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ABSTRACT

We present the application of a novel nonparametric approach

to restoration and interpolation of medical images. The pro-

posed approach is based on the notion of spatially adaptive

filtering where locally computed filters adjust to the underly-

ing estimated geometry of the signal of interest. In particular,

the approach allows for high performance denoising, restora-

tion and interpolation of images from a variety of modalities

using the same mathematical and computational framework.

Index Terms— Kernel regression, denoising, interpola-

tion, tomography

1. INTRODUCTION

Classical parametric approaches to signal and image process-

ing rely on a specific model of the signal of interest, and seek

to compute the parameters of this model in the presence of

noise. Examples of this approach are presented in diverse

problems ranging from denoising to upscaling and interpola-

tion. A generative model based upon the estimated parame-

ters is then produced as the best estimate of the underlying

signal. In contrast to the parametric methods, nonparamet-

ric methods rely on the data itself to dictate the structure of

the model, in which case this implicit model is referred to as

a regression function. With the relatively recent emergence

of machine learning methods, kernel methods have become

well-known and used frequently for pattern detection and dis-

crimination problems. Surprisingly, it appears that the cor-

responding ideas in nonparametric estimation (what we here

call kernel regression), are not widely recognized or used in

the image restoration literature. The B-Spline approach [1, 2]

and the wavelet approach [3, 4] are still popular methods for

interpolation and denoising, respectively, in medical imaging.

Existing methods for processing, reconstruction, and in-

terpolation of spatial data, particularly in medical imaging,

are often too strongly dependent upon underlying assump-

tions about signal and noise models. We have developed a

more “universally” applicable and robust approach based on

adaptive nonparametric statistics (i.e. kernel regression or

KR) for processing and reconstruction [5].
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2. REGULARIZED ADAPTIVE KERNEL

REGRESSION

In this section, we briefly review the KR framework, and pro-

vide some intuition behind it. After that, including the dis-

tortion effect, such as a downsampling operation, we derive a

regularized KR method for the medical imaging application.

2.1. Classic Kernel Regression

Defining the degraded/transformed function as z(x) =
ψ{u(x)}, we write the data model,

yi = z(xi) + ǫi, i = 1, 2, · · · , P, xi = [x1i, x2i], (1)

where yi is a noise-laden sample at xi, ǫi is i.i.d zero mean

noise, and P is the total number of samples in a neighbor-

hood (window) of interest, and z(·) is the (hitherto unspeci-

fied) regression function to be estimated for now, though u(·)
is eventually the unknown function which we are interested

in estimating. The KR framework provides a rich mechanism

for computing point-wise estimates of the regression function

with minimal assumptions about global signal or noise mod-

els.

While the particular form of z(·) may remain unspecified

for now, we can rely on a generic local expansion of the func-

tion about a sampling point xi. Specifically, if x is near the

sample at xi, we have the N -th order Taylor series,

z(xi) = z(x) + {∇z(x)}T (xi−x)

+
1

2
(xi−x)T {Hz(x)}(xi−x) + · · · (2)

= β0+βT
1(xi−x)+βT

2vech
{
(xi−x)(xi−x)T

}
+· · ·

where ∇ and H are the gradient (2 × 1) and Hessian (2 × 2)

operators, respectively, and vech(·) is the half-vectrozation

operator which lexicographically orders the lower triangular

portion of a symmetric matrix into a column-stacked vector.

Furthermore, β0 is z(x), which is the pixel value of interest,

and the vectors β1 and β2 contain the first and second order

derivatives at x, respectively.

Since this approach is based on a local representation of

say order N , a logical step to take is to estimate the param-

eters {βn}
N
n=0 from all the samples {yi}

P
i=1, while giving

the nearby samples higher weights than samples farther away.



A formulation of the fitting problem capturing this idea is to

solve the following optimization problem:

min
{β

n
}N

n=0

P∑

i=1

{
yi − β0 − βT

1 (xi−x)

−βT
2 vech

{
(xi−x)(xi−x)T

}
− · · ·

}2

KHi
(xi−x) (3)

where N is the regression order and K(·) is the kernel func-
tion (a radially symmetric function, such as Gaussian), i.e.,

KHi
(xi−x) =

1

2π

√
det(HT

i
Hi)

exp

{
(xi−x)T (HT

i
Hi)

−1(xi−x)

2

}
,

(4)

and Hi is the smoothing (2 × 2) matrix which dictates the

“footprint” of the kernel function. The simplest choice is

Hi = hI, where h is called the global smoothing parame-

ter. It is naturally simpler to choose a fixed H matrix for

all the pixels being processed. However, as we describe in

Section 2.2, significant advantages are realized by selecting

locally adaptive weights.

