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ABSTRACT

One shot, generic object detection involves detecting a sin-
gle query image in a target image. Relevant approaches have
benefitted from features that typically model the local simi-
larity patterns. Also important is the global matching of local
features along the object detection process. In this paper, we
consider such global information early in the feature extrac-
tion stage by combining local geodesic structure (encoded by
LARK descriptors) with a global context (i.e., graph struc-
ture) of pairwise affinities among the local descriptors. The
result is an embedding of the LARK descriptors (extracted
from query image) into a discriminatory subspace (obtained
using locality preserving projection [1]) that preserves the lo-
cal intrinsic geometry of the query image patterns. Experi-
ments on standard data sets demonstrate efficacy of our pro-
posed approach.

Index Terms— object detection, locality preserving pro-
jection, manifold learning, principal component analysis

1. INTRODUCTION

In this paper, we focus on a particular variety of fine-grained
detection [2] where the objective is to take a single query im-
age as input and locate the pattern of the query image in a
(usually bigger) target image as illustrated in Fig. 1. Past re-
search work [3, 4] has shown that exemplar based detection
strategies can work with laudable success, sometimes as good
as training based approaches in coping with specific pose vari-
ations. Relevant approaches benefitted from descriptors that
typically model the local similarity patterns. Shechtman et
al. [4] proposed a pattern matching scheme based on self-
similarity [5, 6, 7, 8, 9, 10], the premise of which is that lo-
cal internal layout of self-similar pixels are shared by visu-
ally similar images. In [3], Seo et al., modeled local geomet-
ric layout with Locally Adaptive Regression Kernel (LARK)
[11] descriptors, and computed similarity between query and
target features at each pixel of the target image by sweeping
the query window over the target. One common aspect that
emerges from such competing approaches is the emphasis on

Thanks to XYZ agency for funding.

Fig. 1. An overview of the query based object detection
methodology where a query pattern is detected in a visually
similar part of the target image (on right).

the role of i) local geometry in developing features, and ii)
global context for robust pattern matching. For example, in
[3], Seo et al. have shown that projecting LARK descrip-
tors on principal components results in salient features con-
tributing to improved performance. But we argue that while
projecting descriptors on a discriminatory subspace as in [3],
it is imperative to take into account which descriptor comes
from what spatial location so as to preserve the intrinsic local
geometry (something that PCA can’t do). To put local infor-
mation in such global context, we employ a graph based di-
mensionality reduction technique where a global graph struc-
ture comprising pairwise affinities (among neighboring pix-
els) embeds the local descriptors into a low dimensional man-
ifold in order to preserve locality for superior pattern detec-
tion.

The overall strategy to detect a query image in a target im-
age follows a three step process — extracting local descrip-
tors, computing salient features from them, and detecting the
features in the target image (see Fig. 1). To avoid ambigu-
ous matching between sets of features, we propose a global
graph structure that incorporates spatial information corre-
sponding to each descriptor, and we build this graph with
pairwise affinities between neighboring descriptors. Section 2
discusses graph based dimensionality reduction, Section 3 in-
troduces the notion of geodesic affinity, Section 4 presents de-
tection strategy, Section 5 includes experimental results, and
Section 6 draws conclusions.
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Fig. 2. Salient features shown after dimensionality reduction of LARK descriptors: (a) query & target images, (b)-(c) salient
query (target) features FQ (FT ) learnt by projecting descriptors HQ (HT ) along two dominant principal components, (d)-(e)
same LARK descriptors projected along two dominant eigenvectors of LPP (one can notice finer local details in these features)

2. LOCALITY PRESERVING GRAPH BASED
DIMENSIONALITY REDUCTION

Consider the parameterized image surface S(xi) = {xi, z(xi)},
where xi denotes the 2D coordinate vector xi = [xi1xi2 ]

T,
having intensity z(xi). We represent the descriptors com-
puted at location xi as l-dimensional vector hi ∈ Rl. The
descriptors are computed densely from the query Q as well as
target image T over a uniformly spaced grid of xi’s. We de-
note the number of descriptors computed this way from query
Q as NQ and the same from target T as NT , respectively.
The descriptor vectors hi are placed column wise to define
the descriptor matrix for query as HQ = [h1,h2, . . . ,hNQ ],
and the same for target as HT = [h1,h2, . . . ,hNT

]. So we
have HQ ∈ Rl×NQ and HT ∈ Rl×NT .

