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Abstract

We present an algorithm for detecting human actions
based upon a single given video example of such actions.
The proposed method is unsupervised, does not require
learning, segmentation, or motion estimation. The novel
features employed in our method are based on space-time
locally adaptive regression kernels. Our method is based
on the dense computation of so-called space-time local
regression kernels (i.e. local descriptors) from a query
video, which measure the likeness of a voxel to its spatio-
temporal surroundings. Salient features are then extracted
from these descriptors using principal components analysis
(PCA). These are efficiently compared against analogous
features from the target video using a matrix generalization
of the cosine similarity measure. The algorithm yields a
scalar resemblance volume, each voxel indicating the like-
lihood of similarity between the query video and all cubes in
the target video. By employing non-parametric significance
tests and non-maxima suppression, we accurately detect the
presence and location of actions similar to the given query
video. High performance is demonstrated on a challenging
set of action data [8] indicating successful detection of mul-
tiple complex actions even in the presence of fast motions.

1. Introduction

A huge and growing number of videos are available on-
line today. Human actions are one of the most important
parts in movies, TV shows, and personal videos. Analysis
of human actions in videos is considered a very important
component in computer vision systems because of such ap-
plications as content-based video retrieval, visual surveil-
lance, analysis of sports events and more.

The generic problem of interest addressed in this paper
can be briefly described as follows: We are given a single
“query” video of an action of interest (for instance a short
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Figure 1. (a) A hand-waving action and possibly similar actions
(b) Given a query video (), we want to detect/localize actions of
interest in a target video 7. 1" can be divided into a set of overlap-
ping cubes

ballet turn), and we are interested in detecting similar ac-
tions within other “target” videos. Detecting human actions
from video is a very challenging problem due to the fact
that physical body motion can look very different depend-
ing on the context: 1) similar actions with different clothes,
or in different illumination and background can result in a
large appearance variation; 2) the same actions performed
by two different people may look dissimilar in terms of
action speed or frame rate of the video (See Fig. 1 (a)).
There have been many efforts to model and recognize hu-
man actions broadly by means of parametric time-series ap-
proaches, frame-by-frame nonparametric approaches, and
volumetric approaches. We refer the interested reader to
[13] and references therein for a good summary. Volumet-
ric approaches tend to outperform the other two approaches.
These volumetric methods do not require background sub-
traction, motion estimation, and complex models of body
configuration and kinematics. They tolerate variations in
appearance, scale, rotation, and movement to some extent.
Methods such as those in [5, 8] which aim at recognizing ac-
tions based solely on one query (what we shall call training-
free) are very useful for video retrieval from the web. In
these methods, a single query video is provided by users
and every gallery video in the database is compared with the
single query, posing a video-to-video matching problem.
Inspired by this trend toward training-free action analy-
sis, this paper presents a novel training-free human action
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Figure 2. Action detection system overview (There are broadly
three stages.)

detection framework. Our proposed method is based on
the calculation and use of what we call space-time local re-
gression kernels which are local weights computed directly
from the given pixels in both the query and target videos.
The original motivation to use these local regression kernels
is the earlier successful work on adaptive kernel regression
for image denoising, interpolation [9], deblurring [10], and
(2-D) generic object detection [6]. Takeda et al. [11] ex-
tended the kernel regression framework to super-resolution
by introducing space-time local steering kernels which cap-
ture the essential local behavior of a spatio-temporal neigh-
borhood. The space-time local steering kernel (3-D LSK)
is fundamentally based on the comparison of neighboring
pixels in both space and time, thus it implicitly contains in-
formation about the local motion of the pixels across time,
thus requiring no explicit motion estimation.

