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Abstract—In this work we introduce a new image editing
tool, based on the spectrum of a global filter computed from
image affinities. Recently, we have shown that the global filter
derived from a fully connected graph representing the image,
can be approximated using the Nyström extension [1]. This filter
is computed by approximating the leading eigenvectors of the
filter. These orthonormal eigenfunctions are highly expressive of
the coarse and fine details in the underlying image, where each
eigenvector can be interpreted as one scale of a data-dependent
multiscale image decomposition. In this filtering scheme, each
eigenvalue can boost or suppress the corresponding signal com-
ponent in each scale. Our analysis shows that the mapping of the
eigenvalues by an appropriate polynomial function endows the
filter with a number of important capabilities, such as edge-aware
sharpening, denoising and tone manipulation.

Index Terms—Image Editing, Image Filtering, Nyström Exten-
sion

I. INTRODUCTION

Edge-aware filtering is a key tool in image processing,
computer vision and graphics. In most of the existing methods
the underlying image is decomposed into piecewise smooth
and detail layers. Then, a variety of applications, such as
tone mapping, edge editing and edit propagation are developed
based on this type of decomposition [2]–[6].

The optimal edge-aware filter coarsens details of the image,
yet the principal edges are ideally not altered. Several non-
linear (data-dependent) operators such as the bilateral filter
[7], [8] have been used for this task. Chen et al. [9] used the
bilateral filter by progressive increment of the spatial and range
width of the Gaussian for building a pyramid of image layers.
In a similar iterative approach, the bilateral filter is applied
successively on the coarsened image while decreasing the
range width [10]. In all of these methods edges are preserved
by the gradual change in the tuning parameters of the bilateral
kernel. However, the kernel weights have to be recomputed in
every iteration.

Almost all existing edge-aware methods use the same
general idea: Using a local operator decompose image into
base layer and detail layer and then manipulate each layer
separately and recombine to reach the desired edit. There are
two main problems with this approach:

• Since noise is always an unavoidable part of our imaging
systems, boosting the detail layer usually worsens the

signal-to-noise-ratio (SNR). Even with today’s mega-
pixel images, the trade off between sharpness and SNR is
still a bottleneck. Increasing exposure time will result in
higher SNR, but more blurry image. On the other hand,
a small aperture leads to sharper but noisier images.

• While it is always desirable to treat similar edges of an
image in the same way, the existing local filters have
irregular behaviors when handling edges with slightly
different brightness and gradient profiles. In other words,
global structure among similar edges are usually ignored
by the low-level feature vectors associated with each
pixel. Even with all the edge-aware operators in hand,
performing local adjustments to pixels and then evenly
propagating the edit to the similar regions all across the
image has proved to be a challenging task.

To alleviate the first problem, some methods have been
proposed that build on the classic linear unsharp masking.
Adaptive unsharp masking [11] controls the contrast enhance-
ment to happen in texture areas and avoids noise magnification
by leaving relatively smooth regions unchanged. A hierarchical
framework based on Non-Local Means (NLM) kernel [ 12] is
proposed in [13] where the noise removal is applied first as a
separate step and then the detail layers are extracted.

To mitigate the second problem, there have been some ef-
forts to interactively propagate the edits to regions with similar
appearance. Recently, the sparse optimization formulation is
used to provide stroke-based editing workflows with propaga-
tive tonal adjustments [6], [14], [15]. Using an edge-aware
energy minimization method, the tonal adjustment imposed by
the user is interpolated to the pixels with similar luminance.
Farbman et al. [5] also proposed an edit propagation method
based on the concept of diffusion distances which can measure
closeness of pixels on a manifold space. By approximating
a diffusion map built upon this high-dimensional similarity
measure, the input adjustments can propagate to nearby pixels
on the manifold.

In our framework, the two above-mentioned shortcomings
of the existing methods are tackled at the same time. Our
image filter is global in the sense that all the node (pixel)
pairs on the graph (image) are directly connected to each
other. As it was shown in [1], the eigen-decomposition of the
corresponding symmetric, doubly-stochastic filter matrix can
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Fig. 1. Some leading eigenvectors computed from the luminance channel of
the House image using less than 0.2% of the pixels.

be approximated using the Nyström extension. The obtained
eigenvectors are very informative of the similar regions and
edge information of the image (Fig. 1). More specifically, the
approximated eigenfunctions enable us to employ diffusion
distance for propagating the same manipulation over pixels
belonging to the similar regions. Having the spectrum of
the filter, noise suppression and detail enhancement become
much easier by mapping the spectrum of the filter using a
polynomial function with a few parameters (sliders) to tune.
Our experimental results show that this strategy reduces the
halo artifacts around principle edges, avoids the common noise
magnification problem and can interactively propagate the
user’s edit across the intended similar regions with ease. In
contrast to [5], [6], [14], [15], our approach does not require
the solution of a complex optimization problem to achieve this
effect.

In what follows, a description of global filter and its eigen-
decomposition are given in Section II. Then, our detail manip-
ulation strategy is explained in Section III. After discussing our
experimental results for different applications of the proposed
scheme, this report is concluded in Section V.

