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ABSTRACT

In this paper, we extend a (2-D) data-adaptive steering kernel re-
gression framework for image processing to a (3-D) spatio-temporal
framework for processing video. In particular, we propose a motion-
assisted steering kernel (MASK) suitable for interpolating video data
spatially, temporally, or spatio-temporally, and for video noise re-
duction. We present an algorithm for multi-frame interpolation and
reconstruction of video data, and present several simulation results
on synthetic and real video data. Comparisons between single-frame
and multi-frame kernel regression and with other methods demon-
strate the effectiveness of our approach.

Index Terms— video signal processing, interpolation, denois-
ing, adaptive estimation, motion analysis

1. INTRODUCTION

Advances in video display technology have increased the need for
high-quality and robust video interpolation and artifact removal
methods. For example, LCD flat-panel displays are currently be-
ing developed with very high resolution and very high frame rates,
namely 4096x2160 pixels at 120 Hz. Such displays may exceed the
highest spatial resolution and frame rate of video content commonly
available, namely 1920x1080, 60 Hz progressive High Definition
(HD) video, in applications such as HD-TV and HD-DVD. In such
(and other) applications, the goal for spatial and temporal video
interpolation and reconstruction is to enhance the resolution of the
input video in a manner that is visually pleasing and artifact-free.
Common visual artifacts that may occur in spatial and temporal
interpolation are: edge jaggedness, ringing, blurring of edges and
texture detail, motion blur and/or judder. In addition, the input video
usually contains noise and other artifacts, e.g. due to compression.
Due to increasing sizes of modern video displays, as well as incor-
poration of new display technologies (e.g. higher brightness, wider
color gamut), artifacts in the input video and those introduced by
scaling are amplified, and are more visible than in the past.

In this paper, we build upon a kernel regression framework for
interpolating and denoising (2-D) images proposed in [1]. Kernel
regression methods are closely related to bilateral filtering and nor-
malized convolution [2]. These methods can achieve accurate and
robust image reconstruction results, due to their use of robust error
norms and locally adaptive weighting functions [1, 2, 3]. We extend
this 2-D framework to a spatio-temporal (3-D) framework for pro-
cessing video. Specifically, we propose a motion-assisted steering
kernel (MASK): an approach that utilizes an analysis of the local
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orientation and local motion to steer spatio-temporal regression ker-
nels. Subsequently, local kernel regression is applied to compute
weighted least-squares optimal pixel estimates. Although 2-D ker-
nel regression has been applied to achieve super-resolution recon-
struction through fusion of multiple pre-registered frames [1, 2], the
proposed method is different in that it does not require explicit mo-
tion compensation of the video frames. Instead, we use 3-D weight-
ing kernels that are “warped” according to estimated motion vectors,
such that the regression process acts directly upon the video data.

The proposed method is capable of simultaneous spatial inter-
polation with resolution enhancement, temporal video interpolation
and noise reduction. Prior multi-frame resolution-enhanced or
super-resolution (SR) reconstruction methods (for overviews see [4]
and [5]) often consider only global translational or affine motion; lo-
cal motion and object occlusions are often not addressed. Many SR
methods require explicit motion compensation, which may involve
interpolation or rounding of displacements to grid locations. These
issues can have a negative impact on accuracy and robustness. Our
proposed method is capable of handling local motion, avoids explicit
motion compensation, and is more robust. Also, we incorporated
temporal video interpolation (frame rate conversion) in the proposed
method. Temporal video interpolation (for an overview see [6]) is
usually not addressed in prior SR work.

In the next section, we describe spatio-temporal kernel regres-
sion and the proposed motion-assisted steering kernel in more detail.
In Section 3, we describe an algorithm for interpolating and denois-
ing video data based on the proposed steering kernel. We report on
our experiments in Section 4, and conclude in Section 5.

2. SPATIO-TEMPORAL STEERING KERNEL
REGRESSION

2.1. Kernel regression

For video processing, we define a spatio-temporal data model as

yi:Z(Xi)+€i, 7’:17 7P7 Xi:[zliam2i7ti]Ta (1)
where y; is a given sample (pixel) at location x;, x1; and z2; are the
spatial coordinates, ¢; is the temporal coordinate, z(-) is the regres-
sion function, and €; is 1.i.d zero mean noise. P is the number of
samples in a spatio-temporal neighborhood of interest, which spans
multiple video frames.

