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Abstract

In this paper, we present an iterative improvement of
the guided image filter for flash/no-flash photography. The
guided filter [8] utilizes a guide image to enhance a cor-
rupted input image as similarly done in the joint bilateral
filter [3, 12]. The guided filter has proved to be effective for
such applications as high dynamic range compression, im-
age matting, haze removal, and flash/no-flash denoising etc.
In this paper, we analyze the spectral behavior of the guided
filter kernel in matrix formulation and introduce a novel
iterative application of the guided filtering which signifi-
cantly improves it. Iterations of the proposed method con-
sist of a combination of diffusion and residual iterations.We
demonstrate that the proposed approach outperforms state
of the art methods in both flash/no-flash image denoising
and deblurring.

1. Introduction

Recently, several techniques [12, 3, 1, 21] to enhance the
quality of flash/no-flash image pairs have been proposed.
The no-flash image tends to have a relatively low signal-
to-noise ratio (SNR) while containing the natural ambient
lighting of the scene. The key idea of flash/no-flash pho-
tography is to create a new image that is closest to the look
of the real scene by having detail from the flash image and
the ambient illumination of the no-flash image. Eisemann
and Durand [3] used (joint) bilateral filtering [17] to give
the flash image the ambient tones from the no-flash image.
On the other hand, Petschnigg et al. [12] focused on reduc-
ing noise in the no-flash image and transferring details from
the flash image to the no-flash image by applying joint (or
cross) bilateral filtering. Agrawal et al. [1] tried to remove
flash artifacts, but did not test their method on no-flash im-
ages containing severe noise. As opposed to a visible flash
used in [3, 12, 1], recently Krishnan and Fergus [11] used

Figure 1. Flash/no-flash pairs. No-flash image can be noisy or
blurry.

both near-infrared and near-ultraviolet illumination forlow
light image enhancement. Their so-called “dark flash” pro-
vides high-frequency detail in a less intrusive way than a
visible flash does even though it results in incomplete color
information. All these methods ignored any blur, by ei-
ther depending on a tripod setting or choosing sufficiently
fast shutter speed. However, in practice, the captured im-
ages under low-light conditions using a hand-held camera
often suffer from motion blur caused by camera shake.
More recently, Zhuo et al. [21] proposed a flash deblurring
method that recovers a sharp image by combining a blurry
image and a corresponding flash image. They integrated a
so-called flash gradient into a maximum-a-posteriori frame-
work and solved the optimization problem by alternating
between blur kernel estimation and sharp image reconstruc-
tion. This method outperformed many state of the art sin-
gle image deblurring [14, 4, 20] and color transfer meth-
ods [15]. However, the final output of this method is not
entirely free of artifacts because the model only deals with
a spatially invariant motion blur.

Others have used multiple pictures of a scene taken at
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Figure 2. Overview of our algorithms for flash/no-flash enhancement.

different exposures to generate high dynamic range images.
This is called multi-exposure image fusion [6] which shares
some similarity with our problem in that it seeks a new im-
age that is of better quality than any of the input images.
However, flash/no-flash photography is generally more dif-
ficult since that there are only a pair of images. It is still
a challenging open problem to enhance a low SNR no-flash
image with a spatially variant motion blur only with the help
of a single flash image.

In this paper, we propose a unified iterative framework
that deals with both denoising and deblurring. Before we
begin a more detailed description, we highlight some novel
aspects of the proposed framework.

• As opposed to [3, 12] which relied on the (joint) bilat-
eral filter, our approach adopts the guided filter [8] that
has proved to be superior.

• We improve the performance of the guided filter by an-
alyzing its spectral behavior and applying it iteratively.

• We show that iterative application of the guided fil-
ter corresponds to a combination of two iterative pro-
cesses applied to the two given images: a nonlinear
anisotropic diffusion to the no-flash image and a non-
linear residual itteratoin applied to the flash image.

• While [3, 12, 1, 21, 11] demonstrated their results on
either noise or blur case, we show that our method pro-
duces a high-quality output in both cases, and outper-
forms state of the art methods.