The space-time local steering kernel is defined as fol-
lows:

K(xe — x) = \/det(Cs) exp { (xs —x)"Csxs — x) }7 o

h? —2h?

where X, = |11, 2,7 is the space-time coordinates, s€
[1,---,P], his a global smoothing parameter, P is the total
number of samples in a space-time local analysis window
around a sample position at x, and the matrix C, € R(*3)
is a covariance matrix estimated from a collection of first
derivatives along spatial (z1, r2) and temporal (¢) axes. The
covariance matrix C, modifies the shape and size of the lo-
cal kernel in a way which robustly encodes the space-time
local geometric structures present in videos. Normaliza-
tion of this kernel function yields robustness to illumination,
contrast, and color differences. For a more in depth analy-
sis on local steering kernels, we refer the interested reader
to [6,9, 10, 11].

Very recently, Shechtman and Irani [7] introduced a
space-time local self-similarity descriptor for action de-
tection and showed performance improvement over their
previous approach [8]. This (independently derived) lo-
cal space-time self-similarity descriptor is a special case of

our space-time local steering kernel and is also related to
a number of other local data adaptive metrics such as Op-
timal Space-Time Adaptation (OSTA) [2] and Non-Local
Means (NLM) [3] which have been used very successfully
for video restoration in the image processing community.
While the method proposed by Shechtman and Irani [7] is
related to our method, their approach fundamentally differs
from ours in the following respects: 1) Since the calculation
of space-time local steering kernels is stable in the presence
of uncertainty in the data [9], our approach is robust even
in the presence of noise; 2) As opposed to [7] filtering out
“non-informative” descriptors in order to reduce the time
complexity, we automatically obtain the most salient fea-
ture volumes by applying Principal Components Analysis
(PCA) to a collection of 3-D LSKs. From a practical stand-
point, it is important to note that the proposed framework
operates using a single example of an action of interest to
find similar matches; does not require any prior knowledge
(learning) about actions being sought; and does not require
any pre-processing step or segmentation of the target video.
Fig. 2 shows an overview of our proposed framework for
action detection. To summarize the operation of the over-
all algorithm, we first compute the normalized space-time
local steering kernels (3-D LSKs) W, W from both @
and 7. In the second stage, we obtain the salient feature
volumes Fq,Fr by projecting the descriptors Wq, W
to a projection space A derived from Wg. In the third
stage, we compare the feature volumes F7, (=a chunk of
Fr at it" position) and F using the Matrix Cosine Sim-
ilarity measure. The final output is given after a sequence
of significance tests, followed by non-maxima suppression
[4].

This paper is organized as follows. In the next section,
we provide further technical details about the various steps
outlined above. In Section 3, we demonstrate the perfor-
mance of the system with experimental results, and we con-
clude this paper in Section 4.

2. Technical Details

As outlined in the previous section, our approach to de-
tect actions consists broadly of three stages. Assume that
we are given a “target” video 7" and that we have a query
video @), where @ is generally smaller than 7T'. The task at
hand is to detect and locate cubes of 7" that are similar to ().
The first step is to calculate space-time local steering ker-
nels (3-D LSKs). To be more specific, 3-D LSK function
K (xs —x) is densely calculated and normalized as follows:

Wixs—x)

Ki(xs—x) { s=1,---,P, @)

:425:1 Kf(xs*Xf Ie{Q,T}.

Fig. 3 illustrates what the normalized versions of 2-D LSKs
and 3-D LSKs in various regions look like.

1966



=
Esgﬁ

o L. s
‘@90

(@) (b)
Figure 3. (a) Examples of 2-D LSK in various regions. (b) Ex-
amples of space-time local steering kernel (3-D LSK) in various
regions. Note that key frame means the frame where the center of
3-D LSK is located.

In order to organize Wgo(xs — x)’s and Wp(x, —
x)’s, which are densely computed from () and T, let
W, Wr be matrices whose columns are vectors wgo,wr,
which are column-stacked (rasterized) versions of W (xs—
x),Wr(xs — x) respectively:

Wqo = [wh, -, wg] e RF™

Wr = [wp, -, wi'] € RPXnT, 3)

where n and nr are the number of 3-D LSKs in the query
video () and the target video 7" respectively. As described
in Fig. 2, the next step is to apply PCA to W, for dimen-
sionality reduction and to retain only its salient characteris-
tics. Applying PCA to W, we can retain the first (largest)
d principal components! which form the columns of a ma-
trix Ag € RP*4. Next, the lower dimensional features are
computed by projecting W and W onto Ag:

Fo = [f5,-.f5] = A{Wg € R,
Fr = [t} 77 = AAWr e R (4)

Fig. 4 illustrates the principal components in A g and shows
what the features F o, Fr look like for the ballet video case.

