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ABSTRACT

In this paper, we propose a kernel backprojection method for
computed tomography. The classical backprojection method
estimates an unknown pixel value by the summation of the
projection values with linear weights, while our kernel back-
projection is a generalized version of the classic approach, in
which we compute the weights from a kernel (weight) func-
tion. The generalization reveals that the performance of the
backprojection operation strongly depends on the choice of
the kernel, and a good choice of the kernels effectively sup-
presses both noise and streak artifacts while preserving major
structures of the unknown phantom. The proposed method is
a two-step procedure where we first compute a preliminary
estimate of the phantom (a “pilot”), from which we compute
the kernel weights. From these kernel weights we then re-
estimate the phantom, arriving at a much improved result.
The experimental results show that our approach significantly
enhances the backprojection operation not only numerically
but also visually.

Index Terms— tomography, projection reconstruction,
filtered backprojection, nonlinear filters, kernel regression

1. INTRODUCTION

Filtered backprojection (FBP) is a widely-used method for
image reconstruction from tomographic projections. Al-
though it is simple, FBP is sensitive to noise due to the high-
pass filtering of noise-ridden projections and also suffers
from streak (star) artifacts unless the number of projections
is sufficiently large. However, fewer projections are always
preferable not only because of the scanning time, but also the
amount of radiation exposure to patients.

In order to suppress both noise and streak effects, the iter-
ative refinement using the total variation (TV) regularization
in spatial domain is one of the most effective methods. Its
performance is well demonstrated in [1] and also in [2] as the
compressed sensing approach.

In this paper, first we study and generalize the backprojec-
tion operation and present a nonlinear backprojection method
with improved performance in Section 2. The classical back-
projection operation estimates a local value of the unknown
phantom using the path integral of the given projections,
which, in the discrete case, is implemented as a summation
of the nearest or interpolated projection values along the
path [3]. Bilinear and bicubic approaches are typical choices
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for interpolation. On the other hand, our nonlinear ker-
nel backprojection (KBP) interpolates the projection values
while suppressing the noise effect using nonlinear weights,
which we learn from the initial guess of the underlying phan-
tom. The proposed backprojection is a two-step approach: (i)
We estimate the unknown phantom by the TV approach [1, 2]
and compute local steering kernels (LSK) from this (“pilot”)
estimated phantom, and then (ii) we reconstruct the phantom
again with the nonlinear weights given by the local steering
kernels.

Next, in Section 3, we describe the TV approach in con-
junction with the proposed KBP in order to improve the tomo-
graphic reconstruction. Specifically, we replace the standard
BP in the TV approach with KBP. After obtaining LSK from
the estimated phantom by the TV approach, the TV iteration
with KBP refines the estimated phantom further. The experi-
mental results show that the proposed KBP operation signif-
icantly enhance the reconstruction performance numerically
and visually.

2. NONLINEAR KERNEL BACKPROJECTION

First, we briefly review the basics of the projection recon-
struction problem in the spatial domain, and derive kernel
backprojection.

2.1. Review

Using an additive noise model, we define the data model as

y=z+e=Ru+g, (&)
where y € RI*@ is the measured projections with noise,
z € RP*XQ is the noise-free projections, u € RY*M is the
unknown phantom, R € RF@*NM g the Radon operation,
e € RP*Q is zero-mean noise, and the matrices with under-
score represent that they are lexicographically ordered into
column-stack vectors (e.g. y € RFPQ*1) A direct solution of
u is given by the least-squares estimator,

iy = arg min |y — Ru; )

as
N -1
a5 = (R"R) R'y. 3)
In general, we interpret Ry as backprojection and (RT R) !
as high-pass filter. It is noteworthy that, in FBP, using the pro-
jection slice theorem [4], we can reverse the order: we first
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apply a high-pass filter on the projections and then perform
backprojection. However, due to the fact that RTR. is typi-
cally ill-conditioned, in practice, its inversion is problematic,
and small changes (e.g. noise) in the given projections leads
to huge distortions in the reconstructed images.

In order to stabilize the solution, the regularization tech-
nique is an immediate choice, and TV is the most widely used.
That is, we have

A~ . 2
Gpy = argmin ||y — Rul|,+A (|, ull +Te,ull,) . 4)

where we can iteratively estimate u with the steepest descent
method as

! = o) +u[R7(y - Raly)
AL sign(T,, ) + T sign(T,0(9) } [5)

where A is the regularization parameter, I';, and I, are first
derivative operators (say Sobel filters) along ;- and x3-axes,
respectively, and p is the step size.

2.2. Kernel Backprojection

As explained in (3), we can regard the standard tomographic
reconstruction as a two-step process: the backprojection step
(R"y) and the high-pass filtering step (R”R.)~". Due to the

ill-condition of RTR, it would be preferable to compute a
stable estimate of the noise-free projections z first.

