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ABSTRACT

While many algorithms have been developed to solve the
problem of image registration, their performance has typ-
ically been evaluated only by comparing one method with
another often in an ad-hoc manner. We propose a statis-
tical performance measure based on the mean square er-
ror (MSE) and explore the performance bounds using the
Cramer-Rao inequality. We show how these performance
bounds depend on image content under observation. By an-
alyzing these bounds we provide insight into the inherent
tradeoff between bias and variance found in all image regis-
tration algorithms. Specifically, we derive a functional ex-
pression for the bias inherent in the popular class of gradient-
based image registration algorithms.

1. INTRODUCTION

Image registration is a fundamental task in image process-
ing. It is a critical preprocessing step to many modern image
processing tasks such as, motion compensated video com-
pression, multiframe image enhancement, as well as many
computer vision tasks such as 3-D shape estimation and ob-
ject identification. The problem of image registration is an
example of the more general problem of estimating motion
in an image sequence. In general, the problem of motion es-
timation is one wherein the observed data follows the form

z1(m, n) = f(m,n) + ε1(m,n) (1)

z2(m, n) = f(m− v1(m,n), n− v2(m,n))
+ε2(m, n) (2)

whereεi(m,n) is typically modelled as white Gaussian noise
with varianceσ2. We refer to the indicesm, n as the sample
indices for the sampled functionsf(mT, nT ) wheref(x, y)
represents the underlying continuous image. In this paper,
we will restrict the class of unknown vector fields to those
corresponding to translational motion wherev = [v1 v2]T

is a constant.
Periodically, there have been fairly comprehensive sur-

vey papers describing and comparing the performance of
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many algorithms [1], [2],[3]. Unfortunately, the benchmarks
comparing the performance of such algorithms tend to vary
widely and fail to address the problem in a proper statisti-
cal framework. This type of performance characterization
leaves open the important question of how close the algo-
rithms in question are to being optimal.

We measure performance based on the mean square er-
ror (MSE) of a given estimator. Specifically, we will ex-
plore the MSE performance bounds using the Cramer-Rao
inequality. Surprisingly, while the Cramer-Rao inequality
has been widely used in the related field of time delay esti-
mation in communication, Radar, and Sonar, it has not been
utilized to understand the problem of motion estimation in
general. Developing such performance bounds provides a
mechanism for critically comparing the performance of al-
gorithms. Finally, the details of such a performance bound
can often provide insight into the problem itself and ideally
suggest means for improving performance.

We will show how much of the common knowledge or
heuristics used in motion estimation can be understood by
studying the performance bounds. In particular, we will ex-
plain the inherent tradeoff between bias and variance for
several popular estimators. In addition, we will derive ex-
pressions for the bias for the very popular gradient-based
estimators and show how the bias function is incorporated
into the fundamental performance limit. More information
about this subject can be found in [4].

2. MSE BOUNDS FOR IMAGE REGISTRATION

In this section, we quantify the MSE performance bounds
for registering images by utilizing the Cramer Rao lower
bound (CRLB) [5]. The CRLB essentially characterizes
the ”difficulty” with which a set of parameters can be es-
timated using a given data model from an information the-
oretic standpoint. In general, the CRLB provides the lower
bound on the mean square error matrix ofanymethod used
to estimate a deterministic parameter vectorΦ from a set of
data. Specifically, the Cramer-Rao bound on mean square
errorMSE(Φ) = E[(Φ̂−Φ)(Φ̂−Φ)T ] for any estimator
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is given by

MSE(Φ) ≥ ∂E[Φ̂]
∂Φ

J−1(Φ)
∂E[Φ̂]

∂Φ

T

+ (E[Φ̂]−Φ)(E[Φ̂]−Φ)T (3)

where the matrixJ(Φ) is referred to as the Fisher Informa-
tion matrix, andE[Φ̂]−Φ represents the bias of the estima-
tor [5]. The inequality indicates that the difference between
the MSE (left side) and the CRLB (right side) will be a posi-
tive semidefinite matrix. From this formulation, we see that
the Fisher Information matrix and the bias function are the
two factors controlling the performance limits. If the class
of estimators is assumed to be unbiased, the CRLB reduces
to its more common form

MSE(Φ) ≥ J−1(Φ) (4)

In this form, we see that the Fisher Information matrix plays
a vital role in predicting estimator variance (MSE).