Very recently, Ali and Shah [1] proposed a set of kine-
matic features that extract different aspects of motion dy-
namics present in the optical flow. They obtained bags of
kinematic modes for action recognition by applying PCA to
a set of kinematic features. We differentiate our proposed
method from [1] in the sense that 1) motion information is
implicitly contained in 3-D LSK while [1] explicitly com-
putes optical flow; 2) Background subtraction was used as a
pre-processing step while our method is fully automatic; 3)
[1] employed multiple instance learning to a set of all kine-
matic modes in the dataset while our proposed method does
not involve any training phase.

Typically, d is selected to be a small integer such as 3 or 4 so that
80 to 90% of the “information” in the LSKs would be retained. (i.e.,
d .
% > 0.8 (to 0.9) where \; are the eigenvalues.)
i=1 "t
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Figure 4. Ballet action : A is learned from a collection of 3-D
LSKs W, and Feature row vectors of F g and Fr are computed
from query @ and target video T respectively. Eigenvectors and
feature vectors were transformed to volume and up-scaled for il-
lustration purposes.

The next step in the proposed framework is the mea-
surement of a “distance” between the computed features
Fq,Fr,. For this purpose, we employ the nonparametric
detection framework [6] based on “Matrix Cosine Similar-

ity”.

The “Matrix Cosine Similarity (MCS)” between two fea-
ture matrices Fg, F7, which consist of a set of vectors can
be defined as the “Frobenius inner product” between two

normalized matrices as follows:

o FLF,
pi =<Fo,Fr, >p= trace(| )ye[-1,1], (5)
h — fé %7‘ 7
where, Fo=lpmi . . i) Fr, =lFr, 1 o T

Equation 5 can be rewritten as a weighted average of the co-
sine similarities p(fq, f7, ) between each pair of correspond-
ing feature vectors (i.e., columns) in Fg, F7, as follows:

fé i

i K
ZHFQHFHFT PR

f[
IR

Al

L
The weights are represented as the product of Hl‘!fi”” and
F

HfT I
7, Tr

ture in the feature sets Fo,F7,. This measure 2 not only
generalizes the cosine similarity, but also overcomes the
disadvantages of the conventional Euclidean distance which

which indicate the relative importance of each fea-

2We compute p; over M target cubes and this can be efficiently imple-
mented by column-stacking the matrices F ¢, Fr, and simply computing
the cosine similarity between two long column vectors as follows:
n o d fg 23) f(

> X
=175 op, sd 15§ \2\/2211 vi,

= pleolstack(Fq), colstack(F,)) € [~1,1],

pi = —,
|f§i,1) 12

where fg J ), fg’j ) are elements in £t vector fé and fﬁ respectively,

and colstack(-) means an operator which column-stacks a matrix.
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[4]are described.

is sensitive to outliers. Fig. 5(Left) shows examples of the
computation of the MCS, which indicate that it provides a
reliable measure of similarity.

It is worth noting that Shechtman and Irani [8] proposed
3-D volume correlation score (global consistency measure
between query and target cube) by computing a weighted
average of local consistency measures. The difficulty with
that method is that local consistency values should be ex-
plicitly computed from each corresponding subvolume of
the query and target video. Furthermore, the weights to cal-
culate a global consistency measure are based on a sigmoid
function, which is somewhat ad-hoc. Here, we claim that
our measure, MCS is better motivated, more appropriate,
and more general than their global consistency measure for
action detection.