2. Overview of the Proposed Approach

We address the problem of generating a high quality im-
age from two captured images: a flash image (Z) and a no-
flash image (Y ) (See Fig1.) The task at hand is to generate a
new image (X) that contains the ambient lighting of the no-
flash image (Y ) and preserves the details of the flash-image
(Z). As in [12], the new imageX can be decomposed into
two layers; a base layer and a detail layer:

X̂ = Ŷ︸︷︷︸
base

+τ (Z − Ẑ)︸ ︷︷ ︸
detail

. (1)

Here,Y might be noisy or blurry (possibly both), and̂Y is
an estimated version ofY , enhanced with the help of the
flash image. Ẑ represents a nonlinear, (low-pass) filtered
version ofZ so thatZ − Ẑ can provide details. Note that
τ is a small constant that strikes a balance between the two
parts. In order to estimatêY andẐ, we employ local linear
minimum mean square error (LMMSE) predictors1 which
generalize the idea ofguided filteringas proposed in [8].
More specifically, we assumed thatŶ andẐ are linear func-
tions ofZ in a windowωk centered at the pixelk:

ŷi = azi + b, ẑi = czi + d, ∀i ∈ ωk, (2)

whereŷi, ẑi, zi are samples of̂Y , Ẑ, Z respectively at pixel
i and (a, b, c, d) are coefficients assumed to be constant in
ωk (a square window of sizep × p). Once we estimate
a, b, c, d, equation (1) can be rewritten as:

X̂ = Ŷ + τ(Z − Ẑ) = aZ + b+ τZ − τcZ − τd,

= (a− τ(c− 1))Z + b− τd = αZ + β. (3)

In fact, X̂ is a linear function ofZ. While it is not pos-
sible to estimateα andβ directly from this linear model
(since they in turn depend onX), the coefficientsα, β can
be expressed in terms ofa, b, c, d which are optimally es-
timated from two different local linear models shown in
equation (2). Naturally, the simple linear model has its lim-
itations in capturing complex behavior. Hence, by initializ-
ing X̂0 = Y , we propose an iterative approach to boost its
performance as follows:

X̂n = G(X̂n−1, Z) + τn(Z −G(Z,Z))

= G(X̂n−1, Z) + τn(Z − Ẑ) = αnZ + βn, (4)

1More detail is provided in Section4.



Figure 3. Examples of guided filter kernel weights in four different
patches. The kernel weights represent underlying structures well.

whereG(·) is LMMSE (guided filtering), andαn, βn, and
τn evolve with the iteration numbern. A block-diagram of
our approach is shown in Fig.2. The proposed method ef-
fectively removes noise and deals well with spatially variant
motion blur without the need to estimate any blur kernel or
to accurately register flash/no-flash image pairs when there
is a modest displacement between them.

In Section3, we outline the guided filter and study its
statistical properties. We describe how we actually estimate
the linear model coefficientsα, β, and we provide an in-
terpretation of the proposed iterative framework in matrix
form in Section4. In Section5, we demonstrate the perfor-
mance of the system with some experimental results, and
finally we conclude the paper in Section6.

3. The Guided Filter and Its Properties

Several recent space-variant, nonparametric denoising
filters such as the bilateral filter [17], non-local means fil-
ter [2], and locally adaptive regression kernel filters [16]
have been proposed for denoising, where the kernels are di-
rectly computed from the noisy image. However, the guided
filter can be distinguished from these in the sense that the
filter kernel weights are computed from a (second) “guide”
image which is presumably cleaner. The idea is to apply fil-
ter kernelsWij computed from the guide image (e.g. flash)
Z to the more noisy image (e.g. no-flash)Y . Specifi-
cally, the filter output samplêy at a pixeli is computed as a
weighted average:

ŷi =
∑

j

Wij(Z)yj . (5)

Cross (or joint) bilateral filter [3, 12] is another related ex-
ample of this type of filtering. The guided filter kernel can
be explicitly expressed as:

Wij(Z) =
1

|ω|2

∑

k:(i,j)∈ωk

(1 +
(zi −E[Z]k)(zj −E[Z]k)

var(Z)k + ǫ
), (6)

where |ω| is the total number of pixels(= p2) in ωk, ǫ
is a global smoothing parameter,E[Z]k ≈ 1

|ω|

∑
l∈ωk

zl, and

Figure 4. Examples ofW and its powers in a patch of size25×25.
The largest eigenvalue ofW is one and the rank ofW asymptoti-
cally becomes one. This figure is better viewed in color.