To distill the redundancy in densely computed descriptors,
Seo et al. [3] have used PCA as a dimensionality reduction
technique on the query descriptors HQ to obtain salient fea-
tures for object detection. In contrast, we learn a discrim-
inatory subspace v from Q such that the query descriptors
hi, when projected on v, respect the local geometric pattern.
In other words, if hi and hj , extracted from Q, are closely
spaced over the image manifold S then their projections vThi

and vThj on a subspace v should be close as well. This ob-
jective is achieved by minimizing the following locality pre-
serving projection (LPP) [1] cost function —

JLPP =
1

2

∑
ij

(vThi − vThj)
2Kij . (1)

The cost function JLPP with our proposed affinity measure
Kij (described in Sec. 3) incurs heavy penalty if neighboring
descriptors hi and hj are mapped far apart. Upon simplifica-
tion [1], expression (1) leads us to the final penalty as follows:

JLPP = vTHQLH
T
Qv. (2)

The matrix D is a diagonal matrix defined as Dii =
∑

j Kij ,
and L = D−K is known as the graph Laplacian. The con-
straint vTHQDHT

Qv = 1 is imposed on D to prevent higher
values of Dii from assigning greater “importance” to descrip-
tor hi. Minimizing JLPP with respect to the aforementioned
constraint leads us to the generalized eigenvalue problem.
The projection vector v that minimizes (2) with respect to the
constraint, is given by the minimum eigenvalue solution to
the following generalized eigenvalue problem:

HQLH
T
Qv = λHQDHT

Qv. (3)

The desired set of eigenvectors which builds our low dimen-
sional LPP subspace comprises the trailing d eigenvectors
computed as a solution of (3). We collect the set of d eigen-
vectors as columns of V = [v1,v2, . . . ,vd] ∈ Rl×d. Since
the descriptors are densely computed they typically lie on a
lower dimensional manifold making d a small integer such as
4 or 5. The descriptor matrices HQ and HT when projected
on V lead to salient features for query Q and target T repre-
sented by FQ, FT respectively as follows:

FQ = VTHQ ∈ Rd×NQ ,FT = VTHT ∈ Rd×NT . (4)

In contrast to the LPP, the objective of PCA is to preserve the
global geometric structure of the data by projecting the de-
scriptors along the direction of maximal variation, and thus
pays no attention to preserving finer details of local pattern.
Fig. 2 illustrates the difference showing the salient query fea-
tures FQ learnt with PCA versus LPP. The images in the fig-
ure demonstrate that LPP is able to preserve greater details in
the salient features than PCA.

The image descriptors hi in our proposed object detec-
tion framework are general and can be any (e.g., SIFT [12] or
HOG [13]). However, we advocate the use of LARK descrip-
tors [3, 14] because LARK is specifically designed to robustly
encode the spatial layout of the image manifold.



3. LOCAL GEOMETRY REPRESENTATION WITH
LOCAL GEODESIC COMPUTATION

In this Section, we present a geodesic view to construct the
graph affinity matrix K. The local geodesic distance between
the two neighboring (i.e., closely spaced) pixels xi and xj on
the image manifold S(xi) can be approximated [14] by the
differential arc length dsij as follows:

ds2ij = dx2
i1 + dx2

i2 + dz2,

= dx2
i1 + dx2

i2 + (
∂z

∂xi1

dxi1 +
∂z

∂xi2

dxi2)
2. (5)

The second step in Eq. (5) follows from chain rule of dif-
ferentials. We can discretize (5) by means of the follow-
ing two approximations: dxi1 ≈ ∆xi1j1 = xj1 − xi1 , and
dxi2 ≈ ∆xi2j2 = xj2 − xi2 , i.e., ∆xi1j1 and ∆xi2j2 rep-
resenting displacements along the two image-axes. The dis-
cretized form of the differential arc length is given by the fol-
lowing expression:

ds2ij ≈ ∆x2
i1j1 +∆x2

i2j2 + . . .

