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ABSTRACT

Block coders are among the most common compression tools avail-
able for still images and video sequences. Their low computational
complexity along with their good performance make them a pop-
ular choice for compression of natural images. Yet, at low bit-
rates, block coders introduce visually annoying artifacts into the
image. One approach that alleviates this problem is to downsam-
ple the image, apply the coding algorithm, and interpolate back to
the original resolution. In this paper, we consider the use of op-
timal decimation and interpolation filters in this scheme. We first
consider only optimization of the interpolation filter, by formulat-
ing the problem as least-squares minimization. We then consider
the joint optimization over both the decimation and the interpola-
tion filters, using the Variable Projection method. The experimen-
tal results presented clearly exhibit a significant improvement over
other approaches.

1. INTRODUCTION

Block-transform coders are among the most common compression
tools available for still images and video sequences. These coders
divide the image to non-overlapping square blocks and apply a
transform on each block. Among the available transforms, the
DCT is the most widely adopted as it exhibits very good energy
compaction and decorrelation properties. The low complexity of
block-based methodology along with its good performance make it
the prominent choice for image compression. Both the JPEG stan-
dard for still image compression [1] and the MPEG standards for
compression of video sequences [2, 3] rely on block-based com-
pression.

Yet, at low bit rates images compressed with block coders
exhibit visually disturbing phenomena, known as blocking arti-
facts. These are characterized by visually noticeable changes in
pixel values along block boundaries. Various post-processing tech-
niques have been suggested for the reduction of blocking artifacts
(see [4] for an extensive survey), but they often introduce exces-
sive blurring, ringing, and in many cases produce poor deblocking
results at certain areas of the image.

In [5], Bruckstein et al. considered downsampling an image
before applying the JPEG coding algorithm, and interpolating at
the decoder stage to obtain the image in full resolution. This
method has several attractive properties. First and foremost, at
low bit-rates there is a marked gain in performance, both in terms
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of PSNR and in terms of visual quality. Second, it substantially re-
duces the computational complexity involved in coding/decoding,
since the input to the JPEG encoder is considerably smaller in size.
In addition, the range of low bit-rates is expanded, allowing us
to compress an image at lower bit-rates than possible when using
JPEG directly. Finally, since the method does not change the cod-
ing algorithm, it can be used in applications where the JPEG codec
is already implemented without making substantial modifications.

Motivated by these features, Bruckstein et al. [5] went on to
analytically derive a model for the JPEG encoder in order to ob-
tain an optimality criterion on the downsampling factor for a given
input image. Throughout their experiments, they used fixed filters
for decimation and interpolation, and did not consider the effect of
different filters on the quality of the results. In this paper, we take
a more general point of view, and consider the use of optimal fil-
ters for the decimation and interpolation stages in order to achieve
better performance. We will show that optimizing over each of
the filters separately, and on both of the filters jointly, results in a
significant gain in performance, both visually and quantitatively.
Unlike [5], we do not derive a model for the encoder, but consider
it to be a “black box”. Therefore, our derivations are not restricted
to the JPEG mechanism, and can be applied to other coders as well.

In section 2, we shall present the algorithms for finding the
optimal filters. We first consider the optimization of the interpo-
lation filter, followed by the joint optimization of both filters. Ex-
perimental results for both cases are also presented in this section.
Section 3 discusses the results and has some concluding remarks.

2. OPTIMAL FRAMEWORK

Throughout this section, we consider the system shown in Fig. 1.
An input image is convolved with a linear filter f , and then down-
sampled by a factor k. The low-resolution image is then encoded
using a block coder. At the decoder, the image is first decoded
using the block decoder, then upsampled back to its original reso-
lution and filtered by a filter g to produce the reconstructed result.
The authors in [5] took f to be a standard anti-aliasing filter, and
g to be a linear interpolation kernel. The sampling factor k was
chosen according to their analytical predictions. Throughout this
paper, we will assume, for simplicity, k = 2. For a thorough dis-
cussion on choosing the optimal k, the reader is referred to [5].

