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ABSTRACT

In this paper, we develop a regularization framework for image deblurring based on a new definition of the
normalized graph Laplacian. We apply a fast scaling algorithm to the kernel similarity matrix to derive the
symmetric, doubly stochastic filtering matrix from which the normalized Laplacian matrix is built. We use this
new definition of the Laplacian to construct a cost function consisting of data fidelity and regularization terms
to solve the ill-posed motion deblurring problem. The final estimate is obtained by minimizing the resulting cost
function in an iterative manner. Furthermore, the spectral properties of the Laplacian matrix equip us with the
required tools for spectral analysis of the proposed method. We verify the effectiveness of our iterative algorithm
via synthetic and real examples.
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1. INTRODUCTION

Many images taken with existing cameras exhibit some level of distortion in the form of blur and/or noise.
Specifically, with existing hand held cameras, motion blur in the captured images is inevitable. The underlying
image capturing process can be described as

y = Az+ e, (1)

in which, y is the captured blurry and noisy image in vector stacked form, z is the ground truth image vector,
and e is additive white noise. All the vectors are of dimension n which is the total number of pixels in the image.
A is an n× n blurring matrix whose structure depends on boundary condition assumptions.1 In this paper, we
focus on a simpler case where the motion blur kernel or equivalently the blurring matrix A is known or otherwise
estimated using one of the existing kernel estimation methods.2, 3

Deblurring is an ill-posed problem and most of the existing approaches are using some type of regularization
to avoid noise amplification and ringing artifacts in the final solution. Some existing non-blind deblurring papers
use TV regularization terms.4, 5 Nonlocal TV-based regularization terms are used in.6–8 Hyper-Laplacian prior
based on the statistics of natural images is used in.9, 10 In,11 a hardware attachment is used to deblur images.
Also, a progressive inter-scale intra-scale approach has been exploited for non-blind image deconvolution in.12

Shan et al. have proposed a cost function for motion deblurring with different derivative terms in the data
fidelity term.3 Cho et al. propose a blur model for handling outliers in deblurring problem.13 In,14, 15 multiple
images are used to improve the performance of deblurring.

In this paper, we use a graph theoretic approach to define a new cost function for motion deblurring with a
new definition of the normalized graph Laplacian. A fast, symmetry preserving matrix balancing algorithm is
applied to the kernel similarity matrix from which filtering and Laplacian matrices are constructed (Figure 1). We
use this definition of the normalized graph Laplacian to construct an objective function with new data fidelity
and regularization terms. We will show that our approach has performance advantages over the traditional
graph Laplacian for motion deblurring. As depicted in Figure 2, our proposed method consists of outer and
inner iterations. In each outer iteration, the filtering matrix and the corresponding normalized graph Laplacian
are computed from the estimate of the previous step and are used to derive an updated objective function. Due
to the specific form of the proposed cost function and spectral properties of the normalized Laplacian, we are
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Figure 1. Graph representation of images and construction of kernel similarity matrixK, filtering matrixW and normalized
Laplacian I −W .
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Figure 2. Block diagram of the proposed iterative deblurring method. ẑ
(k) is the estimate at the kth outer iteration of

the algorithm.

able to minimize the updated cost function at each step using Conjugate Gradient (CG) iterations. Synthetic
and real experimental results show that our proposed motion deblurring algorithm has comparable performance
with some of the best existing non-blind motion deblurring algorithms and in some cases outperforms them.
The paper is organized as follows. In Section 2, we introduce the procedure for deriving the filtering and
corresponding normalized graph Laplacian matrices and discuss their spectral properties. In Section 3, we derive
the objective function for motion deblurring and analyze the performance of the resulting algorithm based on
spectral properties of the normalized graph Laplacian. Section 4 presents experimental results for both synthetic
and real motion deblurring examples to verify the effectiveness of the proposed method.

2. PROPOSED NORMALIZED GRAPH LAPLACIAN

As illustrated in Figure 1, any image can be represented as a weighted graph G = (V,E,K) where V is the set of
vertices (image pixels). E is the set of edges in the graph with weights computed using some similarity measure
between pixels i and j in the image. The similarity measure is usually defined by a kernel function K(i, j). In
this paper, we use the NLM kernel definition.16 As such, the kernel similarity coefficients are computed as

