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Abstract—Any image can be represented as a function defined
on a discrete weighted graph whose vertices are image pixels.
Each pixel can be linked to other pixels via graph edges with
corresponding weights derived from similarities between image
pixels (graph vertices) measured in some appropriate fashion.
Image structure is encoded in the Laplacian matrix derived from
these similarity weights. Taking advantage of this graph-based
point of view, we present a general regularization framework
for image denoising. A number of well-known existing denoising
methods like bilateral, NLM, and LARK, can be described
within this formulation. Moreover, we present an analysis for
the filtering behavior of the proposed method based on the
spectral properties of Laplacian matrices. Some of the well estab-
lished iterative approaches for improving kernel-based denoising
like diffusion and boosting iterations are special cases of our
general framework. The proposed approach provides a better
understanding of enhancement mechanisms in self similarity-
based methods, which can be used for their further improvement.
Experimental results verify the effectiveness of this approach for
the task of image denoising.

Index Terms—Image Denoising, Graph Laplacian, Kernel
Similarity Matrix.

I. INTRODUCTION

Most real images contain some level of noise and/or
blur distortions. The following general model describes these
degradations:

y=Az+n, (1)

where y is the observed image pixel values lexicographically
ordered in an n-element column vector (n is the total number
of pixels), z is the corresponding latent image and n is additive
white noise vector which is assumed to be zero mean with
standard deviation o. Moreover, A is an n X n blurring matrix
resulting from a blur kernel. Generally speaking, (1) is an
ill-posed problem and requires an appropriate regularization
technique to avoid artifacts in the restored image. There is
a very rich literature on different ways to come up with a
desirable estimate of the unknown image z for the general
deblurring problem and the special denoising case, where
A = I. In this paper, we focus on image denoising. In
general, regularization methods for denoising can be divided
into two categories. The first group are those classical methods
that take advantage of some prior knowledge about images.
Algorithms that exploit either image smoothness priors [1]
or sparsity of image spectrum coefficients in some specific
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domain (e.g., Wavelet or DCT) [2] fall into this group. The
second class of methods exploit the existing self similarity in
images. Kernel-based denoising methods like bilateral, non-
local means (NLM), and LARK [3]-[6], fall into this category.
In a wide angle view, all the above mentioned algorithms
perform denoising based on some type of subset selection or
shrinkage operation in a fixed or adaptive basis. Note that
state-of-the-art image denoising methods like BM3D try to
find the optimal type of shrinkage operation by combining self
similarity information with sparsity property of image spec-
trum coefficients in some appropriate domain [7]. There are
some approaches that attempt to use the non-local similarity
idea in a variational formulation [8], [9]. Some other papers
connect the idea of graph signal representation and associated
Laplacian matrix in graph theory with non-local similarity
in image processing [6], [10], [11]. Inspired by these works,
in this paper, we present a new general two-step restoration
algorithm. The first step involves the computation of a kernel
similarity matrix and its corresponding Laplacian operator.
In the second step, an objective function is formulated and
iteratively optimized in which data fidelity and smoothness
terms are coupled via Laplacian and similarity matrices of
the underlying image. In Section II, a kernel based denoising
framework based on similarity and Laplacian matrices along
with its filtering interpretation based on the eigenvectors of the
corresponding Laplacian matrices are introduced. In Section
III, two widely used iterative denoising methods are discussed
as special cases of the framework introduced in Section II.
Numerical results are presented in Section IV.

II. KERNEL FORMULATION FOR DENOISING

We propose the following unified cost function for kernel-
based image denoising:

E(@) =(y—2)"F(K)y—2z) +nz' G(L)z, (2

in which K is a data-dependent kernel similarity matrix whose
(i,7)th element is the kernel similarity coefficient between
pairs of pixels ¢ and j (Fig. 1). These similarity coefficients
can be derived either locally using e.g., bilateral or LARK
kernels or non-locally using NLM. L is the corresponding
Laplacian matrix computed from K, and 7 is a positive
regularization parameter which balances the first term (data
fidelity term) and the second term (smoothness term). Also,



F(.) and G(.) are functions of K and L, to be specified shortly.
While the core discussion is applicable to any valid choice of
kernels [6], to keep focus here, we use the NLM kernel as
a canonical example in the remainder of the paper. Kernel
weight coefficients are computed from a pre-filtered version
Z of the observed image. If we denote a patch centered at
pixel ¢ in the image Z as Z;, the (¢, j)th element of matrix K
demonstrates the degree of similarity between pixels ¢ and j
and is computed as
552

K(i,) = exp{ 12 B0y ®
where  is the smoothing parameter. In the following subsec-
tions, we discuss two instances of the above energy function
that describe some of the existing kernel-based methods.