2.1. Fisher Information for Image Registration

The Fisher Information matrix provides a measure of influ-
ence an unknown set of parameters has in producing ob-
servable data. Understanding the Fisher Information matrix
(FIM) for the problem of image registration provides direct
insight into the estimation problem. The FIM for the prob-
lem of image registration is given by

J(v) =
1
σ2

[
a1 a2

a2 a3

]
(5)

where

a1 =
∑
m,n

f2
x(m− v1, n− v2)

a2 =
∑
m,n

fx(m− v1, n− v2)fy(m− v1, n− v2)

a3 =
∑
m,n

f2
y (m− v1, n− v2)

where the subscripts indicate the partial derivative in the
x, y direction. From a theoretical standpoint, the FIM de-
pends on the partial derivatives of the continuous image.
Practically, these partial derivatives can only be approxi-
mated from a high resolution image using finite difference
methods or by assuming some model for the continuous im-
age based on the image samples.

By looking at the FIM in the Fourier domain, we can
see that the FIM is independent of the unknown translation
v and depends only on the image content [4]. The FIM
depends on the spectral content as a two dimensional ver-
sion of the mean angular bandwidth first introduced in [5].

To explore the FIM and hence the performance bound as a
function of image content, we introduce the square root of
the trace of the inverted FIM

√
tr(J−1) as a concise mea-

sure. In the experimental section, we show that as the mean
angular bandwidth of the image increases, the trace ofJ−1

decreases suggesting better estimator performance, as ex-
pected.

2.2. Bias in Image Registration

To understand the inherent bias associated with any estima-
tor, we begin by looking at the class of maximum likelihood
(ML) estimators. An ML estimator of the translational mo-
tion estimation problem should asymptotically achieve the
CRLB. Most estimators attempt to find the ML estimate by
minimizing an objective function of the form

Q(v) =
∑
m,n

[z2(m,n)− f(m− v1, n− v2)]
2 (6)

The objective function only includesz2 sincez1 does not
depend on the unknown shift vectorv. Sincef(x− v1, y−
v2) is typically unknown, the function must be replaced
with an estimate, most commonlyz1(m− v1, n− v2). For
very high SNR situations, this estimate will be accurate enough
to find the ML estimate.

Even for high SNR situations, however, the ML estima-
tor requires knowledge of the continuous functionf(x, y) to
attain subpixel accuracy whereas only samples of the func-
tion f(m,n) are known. Except for very limited situations,
reconstructing a continuous function from a finite number of
noisy samples is an ill-posed problem. Thus, all estimators
contain implicit prior assumptions about the continuous im-
age being observed, to ”regularize” the problem. But, when
the underlying functions do not match these assumptions,
the estimators systematically produce biased estimates. In
the experimental section, we compare the performance of
several image registration algorithms and show that each
method contains such bias. The bias of an estimator, how-
ever, is very difficult to express functionally. In the next
section, we will describe the functional form of bias inher-
ent to the class of gradient-based estimators.

3. BIAS IN GRADIENT-BASED ESTIMATORS

One common approach for registering images is the gradient-
based method. While the bias inherent to such estimators
has been described qualitatively in the past, here we pro-
vide a functional description of the bias. To simplify the
presentation, we analyze the bias for the 1-D version of im-
age registration. The 2-D analysis is available in [4]. In the
1-D case, we suppose that the measured data is of the form

z1(k) = f(k) + ε1(k) (7)

z2(k) = f(k − v(k)) + ε2(k) (8)



In the derivation of the gradient-based estimator, the data is
reformulated asz(k) = z1(k)−z2(k) = f(k+v)−f(k)+
ε(k) whereε is a Gaussian white noise random field with
varianceσ2.

The iterative gradient-based method solves this equation
by linearizing the functionf(k+v) about a pointv = 0 in a
Taylor series. The expansion looks likef(k + v)− f(k) =
vf ′(k) + R(k, v) where the remainder term in the Taylor
expansionR is ignored to produce a linear estimator for the
velocityv,

v̂ =
∑

f ′(k)z(k)∑
(f ′(k))2

(9)

This type of estimator is commonly referred to as the gradient-
based, differential method, or the optical flow method.