Figure 5. Examples of the1st left eigenvectoru in three patches.
The vector was reshaped into an image for illustration purpose.

var(Z)k ≈ 1

|ω|

∑
l∈ωk

z2

l −E[Z]2k. Note thatWij are normalized
weights, that is,∑

i,j
Wij(Z) = 1. Fig. 3 shows examples of

guided filter weights in four different areas. We can see
that the guided filter kernel weights neatly capture under-
lying geometric structures as do other data-adaptive kernel
weights [17, 2, 16].

Next, we study some fundamental properties of the
guided filter kernel in matrix form. We adopt a convenient
vector form of equation (5) as follows:

ŷj = wT
j y, (7)

wherey is a column vector comprised of the pixels inY
andwT

j = [W (1, j),W (2, j), · · · ,W (N, j)] is a vector of
weights for eachj. Note thatN is the dimension ofy (N ≥
p). Writing the above at once for allj we have,

ŷ =




wT
1
...

wT
N


 = W(z) y, (8)

wherez is a vector comprised of the pixels inZ andW is
only a function ofz. The filter output can be analyzed as
the product of a matrix of weightsW with the vector of the
given input imagey.

The matrixW is symmetric positive definite and the
sum of each row ofW is equal to one (W1N = 1N )
by definition. All eigenvaluesλi (i = 1, · · · , N) of W



Figure 6. The guided filter kernel matrixW captures the underly-
ing data structure, but powers ofW provides even better structure
by generating larger (but more sophisticated) kernel shapes. w is
a (center) row vector ofW. w was reshaped into an image for
illustration purposes.

in a patch of size25 × 25 are real, and the largest eigen-
value is exactly one (λ1 = 1), with corresponding eigen-
vectorv1 = (1/

√
N)1N as shown in Fig.4. Intuitively,

this means that filtering byW will leave a constant signal
(i.e., a “flat” image) unchanged. In fact, with the rest of its
spectrum inside the unit disk, powers ofW converge to a
matrix of rank one, with identical rows which (still) sum to
one:

lim
n→∞

Wn = 1NuT
1 . (9)

So the dominant left eigenvectoru1 summarizes the asymp-
totic effect of applying the filterW many times. Fig.5
shows what a typicalu1 looks like. The vector was re-
shaped into an image for illustration purposes. Fig.6 shows
examples of a (center) row vector (wT ) from W’s powers
in the same patch as Fig.4. We can see that powers ofW
provide even better structure by generating larger (but more
sophisticated) kernels. This insight reveals that applyingW
multiple times can possibly improve performance, which
leads us to the iterative use of the guided filter. This ap-
proach will produce the evolving coefficientsαn, βn intro-
duced in (4). In the following section, we describe how we
actually compute these coefficients based on mean square
error (MSE) predictions.

4. Iterative Local LMMSE Predictors

The coefficients2 ak, bk, ck, dk in equation (3) are chosen
so that “on average” the estimated valueŶ is close to the
observed value ofY (=yi) in ωk, and the estimated valuêZ
is close to the observed value ofZ (=zi) in ωk. To determine
these coefficients, we adopt a regularized (stabilized) MSE
criterion in the windowωk as our measure of closeness:

MSE(ak, bk) = E[(Y − akZ − bk)
2] + ǫ1a

2
k,

MSE(ck, dk) = E[(Z − ckZ − dk)
2] + ǫ2c

2
k, (10)

whereǫ1 andǫ2 are small constants that prevent estimated
ak, ck from being too large3. By setting partial derivatives

2Note thatk is used to clarify that the coefficients are estimated for the
windowωk.