2.1. Optimal Interpolation Filter

Let X denote the input image, of size m× n, Y denote the image
after decimation (size m

2
× n

2
), and X̃ the reconstructed image
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Fig. 1: Sampling/filtering scheme for block coders.

after interpolation, as in Fig. 1. Our ultimate goal is to minimize
the L2 error norm ‖X̃ −X‖2. At first, we shall only consider the
optimization of the interpolation filter g, while keeping f fixed.
To do so, we note that the interpolation stage can be equivalently
expressed as matrix multiplication. In our formulation below, we
consider the upsampling and filtering steps as a unified process and
consequently use a set of filters, rather than first inserting zeros and
then using one filter for interpolation.

Specifically, we define X̃(p,q), p, q ∈ {0, 1}, such that

X̃(p,q)(i, j) = X̃(2i + p, 2j + q)

i.e., X̃(p,q) is X̃ shifted by (p, q) and then downsampled by 2.
Clearly, the set {X̃(p,q), p, q ∈ {0, 1}} is just a reordered version
of X̃ . In addition, we let x̃(p,q) denote the row-stacked form of
X̃(p,q), i.e. x̃ has length mn/4, with elements

x̃(p,q)(i× n

2
+ j) = X̃(p,q)(i, j)

Now, for our 2-D interpolation filter g with dimensions l × l, we
similarly define

{
g(p,q), 0 ≤ p, q ≤ 1

}
, where each g(p,q) is a

vector of length l2 that represents the filter in the filter set which
produces X̃(p,q) by filtering Y . Finally, we construct a matrix Φ
with dimensions mn× l2 out of the image Y , of the form

Φ =




φT
0,0

φT
0,1

...
φT

m−1,n−1


 (1)

where φi,j is the row-stacked form of an l × l window, centered
around the pixel location (i, j) of Y .

Using these definitions, we can now express each x̃(p,q) (and
equivalently X̃) as a product of the matrix Φ and the filter g(p,q)

in vector form,
x̃(p,q) = Φg(p,q) (2)

Looking at Eq. (2), we can immediately see that an optimal solu-
tion (in the least-squares sense) is obtained by setting X̃ = X and
minimizing over all g(p,q). Specifically, we solve

min
g(p,q)

‖x(p,q) −Φg(p,q)‖22 (3)

This is a linear least squares (LS) problem, with the solution g(p,q)

given by
g(p,q) = Φ+x(p,q) (4)

For practical purposes, one can avoid constructing the matrix Φ
and its pseudo-inverse Φ+ by applying recursive least squares (RLS),
or any of its block forms.
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Fig. 2: Optimal Interpolation for Barbara.
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Fig. 3: Optimal Interpolation for Goldhill.

We applied this optimization algorithm to two of the JPEG
standard test images. Figs. 2,3 show the rate distortion curves
obtained for the images Barbara and Goldhill, respectively. For
the decimation filter, we used the same anti-aliasing filter used in
[5]. For the interpolation filter, we set l = 5, and used Eq. (4)
to find the optimal g(p,q). The results clearly display a significant
gain in performance over the original results in [5]. We see that
the optimal curve intersects the JPEG curve much later than the
curve obtained by Bruckstein et al. This essentially means that
our algorithm is applicable to a wider range of bit-rates, since it
performs better than direct JPEG compression up to a higher bit-
rate. The visual improvement over [5] is clearly evident in Fig. 4
for Goldhill. We can see that the optimal filter provides a signif-
icantly sharper image, while virtually eliminating the blockiness.
We note that the overhead of sending the filter coefficients to the
decoder is not included in the rate calculation, yet it is in the order
of 200 bits, which is negligible even for very low bit rates.
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Fig. 4: Compression results for Goldhill, 0.2bpp: (a) JPEG, PSNR
= 27.43dB (b) Bruckstein et al., PSNR = 27.95dB (c) Optimal In-
terpolation, PSNR = 28.91dB.