One source of systematic bias in the gradient-based esti-
mation comes from ignoring the remainder termR(k, v) in
the Taylor expansion. The expected value of the estimator

(9) isE[v̂] = v +
∑

f ′(k)R(k,v)∑
(f ′(k))2

. Thus, we see that the trun-

cation of the higher order terms introduces a bias into the
estimator. Using Parseval’s relation and some algebraic ma-
nipulation [4] we can rewrite the bias of the gradient-based
estimator as

b(v) =

∫ π

−π
|F (θ)|2 (

θ sin(vθ)− vθ2
)
dθ∫ π

−π
|F (θ)|2θ2dθ

(10)

where|F (θ)| is the amplitude spectrum of the functionf(x).
This also explains why the bias is small only for smallv
sincesin(vθ) ≈ vθ.

Another source of error arises in gradient-based estima-
tion because of the need to approximate the gradient or the
derivative of the signal functionf(x). Thus, instead of us-
ing the actualf ′(k) in (9), often noisy approximations of
the derivativesf ′2(k) = f(k) ∗ g(k) + ε2(k) ∗ g(k) are used
instead where∗ represents a convolution operation andg(k)
represents the derivative operator. We approximate the bias
function for the linearized estimator as

b(v) ≈
∫ π

−π
|F (θ)|2 (

G(θ) sin(vθ)− vG2(θ)
)
dθ∫ π

−π
|G(θ)|2|F (θ)|2dθ

. (11)

WhereG(θ) represents the DTFT ofg(k) andξ2(θ) repre-
sents the DTFT of the noise samplesε2(k). This suggests
that different gradient kernels should produce different esti-
mator bias. Since we have a functional form for the bias of
the estimator, we can use the bias to obtain a tighter MSE
performance bound using (3). This will be experimentally
verified in the next section.

4. RESULTS

In this section we present some experimental results veri-
fying the previous analysis. For instance, Figure 1 shows

√
tr(J−1) vs image bandwidth for a small set of images

also shown in Figure (1). The trace of the inverted FIM (sum
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Fig. 1. Images (Trees, Face, Forest, Rotated Office) and√
tr(J−1) vs image bandwidth

of the eigenvalues) decreases as the image bandwidth and
thus mean angular bandwidth increases. This corroborates
the general intuition that highly textured images are easier
to register. Furthermore, we see from Figure 1 that while
the performance limit continues to improve with greater fre-
quency content, the improvement tapers off as the band-
width increases beyond about a quarter of the full bandwidth
for all of the images examined.

Figure 2 shows the performance, in terms of the square
root of the trace of the MSE matrix, (

√
tr(MSE) is a type

of RMSE measure), for a variety of approximate ML esti-
mators [3][6][7][8][9]. The pair of images is generated by
synthetically shifting the tree image of [1]. The results are
obtained using Monte-Carlo simulations at various signal to
noise ratios (SNR). As expected, above a certain SNR the
performance of all the estimators flattens out while the un-
biased CRLB of (4) suggests continued improvement. This
flattening of the performance curves is due to the bias in-
herent to each of the estimators. Looking at the different
estimators, it is apparent that often there is not one estima-
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tor which is uniformly the best for all values of SNR. This
type of performance analysis would be useful when select-
ing an algorithm for an application operating at a specific
SNR.

To experimentally verify the bias function of (11) within
the context of the complete CRLB of (3), we conducted
a Monte-Carlo simulation for a signal with a bandlimited
spectrum wheref(k) =

∑25
d=1

1
d sin(πkd

100 − φd) andφd is a
fixed phase initially drawn from a uniform distribution. Fig-
ure 3 compares the RMSE for the gradient based estimator
with both the unbiased CRLB and the CRLB using (3) with
the analytically derived bias function. The actual estima-
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tor performance seems very close to the performance bound
predicted by (3). This verifies not only the bias function
(11) but the complete CRLB as well.

5. CONCLUSION

In this summary, we have derived and verified the funda-
mental performance limits for the problem of image regis-
tration. In addition, we have derived and verified an expres-
sion for the bias for the class of gradient-based estimators.
We have shown how these performance bounds can be use-
ful in predicting estimator performance as well as compar-
ing performance between algorithms. Armed with the char-
acterization of the performance bounds, we might consider
novel questions such as: What is the best image content for
image registration? Or, how can we optimize estimator per-
formance using the structure of the CRLB? These questions
remain open for future investigation.
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