In order to estimate the value of z(-) at point x, given the
above data samples y;, we can rely on a local N*" order Taylor
expansion about x. We denote the pixel value of interest z(x)
by 5o, while 3, B,, ..., By denote vectors containing the first-
order, second-order, ..., N*" order partial derivatives of z(-) at x,
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resulting from the Taylor expansion. For example, 8o = z(x) and

Bl = [Zzl (X), Zay (X), Zi(x)]T
The unknowns, {3, }_,, can be estimated from {y;}/__, using

the following weighted least-squares optimization procedure:

min{ﬁn}ﬁ’zo 221 [@li — Bo— BT (xi — x)
_ﬁgveCh{(Xi—X)(Xi—x)T} _"']2K(Xi—X) )

where N is the regression order and K(-) is a kernel function that
weights the influence of each sample. Typically, samples near x are
given higher weights than samples farther away. In classical kernel
regression, K(-) is defined as follows:

! KH ' (x; — x)),

K() = KH(XZ — X) = m (

where H is a smoothing matrix that dictates the shape of the kernel
function (see [1]). The prototype kernel function K can be chosen
suitably, for example using a Gaussian function.

It can be shown that, regardless of the choice of kernel K and
order N, the resulting estimator for z(x) can be written as:

p
2(x) = Fo=»_ Wilx; K, H,N) g, ©)

i=1

where W;(+) is called the “equivalent” kernel function for y;. This
expression illustrates the fact that “classical” kernel regression is a
local weighted averaging or linear filtering process. This approach
yields point-wise estimates of z(-) with minimal assumptions on the
signal or noise.

The classical kernel regression framework was extended in [1]
by allowing the shape of the kernel to be adapted locally, depen-
dent on the image data. In particular, steering kernels were pro-
posed that adapt spatially to local orientation structure, so that their
iso-contours are rotated and elongated along edges, and dilated in
smooth image areas. This results in strong preservation of details in
the final output and greatly improves estimates in the case of denois-
ing and interpolation. Note that these data-adaptive weights result in
locally nonlinear filtering on the data [1].

2.2. Adaptive spatio-temporal steering kernels

A 3-D steering kernel K 1, = Kyysp (x; — x) is a direct extension
of the 2-D steering kernel defined in [1]. The 3 x 3 data-dependent
steering matrix H5P can be defined as

HP = p(CPP) 2 )

where A is a global smoothing parameter and C3P is a covariance
matrix based on the sample variations in a local (3-D) neighborhood
around sample x;. We can construct the matrix C3P parametrically
as CfD = *yiRiAiRlT, where R; is a 3-D rotation matrix, A; is
a 3-D elongation matrix, and +; is a scaling parameter. We have
found that such an approach performs reasonably well for spatial
upscaling of video. However, this 3-D kernel does not consider the
specific spatio-temporal characteristics of video data. In particular,
problems may occur in the presence of large object displacements
(fast motion). This may result in either shrinking of the kernel in the
temporal direction, or spatial blurring (as the kernel weights spread
across unrelated data samples), both undesirable effects.

To ameliorate the above problems, we introduce a data-adaptive
kernel called motion-assisted steering kernel (MASK), specifically
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for video data. A good choice for steering spatio-temporally is to
consider local motion or optical flow vectors caused by object mo-
tion in the scene, in conjunction with spatial steering along local
edges and isophotes. Spatial steering should consider the locally
dominant orientation of the pixel data and should allow elongation
of the kernel in this direction, as well as spatial scaling. Spatio-
temporal steering should allow alignment of the kernel weights with
the local optical flow or motion trajectory, as well as overall tem-
poral scaling. Hence, we construct our spatio-temporal kernel as a
product of a spatial- and motion-steering kernel, and a kernel that
acts temporally:

1
Kuask = s
det(HS)
where Hj is a 3 x 3 spatial steering matrix, H;" is a 3 x 3 mo-
tion steering matrix, and h! is a temporal steering parameter. These

data-dependent kernel components determine the steering action at
sample x;, as illustrated in Fig. 1, and are described next.

K((H) 7 H (xi —x)) Kyt = 1), (5)

Fig. 1. Illustration of MASK (iso-surfaces) and steering action.

Following [1], the spatial steering matrix Hj is defined by:
1
s -3
Hi:hS{Cl 1} , ©)

where h® is a global spatial smoothing parameter, and C; isa 2 x 2
covariance matrix capturing the sample variations in a local spatial
neighborhood around x;. Cj is constructed in a parametric man-
ner, based on: an orientation angle 6; that determines rotation of the
kernel in the spatial (1, x2) plane; an elongation parameter o; that
determines spatial elongation of the kernel along its spatial axes; a
scaling parameter ~y; that determines local spatial scaling.