2.2. Optimal Decimation Filter

Inspired by the results obtained when optimizing over the inter-
polation filter, we now turn our attention to the decimation filter.
If we consider minimizing the difference between X and X̃ over
both f and g, then the image Y at the output of the decoder is no
longer fixed, hence our matrix Φ of Eq. (1) which originated from
Y is now dependent on f , i.e. Φ = Φ(f). Nonetheless, we can
still write our problem as a matrix system in the form of Eq. (2),

x̃(p,q) = Φ(f)g(p,q) (5)

and our minimization problem (3) now becomes

min
f ,g(p,q)

‖x(p,q) −Φ(f)g(p,q)‖22 (6)

This is a non-linear LS problem with respect to the variables f ,g(p,q).
To find a solution for this problem, we apply the Variable Projec-
tion (VP) method [6]. This method uses the fact that our LS prob-
lem has two separable sets of variables, namely f and g(p,q), and
the dependence on g(p,q) is linear. More specifically, assume for
the moment we know the optimal f . If we plug this f into Eq. (5),
then Φ(f) is now fixed, hence we again face a linear LS problem,
with the solution readily given by

g(p,q) = Φ(f)+x(p,q) (7)

Now, we can use this expression for g(p,q) in our minimization
problem (6), leading to

min
f
‖x(p,q) −Φ(f)Φ(f)+x(p,q)‖22 = min

f
‖P⊥Φ(f)x

(p,q)‖22 (8)

where P⊥Φ(f) ≡ I−Φ(f)Φ(f)+ is the projector on the orthogonal
complement of the column space of Φ(f).

As we can see, by using VP, we have essentially eliminated
the minimization with respect to g(p,q), and we are left with a
non-linear LS problem with respect to the decimation filter f . This
is still a difficult task, due to the non-linearity of the problem at
hand. For the purpose of validating our idea and demonstrating its
performance, we shall restrict our discussion to a fraction of the
parameter space for this optimization problem. We notice that the
parameter space for this problem is l-dimensional, where l is the
length of the filter f (assuming separability of f ). Rather than con-
sidering the entire space, we consider a family of lowpass filters
with a varying cutoff frequency. For the design of the lowpass filter
fLP (ω), we use the windowing method with a Hamming window
to design a separable filter with cutoff frequency ω. Consequently,
a sub-optimal solution of (5) is given by the lowpass filter fLP (ω̂),
where ω̂ is given by

ω̂ = arg min
ω
‖P⊥Φ(fLP(ω))x

(p,q)‖22 (9)

This univariate problem can be easily solved with various methods.
Fig. 5 shows the rate-distortion curve obtained when apply-

ing this algorithm on the test image Barbara. Clearly, optimizing
over both filters results in significantly better quality compared to
optimization of the interpolation filter alone. This is also inher-
ent in Fig. 6, which displays the visual results for a bit rate of
0.2bpp. The image obtained from the joint optimization is sharper
and exhibits more details, and is free of any blocking artifacts. In-
terestingly enough, the optimal decimation filter found in this case
is a lowpass filter with cutoff frequency ω = 0.97, which is es-
sentially an identity filter. Intuitively, this means that we do not
want any filtering prior to downsampling, in order to preserve the
texture that dominates Barbara.
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Fig. 5: Optimal Interpolation & Decimation for Barbara.

3. DISCUSSION AND CONCLUSIONS

In this paper, we presented an optimal framework for improving
the low bit-rate performance of block coders. By carefully select-
ing the filters used in the decimation and interpolation steps to be
optimal, we have achieved a significant gain in performance, com-
pared to using common filters. We demonstrated that the optimal
framework outperforms JPEG for a wider range of bit-rates, mak-
ing it applicable in more diverse situations.

Current work in our research is focused in extending the idea
to spatially adaptive filters. By allowing different filters for dif-
ferent areas in the image, we can gain further improvement over
shift-invariant filters. For instance, we can use one set of filters for
block boundaries, and another for block contents.
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Fig. 6: Compression results for Barbara, 0.2bpp: (a) JPEG, PSNR
= 23.42dB (b) Optimal Interpolation, PSNR = 24.74dB (c) Jointly
optimal, PSNR = 25.5dB.
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