To sum up so far, the optimization problem (3), which we

term “classic” KR eventually provides a point-wise estimator

of the regression function (q.v. [5] for derivations). Regard-

less of the choice of K(·) and N , the estimator always yields

a weighted linear combination of nearby samples, that is

ẑ(x) = β̂0 =

P∑

i=1

Wi(K,Hi, N,xi−x) yi,

P∑

i=1

Wi(·) = 1,

(5)

where we call Wi the equivalent kernel function for yi.

2.2. Data-Dependant Weights

One fundamental improvement on the above method can be

realized by noting that the KR estimates using (4), indepen-

dent of the regression order (N ), are always local linear com-

bination on the neighboring samples, i.e., (5) with a fixed ker-

nel function. Hence, they suffer from an inherent limitation

due to this local linear action on the data. In [5], we intro-

duced data-adaptive kernel functions which rely on not only

the spatial distances (v = xi −x), but also on the radiometric

properties of nearby samples, i.e.,

KHi
(xi − x) ⇒ Kadapt

(
xi − x, yi − y

)
. (6)

In this paper, we use the concept of steering kernels as

introduced in [5]. Briefly speaking, the steering matrix is de-

fined as

H
steer
i = hC

− 1

2

i , (7)

where Ci is a (symmetric) covariance matrix of local gradi-

ent vectors. It is well known that the local edge structure is

related to the gradient covariance (or equivalent, the locally

dominant orientation). Using the steering matrix, the weight

Fig. 1. Visual representations of steering kernel weights at
different structures.

matrix takes local image structures into account and that en-

ables our estimation to preserve edges and reduce noise in flat

regions.

More specifically, a naive estimate of this covariance ma-

trix may be obtained as follows:

Ĉi = J
T
J (8)

with

J =





...
...

zx1
(xj) zx2

(xj)
...

...



 , xj ∈ ξi (9)

where zx1
(·) and zx2

(·) are the first derivatives along the x1-

and x2-directions, respectively, ξi is a local analysis window

around the position of interest xi. The dominant local orienta-

tion of the gradients is then related to the eigenvectors of this

estimated matrix. The gradients depend on the pixel values,

and since the choice of the localized kernels in turn depends

on these gradients, it, therefore, follows that the “equivalent”

kernels for the data-adapted methods form a locally nonlinear

combination of the local data. Fig. 1 illustrates steering ker-

nel weights at different structures such as edge, flat, and cor-

ner areas. As shown in the figure, steering kernels (weights)

capture local image structures. Moreover, steering KR is able

to interpolate pixels along a local orientation at an edge area.

While this approach (which is essentially a principal com-

ponent method to analyze image (orientation) structure [6, 7])

is simple and has nice tolerance to noise, the resulting esti-

mate of the covariance may in general be rank deficient or

unstable. Therefore, in this case, care must be taken not to

take the inverse of the estimate directly. More details about

the estimation of the steering weights and its implementation

are available in [5, 8].

2.3. Regularized Kernel Regression

Considering the effect of distortion or transformation, instead

of z, the function u is the one we wish to estimate. Therefore,

in place of representing the regression function z by a local

approximation (Taylor series), we apply the KR framework

to u. Due to the operation ψ in (1), neighboring pixels might



be coupled and it is hard to estimate pixel values of u(x) in-

dividually. Hence, we write the data model in matrix form

as

Y = Z + ǫ = ΨU + ǫ (10)

where Y is the measured signal, Z was the regression im-

age to be estimated, but now U ∈ RN×M is the unknown

image of interest, and ǫ and Ψ represents noise and a dis-

tortion operation such as downsampling and blurring, respec-

tively. An underlined vector corresponds to a matrix that is

lexicographically ordered into a column stack vector: U =
[u(x1), u(x2), · · · ]

T ∈ RNM×1 where u(·) is the unknown

function of interest and xi is a 2 × 1 vector which indicates

the pixel coordinate.

While any specific knowledge about the unknown func-

tion u(·) is also unavailable, we again assume that u(·) is

locally differentiable. That is to say, we can express the re-

lationship between two neighboring pixel values, u(xi) and

u(xi + v) where v = [v1, v2]
T , as

u(xi + v) = u(xi) + ux1(xi)·v1 + ux2(xi)·v2

+ux2
1

(xi) ·
v2
1

2
+ ux1x2(xi) · v1v2

+ux2
2

(xi) ·
v2
2

2
+ · · · . (11)

where ux1(·) and ux2
1

(·) are the first and second order deriva-

tives along the vertical (x1) direction of u. Since the expres-

sion above is valid for all the pixel coordinates in the unknown

image U, we stack all the local representations into vector

form:

S
v1

x1
S

v2

x2
U = U + Ux1

v1 + Ux2
v2

+Ux2
1

v2
1

2
+ Ux1x2

v1v2 + Ux2
2

v2
2

2
+ · · · , (12)

where S
v1

x1
and S

v2

x2
are shift operators that shift the image

U along x1- and x2-directions by the distances v1 and v2,

respectively. Considering a local approximation of order N ,

we write the above expression as

U ≈ S
−v1

x1
S
−v2

x2
INUN (13)

where, for example, when N = 2, we have

I2 =
[
I, Iv1

, Iv2
, Iv2

1

, Iv1v2
, Iv2

2

]

U =
[
U

T , U
T
x1
, U

T
x2
, U

T
x2
1

, U
T
x1x2

, U
T
x2
2

]T

, (14)

and Iv1
= diag{v1, · · · , v1}. The regression order (N ) con-

trols the bias/variance tradeoff of the estimate: the larger N,

the smaller the bias and the larger the variance become. How-

ever, in terms of the computational efficiency, N = 0, 1, and

2 are the most reasonable choices for most cases.

