy-tailed than Laplace distribu-
tion and apply a method of augmented Lagrangian to tackle this non-convex
optimization problem.

In the next section we define the energy function of u and h that we want to
minimize. Sec. 3 provides a detailed description of the optimization algorithm
and the final experimental section illustrates algorithm’s performance.

2 Mathematical model

Let us assume that the variables in (1) are discrete quantities (vectors) with in-
dexing denoted as ui or [u]i. Maximization of the posterior P (u, h|g) is equivalent
to minimization of its negative logarithm, i.e.,

L(u, h) = − log(P (u, h|g)) + const =
γ

2
‖u ∗ h− g‖22 +Q(u) +R(h) + const, (2)



where Q(u) = − logP (u) and R(h) = − logP (h) can be regarded as regular-
izers that steer the optimization to the right solution and away from infinite
number of trivial or other unwanted solutions. A typical prior on u allows only
few nonzero resulting coefficients of some linear or nonlinear image transform.
The most popular choice is probably the l1 norm of the image derivatives, either
directionally separable Q(u) =

∑
i |[Dxu]i| + |[Dyu]i| (this corresponds to the

Laplace distribution of image derivatives) or isotropic (in terms of image gra-
dient) Q(u) =

∑
i

√
[Dxu]2i + [Dyu]2i , where Dx and Dy are partial derivative

operators. The prior on h depends on the task at hand, for motion blurs it again
favors sparsity and, in addition, disallows negative values.

It has been reported (e.g. [10]) that the distribution of gradients of natural
images is even more heavy-tailed than Laplace distribution, we therefore use a
generalized version of Q(u) defined as

Q(u) = Φ(Dxu,Dyu) =
∑
i

(
[Dxu]2i + [Dyu]2i

) p
2 , 0 ≤ p ≤ 1.

For the blur kernel we use Laplace distribution on the positive kernel values
to force sparsity and zero on the negative values. This results in the following
regularizer R:

R(h) =
∑
i

Ψ(hi), Ψ(hi) =

{
hi hi ≥ 0

+∞ hi < 0.

3 Optimization algorithm

In order to numerically find the solution u, h, we alternately minimize the func-
tional L in (2) with respect to either u or h while keeping the other constant,
this allows for easy minimization of the joint data fitting term. In each mini-
mization subproblem we use the augmented Lagrangian method (ALM) (see e.g.
[12, Chap. 17]), let us describe the procedure in detail.

3.1 Minimization with respect to u

We wish to solve
min
u

γ

2
‖Hu− g‖2 + Φ(Dxu,Dyu),

where H denotes a (fixed) convolution operator constructed from the h esti-
mate from the previous iteration. This problem is equivalent to introducing new
variables vx = Dxu, vy = Dyu and solving

min
u,v

γ

2
‖Hu− g‖2 + Φ(vx, vy) s.t. vx = Dxu, vy = Dyu.

ALM adds quadratic penalty term for each constraint to the traditional La-
grangian, which (after some reshuffling) results in the functional

Lu(u, vx, vy) =
γ

2
‖Hu−g‖2+Φ(vx, vy)+

α

2
‖Dxu−vx−ax‖2+

α

2
‖Dyu−vy−ay‖2,



where the new variables ax, ay are proportional to the estimates of the Lagrange
multipliers of the corresponding constraints. After such reformulation, the data
term ‖Hu− g‖2 and the regularizer Φ(vx, vy) can be minimized separately since
they depend on different variables. By introducing penalty terms, ALM allows us
to treat the constrained variables Dxu and vx (similarly Dyu and vy) as though
they were unrelated and by keeping the penalty weight α sufficiently large, we
will obtain the solution to the original problem [3, Thm. 8].

We solve the minimization of Lu via coordinate descent in the u, vx, vy “di-
rection” alternately. That is, we compute derivative with respect to one variable
while keeping others fixed, solve it for minimum and update that variable ac-
cordingly, then move on to the next variable and so on for sufficiently many
iterations. Let us state the whole process at once and explain the individual
steps afterwards.

1: Set v0x := 0, v0y := 0, a0x := 0, a0y := 0, and j := 0
2: repeat
3: Solve (HTH+α

γ (DT
xDx+DT

y Dy))uj+1 = HT g+α
γ (DT

x (vjx+ajx)+DT
y (vjy+

ajy)) for uj+1

4: {[vj+1
x ]i, [v

j+1
y ]i} := LUTp([Dxu

j+1 − ajx]i, [Dyu
j+1 − ajy]i), ∀i

5: aj+1
x := ajx −Dxu

j+1 + vj+1
x

6: aj+1
y := ajy −Dyu

j+1 + vj+1
y

7: j := j + 1
8: until stopping criterion is satisfied
9: return uj

After differentiating Lu w.r.t. u and setting the derivative to zero, we must
solve the linear system on line 3 for u. If we treat the u∗h convolution as circular,
thenH and consequently the whole matrix on the left-hand side is block-circulant
and can be digonalized by 2D Fourier transform. Thus, the solution u can be
computed directly and only at the cost of Fourier transform.