The motion steering matrix Hj" is constructed on the ba-
sis of a local estimate of the motion (or optical flow vector)
m; = [m1;, ma|” at x;. Namely, we warp the kernel along the
local motion trajectory using the following shearing transformation:

{ (15 —x1) «— (x1s —x1) —mai- (& — 1)
(z2i — w2) — (w2i —x2) —mai - (ti —t)

see Fig. 1. Hence,

1 0 —MmMi;
0 0 0



Assuming a spatial prototype kernel was used with elliptical foot-
print, this results in a spatio-temporal kernel with the shape of a tube
or cylinder with elliptical cross-sections at any time instance ¢. Also,
the center point of each such cross-section moves along the motion
path.

The final component of Eq. (5) is a temporal kernel that provides
temporal penalization. A natural approach is to give higher weight
to samples in frames closer to t. The relative temporal extent of the
kernel is controlled by the temporal scaling parameter h, which can
be adapted based on a measure of the reliability of the local motion
vector estimate. Note that the proposed spatio-temporal regression
approach implicitly assumes that the local motion field is smooth
within the (3-D) region of support, i.e. across several frames used in
the estimation. The above temporal penalization mechanism can be
used to mitigate the effects of this assumption.

3. VIDEO PROCESSING BASED ON MOTION-ASSISTED
SPATIO-TEMPORAL KERNEL

A video interpolation and denoising algorithm based on motion-
assisted spatio-temporal steering kernel regression is illustrated in
Fig. 2. The algorithm estimates spatial and motion steering parame-
ters using gradient-based techniques. Hence, we first compute initial
estimates of the spatial and temporal derivatives 24, (+), Z2, (+), 2¢(),
e.g. based on classic kernel regression. Let Z,,, Z;, and Z; de-
note vectors containing (in lexicographical order) derivative esti-
mates from the pixels in a local analysis window w; around x;, i.e.
221 (X5), 220 (X5), 2¢(x5), X; € w;. A robust estimate of the spatial
orientation (6;), elongation (o;) and scaling (y;) parameters at x;
can be obtained by applying singular value decomposition (SVD) to
the matrix G; = |24, , Z«,] containing spatial gradient data. We re-
fer to [1] for further details. A motion vector (m;) at x; is estimated
using the well-known Lucas and Kanade method, i.e. by solving
G;m; + z; = 0 in the least-squares sense [7].

Local steering parameters are estimated at each pixel location
X, in the region of support for the final regression step. Given the
steering information, MASK regression is applied on the input video
data (y;) to perform actual interpolation (upscaling) and/or denois-
ing, generating the estimated pixel values Bo = 2(x). Upscaling
can be spatial, temporal or both. The kernel regression stage in-
volves determining the equivalent steering kernel function weights
Wi (x; H, H", hi, K, N) given the steering parameters, and finally
local spatio-temporal regression as follows:

P
2 _ . S m t X
2(x) = E Wi (x; H;, H;", hi, K, N) y;. ®)
i=1
input video Motion-Aligned output video
A ”| Steering Kernel ~ >
Yi Regression Bo = 2(x)
7 W
Spatial Steering
Spatial Spatial Parameters
Derivatives > Orientation 3
Estimation Estimation Hi
Motion Steering
ge",‘P‘:,’a' Motion Parameters
erivative > :
Estimation Estimation HI, hg

Fig. 2. Illustration of video processing based on motion-assisted
spatio-temporal steering kernel (MASK) regression.
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4. EXPERIMENTS

We first performed a controlled simulation with a synthetically gen-
erated video sequence. Each frame in this sequence was generated
by cropping, lowpass filtering and downsampling by a factor of 8 (in
each direction) an area from the high-resolution “Cafe” image. The
area taken from the original image was shifted from frame to frame,
resulting in [0.5,0.5]7 pixel per frame translation in the downsam-
pled frames. The downsampled frames were upscaled spatially from
256x256 to 512x512 pixels using the proposed algorithm as well
as comparison methods. We repeated this simulation with differ-
ent lowpass filters from a family of maximally flat FIR filters, such
that the test sequences contained decreasing amounts of aliasing. To
compute PSNR, a reference video sequence was generated using the
first filter from the same family and downsampling by 4 (instead of
8). The proposed multi-frame kernel regression method (MASK)
was compared to frame-by-frame (2-D) steering kernel regression
(SKR as in [1]), and frame-by-frame (2-D) upscaling based on the
Total Variation (TV) minimization method of [8] (with optimized
regularization parameter). MASK was provided with the (known)
motion, since in this experiment we wished to confirm its perfor-
mance in the absence of motion estimation errors. Note that we used
2" _order regression in all our experiments (N = 2). The spatial
smoothing parameter was h* = 0.75 for both SKR and MASK. For
MASK, we kept the temporal scaling parameter h} constant, corre-
sponding to a fixed temporal support of 5 frames. Both the PSNR re-
sults, in Table 1, and the visual results, show a performance gain for
MASK over single-frame (2-D) methods, and confirm it is capable
of resolution synthesis (reconstruction). MASK can take advantage
of the aliasing present in the input. This aliasing can result in severe
artifacts for single-frame methods. Fig. 3 shows example frames.