K(i, j) = exp{−
‖zi − zj‖

2

h2
}, (2)

in which zi and zj are patches around pixels i and j in the image z and h is a smoothing (scaling) parameter.
These coefficients constitute the corresponding elements in the kernel similarity matrix K. As such, the matrix
K contains the similarity information among different pixels of the image and is used to compute the filtering
and Laplacian matrices. We consider a small neighborhood around each pixel (e.g., a search neighborhood of size
11× 11) to construct the sparse matrix K. Due to the specific definition of the kernel similarity function in (2),
the similarity matrix K is also symmetric and non-negative. Applying the Sinkhorn matrix scaling algorithm to
the matrix K produces the diagonal matrix C−1/2 such that the resulting filtering matrix W = C−1/2KC−1/2

is symmetric, non-negative and doubly stochastic.17, 18 The filtering matrix W has the constant eigenvector
corresponding to the largest eigenvalue 1.19 This is a desired property for filtering purposes to preserve the
average value of the input signal.19, 20 Also, W can be diagonalized as W = V SV T where V is an orthonormal
matrix containing the eigenvectors of W in its columns and S is a diagonal matrix whose diagonal elements are
the eigenvalues of W . We define the new normalized Laplacian matrix as

I −W = I − C−1/2KC−1/2. (3)

Note that the traditional symmetric normalized graph Laplacian is defined as I − D−1/2KD−1/2 where D =
diag{K1}, with 1 being an n-dimensional vector of all ones.21 As will be shown, our definition has performance
advantages over the traditional definition. Therefore, we use our normalized graph Laplacian throughout this
paper as an appropriate definition for image processing applications.



Table 1. SSIM and PSNR performance of our deblurring algorithm in comparison with those of motion deblurring methods
in References3, 10 for synthetic camera motion blur. In each cell, the first number denotes SSIM value, and the second
number represents PSNR value.

Image ours Ref.10 Ref.3

Building
0.9525 0.9507 0.9572

28.45 28.48 28.45

Motocross Bikes
0.9589 0.9470 0.9496

26.89 26.45 26.51

Girl
0.9354 0.9351 0.9379

32.15 31.99 32.08

Street
0.9584 0.9507 0.9558

29.75 29.32 29.35

Average performance
0.9513 0.9458 0.9501

29.31 29.06 29.09

(a) (b) (c) (d) (e)
Figure 3. Blur kernel and set of color images used for evaluation of our method: (a) Motion blur kernel, (b) Building
image (480× 640), (c) Motocross bikes image (494× 494) , (d) Girl image (496× 700), and (e) Street image (480× 640).

3. PROPOSED DEBLURRING ALGORITHM

For the deblurring problem, we introduce the following objective function:

E(z) = (y −Az)T {I + β(I −W )}(y−Az) + η zT (I −W )z, (4)

in which the first term is the data fidelity term and the second term is the regularization term. β > 0 and η > 0
are parameters that need to be tuned based on the amount of noise and blur in the input image. Note that the
first term can be rewritten in terms of the matrix I + β(I −W ) as

‖{I + β(I −W )}1/2(y −Az)‖2. (5)

As a result, the first term in (4) prefers a solution z such that its blurred and then filtered version is as close as
possible to the filtered version of the input y. The frequency behavior of this filter is selected by the parameter
β. For example, when the amount of noise is high and the image is moderately blurred, then small values of β is
chosen, while for low noise and strong blur cases larger values of β are selected. Note that for β > 0, I+β(I−W )
behaves like a sharpening filter and so does its square root∗. Based on the analysis in,3 the data term involving
different derivatives of the residual is better able to model the underlying motion blurring phenomenon. On the
other hand, note that the second term can be written in terms of the normalizing coefficients in the diagonal
matrix C as

zT (I −W )z =
1

2

n
∑

i=1

∑

j,j∼i

K(i, j)(
z(i)

√

C(i, i)
−

z(j)
√

C(j, j)
)2, (6)

where j ∼ i stands for pixel j connected to pixel i in the corresponding graph or equivalently (i, j) ∈ E.
Also, C(i, i) denotes the ith diagonal element of the diagonal matrix C. As is evident from equation (6), the

∗The reason is that I − W is a high pass filter, and for β > 0, I + β(I − W ) can be considered as a data-adaptive
un-sharp mask filter.
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Figure 4. Real motion deblurring example: (a) input blurred noisy image, (b) Output of hyper-Laplacian algorithm,10 (c)
output of,3 and (d) output of our algorithm (η = 0.031, β = 0.6).

regularization term is essentially a normalized data-adaptive difference term that penalizes high frequencies in
the final solution to avoid noise amplification and ringing artifacts.