Minimization of Lu w.r.t. vx, vy on line 4 is trickier. If we disregard terms
not depending on vx, vy, we get Φ(vx, vy) + α

2 ‖Dxu − vx − ax‖2 + α
2 ‖Dyu −

vy − ay‖2, where all three terms are summations of simpler terms over all image
pixels. Derivatives and minimzation can be therefore carried out pixel by pixel
independently. Let i be fixed pixel index. Let t = ([vx]i, [vy]i) and r = (Dxui −
[ax]i, Dyui − [ay]i), then the problem of minimizing Lu w.r.t. [vx]i, [vy]i can be
rewritten as

min
t
‖t‖p +

α

2
‖t− r‖2. (3)

For some p a closed form solution can be computed. After simple calculation it
can be seen that for the common choice of p = 1, minimization of (3) results
in vector soft thresholding t = r

‖r‖ max
(
‖r‖ − 1

α , 0
)
. Similarly, for the binary

penalty p = 0 we get hard thresholding with threshold
√

2/α. For the general
case 0 < p < 1, no closed form solution exists, but becasue p is known beforehand
and (3) is basically 1D minimization, it can be precomputed numerically and
used in the minimization of Lu w.r.t. vx, vy in the form of lookup table (LUT),
which is then used independently for each ith component of vx, vy.



Update equations for ax, ay on lines 5 and 6 are reminiscent of simple gradient
descent but actually originate from the ALM theory, [12].

3.2 Minimization with respect to h

Minimizing with respect to h can be done in similar fashion. To separate the
minimization of data term and regularizer, we again make the substitution vh =
h, which yields the following optimization problem

min
h,vh

γ

2
‖Uh− g‖2 +R(vh) s.t. h = vh,

where U is (fixed) convolutional operator constructed from u. Applying ALM
again results in the functional

Lh(h, vh) =
γ

2
‖Uh− g‖2 +R(vh) +

β

2
‖h− vh − ah‖2,

where ah is again related to ALM method and is proportional to the Lagrange
multiplier of the prescribed constraint. This functional can be minimized by the
following coordinate descent algorithm:

1: Set v0h := 0, a0h := 0, and j := 0
2: repeat
3: Solve (UTU + β

γ I)hj+1 = UT g + β
γ (vjh + ajh) for hj+1

4: [vj+1
h ]i := max([hj+1 − aj ]i − 1

β , 0), ∀i
5: aj+1

h := ajh − hj+1 + vj+1
h

6: j := j + 1
7: until stopping criterion is satisfied
8: return hj

As in the previous case, the linear system on line 3, originating from differ-
entiating Lh w.r.t. h, can be diagonalized by 2D Fourier transform and therefore
solved directly. I denotes identity matrix.

Minimization w.r.t. vh can be again done component-wise. Let i be a pixel
index, t = [vh]i, r = [h − ah]i, then the problem on line 4 can be rewritten as
mint

β
2 (r − t)2 + ψ(t), which is basically scalar version of (3) for p = 1 with the

additional constraint that only positive values of t are allowed. The solution is
thus component-wise soft thresholding as specified on line 4. Line 5 originates
again from the ALM theory.

3.3 Implementation details

To avoid getting trapped in a local minimum, we estimate the PSF in the mul-
tiscale fashion. The input image g is downsampled such that the estimated PSF
at this scale is small (3× 3 pixels or similar), then we upsample such estimated
PSF (with factor 2) and use this as the initial point of the next level estimation.
This procedure is repeated until the target PSF size is reached.



The no-blur solution is favored by blind deconvolution algorithms based on
MAP. It is thus advantageous to exaggerate some parameters to push the op-
timization away from this trivial solution. We have discovered that setting the
parametr γ lower than its correct value (as it corresponds to the observed image
noise level) and slowly increasing it during the optimization helps the PSF esti-
mation. Also, we set the sparsity parameter p to much lower value than would
be expected for natural images and only after estimating the PSF we run the u
estimation one last time with p and γ set to realistic values.

For our experiments we use for the PSF estimation γ = 1, α = 1, β =
104, p = 0.3 and we multiply the γ by 1.5 after each pass of the u-estimation
and h-estimation pair. For the final nonblind deconvolution, we use γ = 10, p = 1.

4 Experimental results

We tested our algorithm on the dataset provided by [10] consisting of four
grayscale images and eight PSFs of true motion blur, resulting in 32 test images.
We compare our method to the method of [15], which is arguably currently the

Fig. 1. The dataset of [10]. First row contains sharp images, second row measured
motion blur PSFs.

best performing single-channel blind deconvolution method, and the method of
[4], which frequently appears in comparisons of blind deconvolution methods.
In our comparison, we focus on the accuracy assesment of the estimated PSF,
which we measure by the MSE of the (registered) estimated PSF to the ground
truth.

Fig. 2 shows the result of kernel estimation measured as MSE from the ground
truth kernel. We see that in most cases our method is superior. Fig. 3 shows
the estimeted PSFs for the first input image. The remaining 24 estimates look
similar. All methods perform very well but it can be seen that our method
produces slightly more accurate results. The last experiment in Fig. 4 shows
the deconvolution result of severly motion-blurred photo captured by handheld
camera, the improvement in quality is evident.
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Fig. 2. MSE of estimated kernels (low values mean better performance) in the 32 test
examples, grouped by PSFs. Numbers on x-axis indicate image index.

Fig. 3. Estimated PSFs, image 1. Rows from top to bottom: our method, method of
[15], method of [4]. Compare with ground truth in Fig. 1.
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