The next step is to generate a so-called “resemblance vol-
ume” (RV), which will be a volume of voxels indicating the
likelihood of similarity between ) and 7' at each spatio-
temporal position. As for the final test statistic comprising
the values in the resemblance volume, we use the propor-
tion of shared variance (p?) to that of the “residual” vari-
ance (1 — p?). More specifically, RV is computed using the
function f(-) as follows:

2

From a quantitative point of view, we note that f(p;) is es-
sentially the Lawley-Hotelling Trace statistic [12], which
is used as an efficient test statistic for detecting correlation
between two data sets.

Next, we employ a two-step significance test as shown
in Fig 5 (Right). The first is an overall threshold (79) on
the RV to decide whether there is any sufficiently similar
action present in the target video at all. If the answer is yes

at sufficiently high confidence, we would then want to know
how many actions of interest are present in the target video
and where they are. Therefore, we need two thresholds: an
overall threshold 3 7, as mentioned above, and a threshold *
T to detect the (possibly) multiple occurrences of the same
action in the target video.

After the two significance tests with 7,, 7 are performed,
we employ the idea of non-maxima suppression [4] for the
final detection. We take the volume region with the high-
est f(p;) value and eliminate the possibility that any other
action is detected within some radius® of the center of that
volume region again. This enables us to avoid multiple false
detections of nearby actions already detected. Then we iter-
ate this process until the local maximum value falls below
the threshold 7. Fig. 5 (Right) shows a graphical illustration
of significance tests and non-maxima suppression [4].

For the sake of completeness, the overall pseudo-code
for the algorithm is given in Algorithm 1.

3. Experimental Results

Our method detects the presence and location of actions
similar to the given query and provides a series of bound-

3Ina typical scenario, we set the overall threshold 7, to be, for instance,
0.96 which is about 50% of variance in common (i.e., p? = 0.49). In other
words, if the maximal f(p; ) is just above 0.96, we decide that there exists
at least one action of interest.

4We employ the idea of nonparametric testing. We compute an em-
pirical probability density function (PDF) from M samples f(p;) and we
set T so as to achieve, for instance, a 99 % (o = 0.99) significance level
in deciding whether the given values are in the extreme (right) tails of the
distribution. This approach is based on the assumption that in the target
video, most cubes do not contain the action of interest (in other words, ac-
tion of interest is a relatively rare event), and therefore, the few matches
will result in values which are in the tails of the distribution of f(p;).

SThe size of this “exclusion” region will depend on the application at
hand and the characteristics of the query video.
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Algorithm 1 Training-free generic action detection

Q@ : Query video, T" : Target video, 7, : Overall threshold, « : Confidence level,
P : Size of space-time local steering kernel (3-D LSK) cube.

Stagel : Compute Descriptors

Construct W g, W1 which are a collection of normalized 3-D LSK associated
with Q, T'.

Stage2 : Feature Representation

1) Apply PCA to W ¢ and obtain projection space A g from its top d eigenvec-
tors.

2) Project W and W onto A to construct Fg and Fp.

Stage3

1) Compute Matrix Cosine Similarity

for every target cube T, where ¢ € [0,--- , M — 1] do

F Frp. 2

pi =< HFQQHF’ IIFT;HF >r and (RV) = f(pi) = 1?;;12'
end for
Then, find max f(p;).
2) Significance tests
i) If max f(p;) > 7o, g0 on to the next test. Otherwise, there is no action of
interest in 7"
ii) Threshold RV by 7 which is set to achieve 99 % confidence level (o = 0.99)
from the empirical PDF of f(p;).
3) Non-maxima suppression
Apply non-maxima suppression [4] to RV until the local maximum value is below
T.