In the continuous case, we can express the backprojection
a=RTyas

u(x) = / y(t,0)dd, with t =z cosl + xz2sind, (6)
0

where 4(-) is the unknown function before the high-pass fil-
tering. But in practice, we implement it as a discrete form,

~(xj):Zy(tj,%)é@, with t; =xy5c0s 0 + xo;sin b, (7)
qg=1

where, in general, y(¢;, 6,) may be unavailable at every value
of ¢; and 6,. Thus, we need to estimate y(¢;, 6,) (or more
precisely, its noise-free version z(¢;, 6,)) somehow from its
neighbors. Typically, nearest, bilinear, bicubic interpolations
are often used [4, 5].

In this paper, we use the kernel regression framework [6]
to estimate z(¢;, 6;). On the projection at the angle 6,, we have
P noise-ridden samples y(t;,0,) withi =1,--- | P:

y(ti, 0) = z(t;,0,) +e(ti,6,), i=1,---,P. (8)

Assuming that the noise-free function z(¢,6,) is locally
smooth and using Taylor expansion as the local represen-
tation, between z(t;, 6,) and z(t;, 6;), we have the following
relationship
0z(t;,6,)
t,0,) + —2 2 (t — ¢
2, by) + ot ( )

1 02%z2(t;, 6,

— Z(]’ Q)(ti_tj)z

21 o2

_|_
= fo+Bulti —t) + Balti = 1)* +--- . (9)

Z(ti, Hq) =

(b) Kernels proportional to the
length of overlapping segments

(a) Kernel backprojection

Fig. 1. A schematic representation of kernel backprojection
and another kernel often used: (a) the kernel is the function
of spatial distances, and (b) the kernels are proportional to the
length of overlapping segments.

Using a local neighborhood, we solve for the desired pro-
jection value [y using a weighted least squares formulation
which assigns higher weights to nearby samples as:

P
min
Bo,B1,+ 4
i=1

[y(ti, 0) — Bo — Bi(ti — 1))

—Bolts — ;)2 — - P Ky(ti — ;). (10)

This is the 1-D kernel regression formulation, and when we
ignore all the higher order terms (1, 32, - - - ), the optimiza-
tion yields the (zeroth-order) estimator of z(t;, 6,) as

2 Kq(ti — 1) y(ti, 6y)
DKot =)

Now, plugging 2(t;, 6,) into the backprojection (7), we have

Uyegp (%)) —Z{Z é(K @ )_ 5)“9)}59, (12)

q=1

é(ﬁjv 911) = BO =

Y

which we call it kernel backprojection (KBP); and rewrite it in

matrix form as u = f{Ty. Fig. 1 illustrates a schematic rep-
resentation of kernel backprojection (12) and a typical choice
of weights [5].

2.3. Nonlinear Kernel Functions

In this section, we take one step further toward better estima-
tion of £(¢;, 6,) (11). Specifically, we employ a choice of the
kernel function that not only estimates the unknown projec-
tion value but also effectively suppresses the streak and noise
effects while preserving local structures (texture and orienta-
tions).

The desired kernels adapt to local structures of the phan-
tom, and in order to obtain such kernels, we use the local
steering kernel (LSK) technique. The LSK captures local ori-
entation structures, and, as we have shown earlier, it is an
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Fig. 2. Examples of local steering kernels at edge and flat
regions.

effective tool for image restoration including denoising, in-
terpolation, and deblurring [7, 8]. The LSK is defined as
T
k(x; —x;) = v/det Cjexp {— (i X'7)2f(;2l(xl x;) )
(13)
where x; is the position where we compute the LSK, x; is the
neighboring pixel positions around x;, C; is the 2 x 2 local
covariance matrix of the local gradients around x;, and h is
the smoothing parameter that controls the width of the LSK.
Fig. 2 shows examples of LSK near an edge region and flat
region'.
Next, using the LSK, we compute the kernels for back-
projection (12) by taking Radon transform of the LSK at the
projection angle 6,:

Kq(ti —t;)

= qu{k(xl — Xj)} . (14)

Now, the kernel K, inherits the local structures of the phan-
tom and it reflects the local structures in the backprojection
operation with suppressing noise and streak artifacts. Of
course, in the expression above, in order to compute the ker-
nels k(-) we need to have access to the underlying phantom,
which is unrealistic given only the projections. As such, we
produce a “pilot” estimate of the phantom using an inde-
pendent, low-complexity algorithm, and use this phantom to
calculate the desired kernel weights. We demonstrate this in
the next section with several experiments.