A. Case 1: Un-normalized Laplacian
By defining G(L) = L = D— K and F(K) = K, we have

E@)=(y-2)'Ky-2+nz' (D-K)z. 4

where D is a diagonal matrix whose ¢th diagonal element is
the sum of the elements of ith row of K;i.e., D = K1,, where
1,, is an n-dimensional vector of ones. Note that D — K is the
un-normalized Laplacian matrix widely used in graph theory
applications [12]. The first term is essentially a weighted data
fidelity term and the second term is a non-local term that
adaptively penalizes large derivatives based on the structure
of data encoded in the Laplacian matrix.

The steepest descent (SD) iterations can be used to minimize
(4) with respect to z:

ik = ik—l - MVE(Z)‘z:ik—l
=21+ pK(y =2 1) — (D — K)zg1 (5)

Here, 1 is the step size for SD iterations. At convergence, the
corresponding estimate would be

iun—norm = (K + 77(D - K))ile (6)

With K as e.g., the NLM kernel, and for the specific choice
of 7 = 1 (both terms contribute equally strongly), we have
precisely the NLM denoising algorithm:

iniv = D7'Ky. @)

Moreover, as shown in Section IV, with a fixed smoothing
parameter h, tuning the regularization parameter 7, yields an
estimation with lower mean squared error (MSE) compared
to standard NLM solution. We can use SURE-based MSE
estimation approach for adjusting the regularization parameter
n [13].

B. Case 2: Normalized Laplacian

The second approach is to apply Sinkhorn-Knop matrix
scaling algorithm [14], [15] to the symmetric non-negative ma-
trix K to construct the filtering matrix W = C~V/2KC~1/2,
where C~'/2 is a diagonal non-negative normalizing matrix
which scales the kernel similarity matrix /K. The resulting
matrix W is a symmetric non-negative doubly stochastic
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Figure 1. Graph representation of images and construction of kernel similarity
matrix K, un-normalized Laplacian L and normalized Laplacian L.

matrix. Hence, based on Perron-Frobenius theory, W has
spectral radius 0 < A(W) < 1 with largest eigenvalue A\; = 1
whose corresponding eigenvector is v; = (ﬁ)[l, 1., 17 =
(ﬁ)ln Moreover, it can be decomposed as W = VSVT in
which V is an orthonormal matrix whose ith column v; is the
ith eigenvector of W. The corresponding ith eigenvalue \; is
the ith diagonal element of S. At this point, we are able to
define the normalized Laplacian matrix I —W (Fig. 1). In this
case, our objective function becomes:

E@=y-2)"Wy—z)+nz" (I-W)z. ()

By computing the gradient of (8) with respect to z, one obtains
an iterative SD update equation as

2y =21+ pW(y — Zj—1) — pn(I = W)zg—1. (9

By appropriate selection of step size parameter u, (9) con-
verges to

ino’rm = (W + 77([ - W))_lwy (10)

Again, for the case = 1, optimization of (8) leads t0 Z,,;-mm =
Wy which has been shown to outperform its non-symmetric
counterpart 27y = D™ Ky [16].

C. Spectral analysis based on eigenvectors of Laplacian

Since the filtering matrix W and the normalized Laplacian
matrix [ — W have the same eigenvectors, (10) can be
interpreted as filtering the observed image in a space spanned
by the eigenvectors of the Laplacian. Noting that W = V.SV 7,
(10) can be expressed as

inorm = W/y = VS/VTYv (11)

where S’ is a diagonal matrix whose ith diagonal element \;
is a function of the corresponding eigenvalue A; of W as

Ai
(L =mAi+n’

Similarly by defining D~'/2KD~1/2 = U®UT, (6) can be
written as

Ai =p(X) = 12)

Dl/ziunfnorm = U@/UTD1/2)’- (13)

U is an orthonormal matrix which contains eigenvectors of
I — D"Y2KD='/2 in its columns. ®' is a diagonal matrix
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Figure 2. Denoising experiment on 31 X 31 piece-wise constant synthetic
patch (a) clean patch, (b) noisy patch by adding white Gaussian noise with
o = 25 (PSNR = 20.31dB) , (c) output of iterative algorithm (9) (PSNR=
35.96dB, 7 = 19), and (d) spectrum of filter matrices W ()\;’s) and W’
(A]’s).