ing cubes with resemblance volume embedded around de-
tected actions. Note that no background/foreground seg-
mentation is required in the proposed method. This method
can also handle modest amount of variations in rotation (up
to =15 degree), and spatial and temporal scale change (up
to £20%). In practice, once given ) and T', we downsam-
ple both @ and T by some factor of (3, here) in order to
reduce the time-complexity. We then compute 3-D LSK of
size 3 x 3 (space) X7 (time) as descriptors so that every
space-time location in () and 7" yields a 63-dimensional lo-
cal descriptor W and W respectively. The smoothing
parameter i for computing 3-D LSKs was set to 2.1. We
end up with Fg,Fr by reducing dimensionality from 63
to d = 4 and then, we obtain RV by computing the MCS
measure between F g, Fr. The threshold 7 for each test ex-
ample was determined by the confidence level o = 0.99.
We applied our method to 3 different examples : i.e. detect-
ing 1) walking people, 2) ballet turn actions, and 3) mul-
tiple actions in one video. Shechtman and Irani [8] have
tested their method on these videos using the same query
and [5, 7] also tested their methods on some of these videos.
We achieved similar (or even better) performance as com-
pared to the methods in [5, 7, 8]. It is worth noting here that
the other action detection methods [5, 7, 8] did not provide
either threshold values or describe how they selected thresh-
old values in reporting detection performance. On the other
hand, the threshold values are automatically chosen in our
algorithm with respect to the confidence level as explained
earlier.

Fig. 6(A) shows the results of searching for instances
of walking people in a target beach video (460 frames of
180 x 360 pixels). The query video contains a very short
walking action moving to the right (14 frames of 60 x 70
pixels) and has a background context which is not the beach

scene. In order to detect walking actions in either direction,
we used two queries (@) and its mirror-reflected version) and
generated two RVs. By voting the higher score among val-
ues from two RVs at every space-time location, we ended
up with one RV which includes correct locations of walking
people in the correct direction. Fig. 6(A) (a) shows a few
sampled frames from @. In order to provide better illus-
tration of 7', we divided 7" into 3 non-overlapping sections.
Fig. 6(A) (b) and (c) represent each part of 7" and its corre-
sponding RV respectively. Red color represents higher re-
semblance while blue color denotes lower resemblance val-
ues. Fig. 6(A) (d) and (e) show a few frames from 7', with
RV and bounding boxes superimposed on them respectively.

Fig. 6 (B) shows the results of detecting ballet turning
action in a target ballet video (284 frames of 144 x 192 pix-
els). The query video contains a single turn of a male dancer
(13 frames of 90 x 110 pixels). Fig. 6(B) (a) shows a few
sampled frames from (). Next, Fig. 6(B) (b) and (c) repre-
sent each part of 7" and its corresponding RV respectively.
Fig. 6(B) (d) and (e) show a few frames from 7" with re-
semblance volumes superimposed on it respectively. Most
of the turns of the two dancers (a male and a female) were
detected even though this video contains very fast moving
parts and relatively large variability in spatial scale and ap-
pearance (the female dancer wearing a skirt) as compared
to the given query (). We observed that one of the female
dancer turning actions was missed because of large spatial
scale variation as compared to the given ). However, we
can easily deal with this problem by either adjusting the sig-
nificance level or using multi-scale approach as done in [6].
The detection result of the proposed method on this video
outperforms that in [5, 8] and compares favorably to that in
[7].

Fig. 6(C) shows the results of detecting 4 different ac-
tions (“walk™, “wave”, “clap”, and “jump”) which occur si-
multaneously in a target video (120 frames of 288 x 360
pixels). Four query videos were matched against the target
video independently. Fig. 6(C) (a) and (b) show a few sam-
pled frames from () and T respectively. White boxes in Fig.
6(C) (a) represent actual regions used for the query. The
resulting RVs are shown in Fig. 6(C) (c). In all the above
examples, we used the same parameters. It is evident, based
on all the results above, that the proposed training-free ac-
tion detection based on 3-D LSK works well and is robust
to modest variations in spatio-temporal scale.