(
∆z

∆xi1j1

·∆xi1j1 +
∆z

∆xi2j2

·∆xi2j2)
2,

= ∆xT
ijCi∆xij +∆xT

ij∆xij ,

≈ ∆xT
ijCi∆xij , (6)

where ∆xij = [∆xi1j1 ∆xi2j2 ]
T, and Ci is the local gradient

covariance matrix (also called as steering matrix in [3]) com-
puted at xi. The second step follows from the matrix-vector
representation of previous step, and the last step is written by
considering the fact that ∆xT

ij∆xij is data independent and
trivial in a small local window [14].

However, straightforward computation of Ci based on
raw image gradient at a single pixel may be too noisy. There-
fore, we estimate Ci as an “average” gradient covariance
matrix CΩi by collecting derivatives of the image signal
z(xi) over a patch Ωi of pixels centered at pixel xi (see Fig.
3(b)-3(c)) followed by an eigen-decomposition. Representing
first derivatives as ∆i1z(m) and ∆i2z(m) along the two axes
xi1 and xi2 , respectively, we write the final expression of CΩi

as follows:

CΩi =
∑
m∈Ωi

[
∆i1z(m)

2
∆i1z(m) ·∆i2z(m)

∆i1z(m) ·∆i2z(m) ∆i2z(m)
2

]
,

= ν1u1u1
T + ν2u2u2

T,

= (
√
ν1ν2 + ε)α(

√
ν1 + τ

√
ν2 + τ

u1u1
T+

√
ν1 + τ

√
ν2 + τ

u2u2
T), (7)

where, ν1 and ν2 are eigenvalues of CΩi corresponding to
eigenvectors u1 and u2, respectively. Also in the derivation
above, ε, τ, α are regularization parameters to avoid numer-
ical instabilities and kept constant throughout all the experi-
ments in this paper at 10−7, 1 and 0.1 respectively.

Fig. 3. (a) Geodesic distance dsij between the points xi and
xj on the signal manifold S(x) is shown. Since patch Ωi is
centered at xi as shown in (b) and (c), using definition CΩi

(7)
to compute dsij would make dsij ̸= dsij . To make dsij sym-
metric, we make Ω common, as the circumscribing patch Ωij

between xi and xj in (d)-(e). One can enlarge the common
patch by adding an annular width of ∆r pixels as required.

3.1. Building a Graph Laplacian with Geodesic Affinities

Next, we build a graph structure from query image using the
query descriptors as the graph nodes. We define the affini-
ties between neighboring descriptor locations xi and xi as
follows,

Kij =

e−
ds2ij

2σ2 when ∥xi − xj∥2 ≤ γ,

0 otherwise ,
(8)

where σ is a smoothness parameter and γ a radius within
which we limit our affinity computation. Unfortunately, com-
puting dsij in (8) using CΩj (7) would render dsij (and hence
Kij) non-symmetric. This is because the support Ωi of CΩi is
different from Ωj of CΩj (see Fig. 3(b)-3(c)), and upon using
Eq. (7) to compute dsij we have dsij ̸= dsji. However, K
is assumed symmetric in the derivation of LPP subspace (2).
As a remedy to this technical predicament we make the sup-
port of CΩj in (8) common for both xi and xj as shown by a
circumscribing rectangle in the Fig. 3(d)-3(e). The common
support is denoted by Ωij and we denote the corresponding
gradient covariance matrix as CΩij

. One can enlarge the rect-
angular patch by adding an annular width of ∆r pixels (equal
to 2 shown in Fig. 3). The final expression of the affinity
becomes the following:

Kij =

e−
∆xT

ijCΩij
∆xij

2σ2 when ∥xi − xj∥2 ≤ γ,

0 otherwise .
(9)