3 The effect of the regularization parametersǫ1 andǫ2 is quite the op-
posite in each case in the sense that the higherǫ2 is, the more detail through
ẑi − zi can be obtained; whereas the lowerǫ1 ensures that the image con-
tent inŶ is not over-smoothed.

Figure 7. LMMSE:̂ak, b̂k are estimated from 9 different windows
ωk and averaged coefficientsâ, b̂ are used to predict̂yi. This figure
is better viewed in color.

of MSE(ak, bk) with respect toak, bk and partial deriva-
tives ofMSE(ck, dk) with respect tock, dk respectively to
zero, the solutions to minimum MSE prediction in (10) are

âk=
E[ZY ]− E[Z]E[Y ]

E[Z2]− E2[Z] + ǫ1
=

[
cov(Z, Y )

var(Z) + ǫ1

]
,

b̂k=E[Y ]− âkE[Z] =E[Y ]−

[
cov(Z, Y )

var(Z) + ǫ1

]
E[Z],

ĉk=
E[Z2]− E2[Z]

E[Z2]− E2[Z] + ǫ2
=

[
var(Z)

var(Z) + ǫ2

]
,

d̂k=E[Z]− ĉkE[Z] =E[Z]−

[
var(Z)

var(Z) + ǫ2

]
E[Z], (11)

where we computeE[Z] ≈ 1

|ω|

∑
l∈ωk

zl, E[Y ] ≈ 1

|ω|

∑
l∈ωk

yl,

E[ZY ] ≈ 1

|ω|

∑
l∈ωk

zlyl, E[Z2] ≈ 1

|ω|

∑
l∈ωk

z2

l .

Note that the use of differentωk results in different pre-
dictions of these coefficients. For instance, consider a case
where we predict̂yi using observed values ofY in ωk of
size3× 3 as shown in Fig.7. There are 9 possible windows
that involve the pixel of interesti. Therefore, we must take
into account all 9ak, bk ’s to predictŷi. The simple strategy
taken by He at al. [8] is to average them as follows:

â =
1

|ω|

|ω|∑

k=1

âk, b̂ =
1

|ω|

|ω|∑

k=1

b̂k. (12)

As such, the resulting prediction of̂Y givenZ = zi is

ŷi = âzi + b̂ =
1

|ω|

|ω|∑

k=1

(âkzi + b̂k),

ẑi = ĉzi + d̂ =
1

|ω|

|ω|∑

k=1

(ĉkzi + d̂k). (13)

The idea of using these averaged coefficientsâ, b̂ is anal-
ogous to the simplest form of aggregating multiple local
estimates from overlapped patches in image denoising and
super-resolution literature [13]. The aggregation helps the
filter output look locally smooth and contain fewer artifacts.



These local linear models work well when the window
size p is small and the underlying data has a simple pat-
tern. However, these models are too simple to deal effec-
tively with more complicated structures, and thus there is a
need to use larger window sizes. As we alluded to earlier in
(4), the estimation of these linear coefficients in an iterative
fashion can handle significantly more complex behavior of
the image content as follows:

X̂n = (ân − τn(ĉ− 1))Z + b̂n − τnd̂,

= α̂nZ + β̂n, (14)

wheren is the iteration number andτn > 0 is set to be
a monotonically decaying function4 of n so that

∑∞
n=1 τn

converges. This iteration is closely related todiffusionand
residual iterationwhich are two fundamental smoothing
methods which we briefly describe below.