The kernel similarity matrix is initially computed from a denoised version of the input image. For this
purpose, we use the denoising algorithm in.22 The kernel similarity coefficients are then updated at each outer
iteration from the estimate of the previous step and the resulting objective function is minimized in an iterative
manner. The specific form of the cost function and the spectral properties of the normalized Laplacian make it
possible to use CG iterations for minimizing (4). Furthermore, for fast computation of the similarity coefficients,
we take advantage of the idea of integral images.23

4. EXPERIMENTS

In this section, we verify the effectiveness of the proposed deblurring method for motion deblurring problem. For
this purpose, we consider both synthetic and real examples. For synthetic examples, we use the nonlinear motion
blur kernel in Figure 3. Test images in Figure 3 are then circularly convolved with the blur kernel and additive
white Gaussian noise with standard deviation 1 is added to generate noisy blurry images†. The performance of
our method is then compared with those of algorithms in.3, 10 For real motion deblurring experiments, as our
method is a non-blind algorithm, we use existing blur kernel estimation methods2, 3 to derive the motion blur
kernel. Our algorithm is then applied independently to the blurred images and the results are compared with
those of References.3, 10 The same motion blur kernel estimate is used for all algorithms.

†Test images are from Kodak Lossless True Color Image Suite (http://r0k.us/graphics/kodak/) and the web page
for.24
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Figure 5. Real motion deblurring example: (a) input blurred noisy image, (b) Output of hyper-Laplacian algorithm,10 (c)
output of,3 and (d) output of our algorithm (η = 0.25, β = 2.5).

4.1 SYNTHETIC EXAMPLES

For synthetic examples, the set of parameters are selected for the best average performance for each algorithm
and are fixed for all the test images. For these experiments, we use periodic boundary conditions. We also use
patch size of 5 × 5, search neighbourhood size of 11 × 11, and the number of outer iterations equal to 3. The
values of the parameters β, η, and h are selected to be 0.01, 0.01, and 6.5, respectively. In order to evaluate
the performance of the algorithms, we use two commonly used measures for assessing the performance of image
enhancement methods, namely PSNR and SSIM.25 Table 1 summarizes the numerical results. As can be seen,
our algorithm shows better average performance compared to these algorithms.

4.2 REAL EXAMPLES

In this section, we evaluate the performance of the proposed method when applied to real motion blurred
examples. In Figures 4 and 5, the motion blur kernels are estimated using the blur kernel estimation method in.3

Figures 4 and 5 depict the deblurring outputs of our algorithm in comparison with the results of the non-blind
motion deblurring algorithms in.3, 10 As can be seen, our algorithm shows comparable results. Specifically, it
is better able to deal with the ringing artifacts due to the noise and inaccuracy in blur kernel estimation. In
Figure 6, the blur kernel is estimated using the method in2 and the same blur kernel estimate is used for all
algorithms. Also, note that in all experiments, we are using reflective boundary conditions.26 These examples
show the effectiveness of our algorithm for dealing with more complex real motion blur scenarios.
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Figure 6. Real motion deblurring example: (a) input blurred noisy image, (b) Output of hyper-Laplacian algorithm,10 (c)
output of,3 and (d) output of our algorithm (η = 0.032, β = 0.6).

4.3 COMPARISON WITH TRADITIONAL NORMALIZED GRAPH LAPLACIAN

In this section, we set up an experiment to investigate the performance of the proposed graph Laplacian with
respect to that of the traditional normalized graph Laplacian. If we denote WD = D−1/2KD−1/2, then the
traditional normalized graph Laplacian would be I −WD. We define the following cost function by replacing W

with WD in (4) as
ED(z) = (y −Az)T {I + β(I −WD)}(y−Az) + η zT (I −WD)z. (7)

The motion blurred Street image in Figure 7(b) is used for the experiments. The deblurring result from mini-
mizing (7) related to traditional normalized graph Laplacian along with that of our proposed method are shown
in Figure 7. As can be seen, our proposed normalized Laplacian produces deblurring output with higher quality
within the same framework.

5. CONCLUSION

We have introduced a new framework based on a new definition of normalized graph Laplacian for non-blind
motion deblurring. We have verified the performance of the proposed algorithm for both synthetic and real
motion deblurring examples. Also, we have compared the properties and performance of the proposed normalized
Laplacian with that of the traditional normalized graph Laplacian for motion deblurring. For future works,
this framework can be extended to the blind motion deblurring problem. It also can be generalized to more
complicated cases with non-uniform motion blur in the input image.
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Figure 7. Motion deblurring examples with blurred noisy Street image by motion blur kernel in Figure (3) and additive
white Gaussian noise with standard deviation σ = 1 : (a) clean image, (b) blurred noisy image, (c) output of the deblurring
algorithm with the corresponding traditional normalized Laplacian (PSNR = 27.93dB), and (d) output of our proposed
deblurring algorithm (PSNR = 29.75dB).
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