A straightforward solution of taking average of Kij and Kji

to make K symmetric does not work in practice because such
average oversmooths the dominant structure pattern over the
image manifold. Next, we discuss the detection framework
using salient features FQ and FT .
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Fig. 4. (a) Query & target image, (b) resemblance map f(ρ) with PCA, (c) transformed correlation peaks f(ρ) with PCA, (d)
resemblance map f(ρ) with LPP, (e) transformed correlation peaks f(ρ) with LPP. The sharp peaks of f(ρ) with less crowding
is visible in LPP results.

4. DETECTION FRAMEWORK

To detect a given query Q in a target image T , we sweep
Q over T and in each target position xi (i.e., centered at
pixel xi) we compute cosine similarity between FQ and FT

as follows: ρ(FQ,FTi) = trace(
FT

QFTi

∥FQ∥F ∥FTi
∥F

). Since ρ ∈
[−1, 1], to suppress small correlation values further down and
to boost the correlation peaks up we transform the ρ according
to Lawley-Hotelling trace statistic [15, 16] as follows: f(ρ) =
ρ2

1−ρ2 . Here, f(ρ) gives us a confidence or resemblance map
[3], the same size as the target image, and we threshold the
map with τ to achieve 99% confidence level from the empiri-
cal probability density function (PDF) of f(ρ).

5. EXPERIMENTAL RESULTS

We have evaluated our methodology on two data sets, namely,
UIUC car data set [17] and MIT-CMU face data set [18]. The
LARK kernel size is maintained at 9 × 9 giving rise to 81-
dimensional descriptors. We reduce the dimensionality to a
small integer of roughly 5 by the use of LPP.

UIUC data contain gray-scale car images at same scale,
and at multiple scales in the test set. MIT-CMU faces is also a
gray-scale image data set and we have evaluated our method-
ology on the same subset of images as done by Seo et al. [3].
The test set consists of 43 gray-scale images containing a to-
tal of 149 frontal faces, occurring at various scales, and 20
gray-scale images [3] having faces at unusually large (> 60◦)
angular orientation. For multi-scale and multi-oriented detec-
tion, we have scaled and rotated the query image and searched
for the transformed query pattern in target.

The locality preserving projection turns out to be robust
in detecting query pattern even in the presence of noise, low
resolution, pose variation and viewpoint changes. The resem-
blance maps for the target image in Fig. 4(a) is shown in
Fig. 4(b) (for PCA) and Fig. 4(d) (for LPP). The correla-
tion peaks resulting from LPP tend to be much sharper than
PCA. The apparent crowding of correlation peaks in PCA is
absent in LPP. Fig. 5 presents some results on UIUC car data
set. We have summarized the performances of our methodol-
ogy in Table 1 in terms of equal-error detection rates (equal
to recall rate when it becomes same as precision rate). The

Fig. 5. Detection results on UIUC Car data set with a single
query image (top left)

Table 1. Equal Error Detection Rates
Approaches Data Sets

UIUC Car MIT-
Single Multi- CMU
Scale Scale Faces

Training Proposed 90.76 76.91 89.01
Free Seo et al. [3] 85.39 74.51 86.58
With Agarwal et al. [17] 77.01 44.00 -

Training Mutch et al. [19] 99.94 90.06 -
Kapoor et al. [20] 94.00 93.50 -
Lampert et al. [21] 98.50 98.60 -

Wu et al. [22] 97.60 - -

proposed methodology is also compared with training-based
approaches in the table. We have consistently used a single
query in both the data sets to arrive at these performances.

6. CONCLUSION

In this paper we have proposed an embedding technique for
local descriptors in the context of one-shot object detection.
We have further connected the idea of LPP with a geodesic
notion of affinity, thereby replacing the traditionally used heat
kernel to define graph affinities. The proposed approach is
general enough to be integrated with any choice of descrip-
tors. Finally, we have demonstrated the efficacy of this ap-
proach with improved experimental results.
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