whose ith diagonal element ¢} can be derived in terms of the
ith diagonal element of ®, namely, p; as
o = plpi) = —r .
' (I=n)pi+n
Equation (13) can be regarded as a filtering interpretation
of un-normalized Laplacian case in the space spanned by U
applied to a scaled version of the input to obtain a scaled
version of the desired estimate. Optimizing the value of 7 in
(12) or (14) with respect to an appropriate measure (e.g., using
SURE [13]) gives the desired estimate for both normalized and
un-normalized cases. As an illustration, an edge patch of size
31 x 31 is considered in Fig. 2(a) and white Gaussian noise of
standard deviation 25 is added to it (Fig. 2(b)). The resulting
output of iterative algorithm (9) is shown in Fig. 2(c). Fig.
2(d) shows the spectrum of W ()\;) and the corresponding
spectrum of W’ (X}). As will be shown in experiments,
normalized Laplacian formulation results in denoising outputs
with slightly better visual quality. Moreover, filtering analysis
of the normalized case is straightforward in the space spanned
by V.

(14)

III. DIFFUSION AND BOOSTING AS SPECIAL CASES OF
THE PROPOSED ALGORITHM

Two widely used iterative methods, namely diffusion and
boosting, have been effectively used for improving the per-
formance of kernel-based denoising algorithms [6]. These
iterative methods are two extreme cases of our more general
iterative approach (Eq. 9), as we illustrate below.

By setting n = oo in (8), the corresponding SD update
equation becomes diffusion iterations as

i, = Wi, (15)

(a) Lena

(b) Barbara

(c) Parrot (d) House

Figure 3. Set of images used for evaluating the performance of our denoising
algorithm.

Initializing (15) with zy =y leads to Z,, = %lnyTln, which
corresponds to a final constant estimate (an estimation without
variance).

On the other hand, by choosing 7 to be equal to 0, the effect
of the smoothness term in (8) is omitted, for which, boosting
iterations is derived as

2 =21+ W(y — Zj_1). (16)
In this case, initializing the boosting algorithm in (16) with
Zo = 0, results in Z,, = y. This corresponds to an un-biased
estimate of the original image with variance equal to the noise
variance.

IV. EXPERIMENTAL RESULTS

In order to evaluate the effectiveness of the proposed
kernel-based restoration approach, we apply this algorithm for
restoration of 256 x 256 benchmark images. For denoising
experiments, Gaussian noise with standard deviation 20 is
added to images shown in Fig. 3 and performance of iterative
algorithms (5) and (9) are compared against the output of
standard NLM. Peak signal to noise ratio (PSNR) in dB, and
SSIM [17] are used as quantitative measures for comparison.
As can be seen in Table I, in all cases we get better results
in terms of PSNR and SSIM with respect to standard NLM.
Also, note that SSIM values in Table I reflect slightly better
visual quality of the results of normalized iterative algorithm
(9) compared to un-normalized algorithm (5). Fig. 4 illustrates
House image denoised using the general iterative kernel-
based approaches (5) and (9) compared to standard NLM
denoising. Additionally, the result of applying normalized
iterative algorithm (9) to a noisy color image with the same
experimental settings as for the previous examples is shown
in Fig. 5.

V. CONCLUSION

We have presented a new general framework for image
denoising in this paper. This graph-based approach encom-
passes some well-known existing denoising methods, and
provides a path for further improvements. The corresponding
cost function considered in this paper contains quadratic terms
for both data and prior terms. Also, this work can be extended
to the more general deblurring problem.
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Figure 4. Denoising experiment on 256 x 256 House image, (a) clean image, (b) noisy image (o = 20), (c) standard NLM output image (PSNR = 30.80dB),
(d) output of iterative algorithm (5) (PSNR= 32.16dB, n = 0.67), and (e) output of iterative algorithm (9) (PSNR= 32.37dB, n = 0.82).
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Table 1
DENOISING PSNR AND SSIM PERFORMANCE OF THE ITERATIVE
ALGORITHMS (5) AND (9).

NLM Un-normalized Normalized
PSNR | PSNR PSNR
sty | sy || ssy |
Loma | 2868 [ 2966 | | 273 |
0.761) | (0.807) (0.814)
b | 2502 | 2936 | (| 2935 | oo
0.794) | (0.855) (0.860)
2881 | 29.16 20.13
Parrot 053 0.67
AT 1 0.786) | (0.841) (0.848)
Home | 2080 [ 3216 | [ 3237 | o
0.768) | (0.845) (0.849)
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