3. EXPERIMENTS

Having proposed the nonlinear KBP, in this section, we ex-
plain how we obtain a good set of LSK from the given pro-
jections, and show some examples along with comparisons to
the standard filtered BP, and the TV approach (5).

3.1. Implementation

In order to obtain a good set of LSK, we estimate the unknown
phantom first by the TV approach (5). This pilot estimate
tells us the local structures of the unknown phantom and their
spatial locations. Next, using (13) and (14), we compute the
LSK for all the pixels of the estimated phantom, and then we
have the nonlinear kernel K, by taking Radon transform of
the LSK. Once, the kernels K, are available, we can perform

KBP (R7). We replace the standard backprojection R”' in
(5) with KBP R, and estimate the unknown phantom again.

Fig. 3 shows the summary of our reconstruction algorithm
with KBP.

It is worth noting that since each location x; receives its own covariance
matrix, the shape of the kernel is not a simple Gaussian.

Noise-ridden

I’I'OJf’Ctm“s Pilot estimate LSK KBP with TV Outp“t
5) (13) & (14) R7=R'(5)

Fig. 3. Block diagram of the projection reconstruction using
KBP.

(a) Original, 128 x 128 (b) FBP, PSNR = 22.88[dB]

(c) BP with TV, PSNR = 44.38[dB] (d) KBP with TV, PSNR = 45.72[dB]

Fig. 4. Shepp-Logan example: we generate 60 projections
from Shepp-Logan phantom shown in (a) with equally spaced
angles and add white Gaussian noise (SNR = 45[dB]) to the
projections, and the figures (b)-(d) are the reconstructed phan-
toms by the standard filtered backprojection, the TV approach
(5), and the KBP method, respectively. The corresponding
PSNR values and SSIM indexes are (b)22.88[dB], 0.5489,
(c)44.38[dB], 0.9963, and (d)45.72[dB], 0.9970, respectively.

3.2. Examples

The first example is the familiar Shepp-Logan phantom.
Using this Shepp-Logan phantom (128 x 128) shown in
Fig. 4(a), we generate 60 projections with equally spaced an-
gles in [0, 7] and add white Gaussian noise (SNR = 45[dB])
to the projections. The estimated phantoms by the standard
FBP, the TV approach (5) with A = 0.003, and the KBP with
A = 0.0006 are shown in Figs. 4(b)-(d), respectively. The
corresponding PSNR values are (b)22.88[dB], (¢)44.38[dB|,
and (d)45.72[dB]. Also the SSIM indexes® are (b)0.5489,
()0.9963, and (d)0.9970

Next, we use a more realistic phantom for the second ex-
ample: an abdominal (216 x 216) phantom shown in Fig. 5(a).
In these examples, we generate 60 projections with equally
spaced angles and add white Gaussian noise (SNR = 45[dB])
to the projections. Again, the estimated phantoms by the the
TV approach (5) with A = 0.002 and the KBP with A = 0.001
are shown in Figs. 5(b)-(c), respectively. The corresponding

2A MATLAB implementation is freely available at http: //www.ece.
uwaterloo.ca/~z70wang/research/ssim/ssim.m
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Fig. 5. Abdominal CT example: we generate 60 projections from the abdominal phantom shown in (a) with equally spaced
angles and add white Gaussian noise (SNR = 45[dB]) to the projections, and the figures (b) and (c) are the reconstructed
phantoms by the TV approach (5) and the KBP method, respectively. Figures (d)-(f) show enlarged middle portions of (a)-
(), respectively. The corresponding PSNR values and SSIM indexes are (b)28.16[dB], 0.8506 and (c)29.32[dB], 0.8683,

respectively.

PSNR values and SSIM indexes are (b)28.16[dB], 0.8506 and
(©)29.32[dB], 0.8683, respectively. The plot next to Fig. 5(a)
shows the cross section (indicated by the orange line) of the
original and the reconstructed images.

4. CONCLUSION AND FUTURE WORKS

We presented a nonlinear KBP approach and its implementa-
tion. The experimental results show that our method outper-
forms the standard FBP and the TV approach not only numer-
ically, but also visually.

Although the KBP works well, some important issues re-
main to be studied: (i) the kernels are not specifically de-
signed with sharp boundaries in mind. (ii) Other kernel tech-
niques to capture the local image structures are also possible,
for example bilateral kernel [9]. (iii) In this paper, we ignored
the higher order terms in the kernel regression (10). Including
the higher order terms will result in a sharpening effect in the
restored image. This property might enhance the performance
of KBP as well. (iv) Reduction of the computational com-
plexity is also an important issue to study. The computational
load of the naive implementation of KBP is proportional to
the support size of the kernel function. After obtaining the
LSK with setting the diameter of the kernel support d-pixels,
the computational load of KBP is approximately d times the
computational load of standard BP.
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