II. THE GLOBAL FILTER

Our filtering framework is based on non-parametric regres-
sion in which a kernel function Kij measures the similarity
between the input samples yi and yj , where ŷi denotes the
i-th output pixel. The NLM kernel [12] is a very popular data-
dependent filter in which the photometric similarity is captured
in a patch-wise manner:

Kij = exp

{
−‖yi − yj‖2

h2

}
, (1)

where yi and yj are patches centered at yi and yj , respectively.
The non-parametric framework yields a global filter descrip-
tion as follows:

ŷ =

⎡⎢⎢⎢⎣
wT

1

wT
2
...

wT
n

⎤⎥⎥⎥⎦ y = Wy, (2)

where the i-th row of the matrix W has the corresponding
normalized weights as:

wT
i =

1∑n
j=1 Kij

[Ki1,Ki2, . . . ,Kin]. (3)

A solution for reducing the computational burden of this
global scheme is proposed in [1] where instead of computing
each element of the filter W, some sample rows (or columns)
of the filter are exactly computed and used to approximate
the remaining rows. In practice, exact computation of the
filter matrix is avoided by instead approximating the leading
eigenvectors [1]. This gives an approximate of the symmetric,
positive definite W based on the row-rank assumption of
the similarity (affinity) matrix K. Having m leading eigen-
decomposition elements of the data-dependent filter W as:

W = VSVT ≈ VmSmVT
m = Wm, (4)

where Vm = [v1, ..., vm] denotes the leading orthonormal
eigenvectors and Sm = diag[λ1, ..., λm] contains the leading
eigenvalues in decreasing order 0 ≤ λm ≤ ... < λ1 = 1.
Global features of the underlying image can be represented
in these approximated eigenvectors. This has been shown in
Fig. 1 where some eigenvectors with different indices are
illustrated. As can be seen, various features of the image are
represented by these basis functions. Eigenvectors with lower
indices contain principal edges and corresponding eigenvectors
of larger indices represent texture regions. As can be seen,
these features are globally separated in each eigenmode. This
suggests that each corresponding eigenvalue can manipulate
these features in the image. This is discussed in the following
section.

III. MULTISCALE DETAIL MANIPULATION

Our global multiscale filtering process is illustrated in
Fig. 2. Fig. 2(a) depicts the multiscale decomposition and
reconstruction where the input image y is layered to k detail
layers ydi and one basic smooth layer ysk such that:

y = yd1 + . . .+ ydk + ysk (5)

The edited image ŷ can be computed by weighting each layer
and adding the components back together:

ŷ = α1yd1 + . . .+ αkydk + αk+1ysk (6)

Replacing the orthonormal eigen-decomposition of the filter
Wm in the above, the equivalent filter is (Fig. 2(b)):

ŷ = α1(I − Wm)y + α2Wm(I − Wm)y + ...

+ αkWk−1
m (I − Wm)y + αk+1Wk

my

≈ Vmf(Sm)VT
my = Ŵmy (7)

where the function f has the following effect on each eigen-
value λj :

f(λj) = α1 + (α2 − α1)λj + (α3 − α2)λ
2
j + ...

+ (αk − αk−1)λ
k−1
j + (αk+1 − αk)λ

k
j (8)
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Fig. 2. (a) Multiscale decomposition: The low-pass filter Wm is used to extract detail layers ydi . Multiscale reconstruction: Weighting each layer with
αi and adding them together. (b) The equivalent filter of the process given in (a) can be interpreted as the band-pass ̂Wm in which the eigenvalues are a
polynomial function of the low-pass filer’s eigenvalues.

This is a special polynomial with α0 = 0, f(0) = α1 and
f(1) = αk+1. The two coefficients α1 and αk+1 correspond to
the first detail layer and the basic smooth image, respectively.
Examples of this filtering scheme are represented in following.

IV. EXPERIMENTS

Performance of the proposed scheme is evaluated in this
section. Fig. 3 gives a visual comparison of the proposed
filters in Section III. As can be seen, applying filter Ŵm can
boost the contrast and details of the image in fine, medium
and coarse scales. Another interesting application of this filter
is propagation of a particular editing parameters to a group of
similar pixels. Using the diffusion map concept [16], squared
diffusion distance of the i-th and j-th pixel is measured as:

D2
ij(t) =

m∑
l=2

λ2t
l (vil − vjl)

2 (9)

where t denotes the diffusion parameter and v il denotes the i-
th entry of the l-th eigenvector. We employ a simple gaussian
function to embed this squared distance into [0, 1] interval:

Mis(t) ≡ exp(−D2
is(t)) (10)

where s refers to the pixels of a selected region by user. Having
such distance map enables us to easily propagate input edits to
the similar regions on image. Using the computed mask, it can
be seen that the sharpened region is propagated to the similar
pixels in Fig. 4. Comparing results of the global editing and
propagated edit in Fig 4, we can see that the main edges of
the image are preserved and there is almost no halo effect on
them. Also, existing noise in image regions with low SNR is
no longer boosted.

V. CONCLUSION

Our contribution to the existing research work is as follows:
Our framework handles noise naturally, because the image is
projected onto the data adapted basis obtained from affinity
weights. In other words, the noise is separated from the
underlying signal components by projecting the image onto the
approximated leading eigenvectors. The proposed scheme is

able to deliver a filtering tool with various capabilities. As part
of our future work, we will explore other editing applications
of the global filter.
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Fig. 3. Contrast and detail manipulation of the flower image. (b) α1 = 1, α2 = 1, α3 = 1, α4 = 1.5, (c) α1 = 5, α2 = 1, α3 = 1, α4 = 1, (d)
α1 = 1, α2 = 10, α3 = 1, α4 = 1, (e) α1 = 1, α2 = 1, α3 = 15, α4 = 1, (f) α1 = 3, α2 = 5, α3 = 10, α4 = 1.1.
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Fig. 4. Detail propagation of the rock image. (b) α1 = α2 = α3 = 5, α4 = 1, (c) Region of interest selected by user (d) Edited region by α1 = α2 =
α3 = 5, α4 = 1, (e) Propagation mask for t=50 (f) Propagated edit of the selected region based on the propagation mask.