Having introduced the local shift approximation (13), the

data model (10) then becomes

Y ≈ ΨS
−v1

x1
S
−v2

x2
INUN + ǫ. (15)

(a) A traditional x-ray image (b) A high resolution x-ray image

(d)Absolute residual image between (b)and(c) (c) AKTV

Fig. 2. A denoising example: (a) a traditional x-ray image
of a chicken wing, (b) a high resolution x-ray image,(c) the
denoised image by AKTV, and (d) absolute residual image.

Now, Eqs.(15) and (13) suggest a data fidelity (or likelihood

term) and a general (smoothness) prior (or regularization

term). That is, the overall cost function to be minimized is

proposed as

C(UN ) =
∑

v1

∑

v2

{∥∥∥Y − ΨS
−v1

x1
S
−v2

x2
INUN

∥∥∥
2

W(v)

+η
∥∥∥U − S

−v1

x1
S
−v2

x2
INUN

∥∥∥
1

W(v)

}
, (16)

where η is the regularization parameter and W(v) is a diag-

onal weight matrix which depends on the shift distance v.

We call the overall cost function in (16) Adaptive Kernel To-

tal Variation (AKTV) [8]. Naturally, with fewer higher order

terms in this expansion, the smaller shift distances (v1, v2)

result in a more faithful approximation in (13). Hence, we

give larger weights when the shift distance is small. More

specifically, the weight matrix is defined as

W(v) = diag
{
KHsteer

1
(v), KHsteer

2
(v), · · ·

}
, (17)

where we use steering kernel functions

3. EXAMPLES

The first example is image denoising. For this example, the

operator Ψ is the identity matrix (Ψ = I ∈ RNM×NM ), and

we used a real high resolution x-ray image of a chicken wing

obtained by a new super-resolution x-ray imaging method [9]



(a) A low resolution MRI image (b) ×2 Upscaling by bicubic interpolation

(c) ×2 Upscaling by NEDI [10] (d) ×2 Upscaling by AKTV

Fig. 3. An upscaling example: (a) a low resolution MRI im-
age of a human head, and (b)-(d)×2 upscaled images by bicu-
bic, NEDI [10], and AKTV, respectively.

shown in Fig. 2(b)1. By contrast, Fig. 2(a) shows a tradi-

tional X-ray of the same object, which is less noisy, but also

considerably less detailed. Therefore, effective denoising of

the high-resolution X-ray image can provide unprecedented

levels of detail and clarity for this imaging modality. The

denoised result by AKTV is shown in Fig. 2(c). Fig. 2(d)

illustrates the absolute residual image (the absolute differ-

ence between the given noisy image and the denoised image),

which is intended to show that AKTV effectively removed

noise while preserving structures.

The second example is image upscaling. For upscaling, Ψ

is a downsampling operator: Ψ = D ∈ R
1

r2
NM×NM

, where

r is the downsampling factor. Fig. 3(a) shows a real low-

resolution MRI image (256 × 256) of a human head, which

we obtained from the Whole Brain Atlas2. The upscaled im-

ages with r = 2 by bicubic interpolation, NEDI, and our ap-

proach are shown in Figs. 3(b)-(d), respectively. The example

shows that the proposed method, AKTV, is capable of upscal-

ing and denoising an image simultaneously, and such a one-

step approach is generally more suitable than a multiple-step

approach (e.g., denoising followed by upscaling).

4. CONCLUSION AND FUTURE WORK

In this paper, we illustrated the application of an advanced

nonparametric approach to the treatment of images from a

1The image is available at http://blogs.zdnet.com/
emergingtech/?p=983

2http://www.med.harvard.edu/AANLIB/cases/caseNA/
gr/cor/051.png

variety of modalities. The approach is sufficiently general so

that, as illustrated in Section 3, it is applicable a wide vari-

ety of problems including denoising, deblurring [8] and in-

terpolation. It is of particular note that the approach makes

minimal assumptions about the global structure of the signal

and noise, and is therefore quite generally useful. It is also

worth stating that the distortion operator, Ψ, can be, for in-

stance, a combination of Radon transform and downsampling

operation. Applications for 3-dimensional processing are also

important, and the proposed approach can be easily extended

for 3-D data.
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