Recall that equation (14) can also be written in matrix
form as done in Section3:

x̂n = Wx̂n−1︸ ︷︷ ︸
base layer

+τn (z −Wd z)︸ ︷︷ ︸
detail layer

, (15)

whereW andWd are guided filter kernel matrices con-
structed from the guided filter kernelsW andWd respec-
tively. The difference betweenW andWd lies in one pa-
rameter (ǫ2 of Wd > ǫ1 of W ). Explicitly writing the itera-
tions, we observe:

x̂0 = y

x̂1 = Wy + τ1(z−Wdz),

x̂2 = Wx̂1 + τ2(z−Wdz),

= W
2
y + (τ1W + τ2I)(z−Wdz),

...

x̂n = Wx̂n−1 + τn(z−Wdz),

= W
n
y + (τ1W

n−1 + τ2W
n−2 + · · ·+ τnI)(z−Wdz),

= W
n
y︸ ︷︷ ︸

diffusion

+Pn(W)(z−Wdz)︸ ︷︷ ︸
residual iteration

, (16)

wherePn is a polynomial function ofW, andI is an Iden-
tity matrix. The first termWny in equation (16) is an
anisotropicdiffusionprocess that enhances SNR. The sec-
ond term is theresidual iteration[18]. The key idea behind
this iteration is to filter the residual (Z−Ẑ) to extract detail.
By combiningdiffusionandresidual iteration, we achieve
an image between the flash imagez and the no-flash image
y, but of better quality than both.

5. Experimental Results

In this section, we apply the proposed approach to
flash/no-flash image pairs for denoising and deblurring. We

4We useτn =
1
n2

for the all experiments.

convert imagesZ andY from RGB color space to YCbCr,
and perform iterative filtering separately in each resulting
channel. The final result is converted back to RGB space
for display. Note that all figures in this section are better
viewed in color.

5.1. Flash/No-flash Denoising

5.1.1 Visible Flash [12]

We show experimental results on two flash/no-flash image
pairs. We compare our results with the method based on
joint bilateral filter [12] in Fig. 8. Our proposed method
effectively denoised the no-flash image while transferring
the fine detail of the flash image and maintaining the am-
bient lighting of the no-flash image. We point out that the
proposed iterative application of the guided filtering yielded
much better results than one time iteration of either the joint
bilateral filtering [12] or the guided filter [8].

5.1.2 Dark Flash [11]

Here, we use thedark flashapproach of [11]. Let us call
the dark flash imageZ. Dark flash may introduce shad-
ows and specularities in images, which affect the results of
both the denoising and detail transfer. We detect those re-
gions using the same methods proposed by [12]. Shadows
are detected by finding the regions where|Z − Y | is small
and specularities are found by detecting saturated pixels in
Z. After combining the shadow and specularities mask, we
blur it using a Gaussian filter to feather the boundaries. By
using the resulting mask, the outputX̂n at each iteration is
alpha-blended with a (nonlinear) low-pass filter version of
Y as similarly done in [12, 11]. In order to realize ambient
lighting conditions, we applied the same mapping function
to the final output as in [11]. Fig. 9 shows that our results
yield better detail with less color artifacts.

5.2. Flash/No-flash Deblurring

Motion blur due to camera shake is an annoying yet
common problem in low-light photography. Our proposed
method can also be applied to flash/no-flash deblurring. We
show experimental results on two flash/no-flash image pairs
where no-flash images suffer from mild noise and strong
motion blur. We compare our method with Zhuo et al. [21].
As shown in Fig.10, our method outperforms [21], obtain-
ing much finer details with better color contrast even though
our method does not estimate a blur kernel at all. The results
of [21] tend to be somewhat blurry and distort the ambient
lighting of the real scene.

6. Conclusion and Future Work

We analyzed the spectral behavior of the guided filter
kernel using a matrix formulation and improved its perfor-



Figure 8. Flash/no-flash denoising examples compared to thestate of the art method [12].

mance by applying it iteratively. Iterations of the proposed
method consist of a combination of diffusion and residual it-
eration. We demonstrated that the proposed approach yields
outputs that not only preserve fine details of the flash im-
age, but also ambient lighting of the no-flash image. The
proposed method outperforms state of the art methods in
both flash/no-flash image denoising and deblurring. It is
also worthwhile to explore several other applications such
as joint upsampling [10], image matting [7], mesh smooth-
ing [5, 9], and specular highlight removal [19] where the
proposed method can be employed.
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