Table 1. Average PSNR (in dB) for Cafe video sequences generated
with different max-flat filters with decreasing lowpass band width
(max-flat filter design parameters in the top row).

[Algorithm [ 41/05 | 41/01 [ 81/01 | 81/00 |
TV 2-D) 20.33 | 2030 | 19.66 | 18.37
SKR (2-D) || 20.66 | 20.89 | 20.05 | 18.54
MASK (3-D) || 24.00 | 22.13 | 20.62 | 18.74

(b) MASK

Fig. 3. Cafe (41/01) results (frame 15, 256x256 cropped area).

Our second experiment used a portion of the “Foreman” se-
quence at QCIF (176x144) resolution, after applying MPEG-2 com-
pression at 3 different bit rates. We used MASK to simultaneously
perform: spatial interpolation by 2, i.e. upscaling each frame to
CIF (352x288) resolution; temporal interpolation by 2, i.e. doubling



the frame rate; and removal of compression artifacts (blocking and
mosquito noise). We compared MASK (with 5 frames temporal sup-
port) to several frame-by-frame methods, namely bicubic interpola-
tion, TV minimization, and 2-D SKR. In MASK, we estimated mo-
tion as described in Section 3. We used h* = 2.0, 1.75 and 1.50 for
SKR and MASK. In the PSNR results in Table 2 we only compared
the original frames - not intermediate ones. Table 2 shows about 1
dB gain was achieved by MASK over 2-D SKR, and demonstrates
its applicability in sequences with complex local motion. Example
frames are shown in Fig. 4. Bicubic interpolation simply amplifies
the compression artifacts. The TV-based method and SKR provide
better artifact suppression. However, MASK provides even better
artifact removal, while also providing excellent motion smoothness
(removal of judder) due to temporal interpolation.

Table 2. Average PSNR (in dB) for Foreman video sequences com-
pressed at different bit rates.

| Algorithm | 200 kbps | 400 kbps | 600 kbps |
Bicubic (2-D) 25.29 25.70 25.84
TV (2-D) 27.63 | 2836 | 2861
SKR (2-D) 27.40 28.07 28.24
MASK (3-D) 28.27 29.16 29.44

(a) Bicubic b)) TV

(c) SKR

(d) MASK

Fig. 4. Foreman results (200 kbps, frame 4, 256x256 cropped area).

In our third experiment, we performed spatial and temporal in-
terpolation (by a factor 2) on cropped frames from the “Spin Calen-
dar” sequence using MASK. This sequence contains rotational mo-
tion as well as real noise. Again, we applied motion estimation as in
Section 3; also N = 2, h* = 1.0, and temporal support is 5 frames
for MASK. We visually compared the resulting video sequence with
the result of spatial interpolation using 2-D SKR and frame repeti-
tion. Example frames are shown in Fig. 5. When seen as a video
sequence, the results show that MASK provides better spatial re-
construction of the features in the image, as well as improved noise
reduction. Also, the motion is very smooth due to temporal interpo-
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lation, with intermediate frames that appear to be artifact-free. Video
files with these and our other results can be downloaded for viewing
from http://www.soe.ucsc.edu/~htakeda/MASK.

(a) SKR

(b) MASK

Fig. 5. Spin Calendar results (frame 8, 180x180 cropped area).

5. CONCLUSION

In this paper, we introduced a spatio-temporal (3-D) steering kernel
regression framework for video processing. We proposed a motion-
assisted steering kernel (MASK) as well as a complete algorithm
for multi-frame video interpolation and denoising. We presented
several simulation results on synthetic and real video data, showing
that MASK achieves significant visual and numerical improvement
over 2-D methods. Our ongoing work includes: development of a
multi-scale spatio-temporal regression algorithm; further compari-
son of MASK to existing multi-frame super-resolution reconstruc-
tion methods; and application of MASK to color video data. Future
work also includes improving the computational efficiency.
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