Our system is designed with detection accuracy as a high
priority. A typical run of the object detection system takes
a little over 1 minute on a target video 7' (50 frames of
144 x 192 pixels, Intel Pentium CPU 2.66 Ghz machine)
using a query @) (13 frames of 90 x 110). Most of the run-
time is taken up by the computation of MCS (about 9 sec-
onds, and 16.5 seconds for the computation of 3-D LSKs
from @ and T respectively, which needs to be computed
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Figure 6. Results searching for (A) walking person on the beach, (B) ballet turn on the ballet video, and (C) multiple actions. (A,B):
(a) query video (a short walk clip) (b) target video (c) resemblance volumes (RV) (d) a few frames from 7' (e) frames with resemblance
volume on top of it. (C): (a) four different short video queries. Note that white boxes represent actual query regions (b) target video 7" (c)

resemblance volumes (RV)s with respect to each query.

only once.) There are many factors that affect the precise
timing of the calculations, such as query size, complexity
of the video, and LSK size. Our system runs in Matlab but
could be easily implemented using multi-threads or parallel
programming as well as General Purpose GPU for which
we expect a significant gain in speed.

4. Conclusion and Discussion

In this paper, we have proposed a novel action detec-
tion algorithm by employing space-time local steering ker-
nels (3-D LSKs); and by using a training-free nonparamet-
ric detection scheme based on “Matrix Cosine Similarity”
(MCS). The proposed method can automatically detect in
the target video the presence, the number, as well as location
of actions similar to the given query video. The proposed
method is practically appealing because it is nonparamet-
ric. The proposed framework is general enough as to be ex-
tendable to action categorization using a nearest neighbor
classifier along with an automatic action cropping method
as similarly done in [5]. Improvement of the computational
complexity of the proposed method is also a direction of
future research worth exploring.

5. Acknowledgment

This work was supported by AFOSR Grant FA 9550-07-
01-0365.

References

[1] S. Ali and M. Shah. Human action recognition in videos
using kinematic features and multiple instance learning. Ac-
cepted for publication in IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence (PAMI), 2008.

[2] J. Boulanger, C. Kervrann, and P. Bouthemy. Space-time
adaptation for patch-based image sequence restoration. /EEE
Transactions on Pattern Analysis and Machine Intelligence,
29:1096-1102, June 2005.

[3] A. Buades, B. Coll, and J. M. Morel. Nonlocal image and
movie denoising. International Journal of Computer Vision,
76(2):123-139, 2008.

[4] FE Devernay. A non-maxima suppression method for edge
detection with sub-pixel accuracy. Technical report, INRIA,
(RR-2724), 1995.

[5] H. Ning, T. Han, D. Walther, M. Liu, and T. Huang. Hier-
archical space-time model enabling efficient search for hu-
man actions. /EEE Transactions on Circuits and Systems for
Video Technology, in press, 2008.

[6] H.J.Seo and P. Milanfar. Training-free, generic object detec-
tion using locally adaptive regression kernels. Accepted for
publication in IEEE Transactions on Pattern Analysis and
Machine Intelligence, June 2009.

[7] E. Shechtman and M. Irani. Matching local self-similarities
across images and videos. In Proc. of IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 1—
8, June 2007.

[8] E. Shechtman and M. Irani. Space-time behavior-based cor-
relation -or- how to tell if two underlying motion fields are
similar without computing them? IEEE Transactions on
Pattern Analysis and Machine Intelligence, 29:2045-2056,
November 2007.

[9] H. Takeda, S. Farsiu, and P. Milanfar. Kernel regression for
image processing and reconstruction. /[EEE Transactions on
Image Processing, 16(2):349-366, February 2007.

[10] H. Takeda, S. Farsiu, and P. Milanfar. Deblurring using reg-
ularized locally-adaptive kernel regression. IEEE Transac-
tions on Image Processing, 17:550-563, April 2008.

[11] H. Takeda, P. Milanfar, M. Protter, and M. Elad. Super-
resolution without explicit subpixel motion estimation. Ac-
cepted for publication in IEEE Transactions on Image Pro-
cessing, 2009.

[12] M. Tatsuoka. Multivariate Analysis. Macmillan, 1988.

[13] P. Turaga, R. Chellappa, V. Subrahmanian, and O. Udrea.
Machine recognition of human activities: A survey. IEEE
Transactions on Circuits and Systems for Video Technology,
18:1473-1488, November 2008.

1970



