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ABSTRACT

A no-reference image metric based on the singular value de-

composition of local image gradients is proposed in this pa-

per. This metric provides a quantitative measure of true image

content, and reacts reasonably to both blur and random noise,

so that it can be used in the automatic selection of parameters

for image restoration algorithms, especially for denoising fil-

ters. Compared with GCV or SURE based approaches, this

metric costs a small amount of computation, and does not re-

quire the noise to be Gaussian. Simulated and real data ex-

periments demonstrated that our metric can capture the trend

of quality change during the denoising process, and can yield

parameters that show excellent visual performance in balanc-

ing between denoising and detail preservation.

Index Terms— parameter optimization, no-reference

metric, sharpness, denoising, singular value decomposition.

1. INTRODUCTION

Objective image quality metrics can be divided into two main

categories: full-reference and no-reference [1]. Some full-

reference metrics, including the classical mean-squared error

(MSE) and the structural similarity (SSIM) [1], have been

widely used in the image processing field. However, since

these metrics basically measure the similarity between the tar-

get and reference images instead of real image quality, they

can hardly be employed in situations where the reference im-

age is not available. For example, we can not use a full-

reference metric to select parameters automatically for image

restoration algorithms (e.g. denoising, deblurring and super-

resolution) in real applications.

In any statistical image restoration algorithm, it can be

observed that selecting parameters amounts to a tradeoff be-

tween bias and variance in the final estimate. One example

is the regularization parameter in Bayesian reconstruction ap-

proaches. Generally, the larger the parameter is, the more

smooth the image content becomes (small variance), while

more useful detail and edges are flattened (larger bias). In

other words, an ideal no-reference measure that is useful for

the parameter optimization problem should take both noise

This work was supported in part by the US Air Force Grant FA9550-07-

1-0365.

and blur on the output image into account. However, most

no-reference sharpness metrics, which are designed based on

local image gradient [2] or edge width [3], can hardly dis-

tinguish image quality decay against high frequency behavior

due to noise [4].

Some approaches have been developed for solving the pa-

rameter optimization problem. Generalized cross-validation

(GCV) based methods have been employed for tuning the

regularization parameters for various denoising applications

[5]. More recently, the methods based on Stein’s unbiased

risk estimate (SURE) [6], which aims to access MSE with-

out a reference, were proposed for the denoising problem.

One successful example is the Monte-Carlo SURE [7] that

can be used for arbitrary denoising algorithms. This method

probes the denoising operator with additive noise and manip-

ulates the response signal to estimate MSE. However, these

approaches are either limited to a small group of denoising

algorithms, or require a large amount of calculation (e.g.

Monte-Carlo SURE needs the denoising operation run twice

to get the result). Besides, many approaches are also only

appropriate when the noise is assumed to be Gaussian (which

may not be the case in real applications), and generally re-

quire an accurate estimation of the input noise variance as

well.

In the article [4], we proposed a sharpness metric H ca-

pable of detecting both blur and noise. The limitation of this

metric is that it requires a prior estimate of noise variance. In

this paper, we propose a new no-reference image content met-

ric. This metric does not require any prior knowledge about

the test image or noise. Its value drops monotonically either

when image becomes blurred or noisy. In the rest of this pa-

per, we first briefly review the definition and properties of lo-

cal image gradient matrix and its singular values. Then, we

give the definition of the new metric. Several experimental

results show the performance of our metric in solving the pa-

rameter optimization problem for denoising algorithms. Con-

clusions are provided in the final section.

2. SINGULAR VALUES OF THE IMAGE GRADIENT

MATRIX

The metric proposed in [4] is based on the (compact) singular

value decomposition (SVD) of local gradient matrix. More
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specifically, considering an image of interest g(x, y), we de-

fine the gradient matrix of an N × N local analysis window

(wi) as:

G =





...
...

gx(k) gy(k)
...

...



 , k ∈ wi (1)

where [gx(k), gy(k)] denote the gradient of the image at point

(xk, yk). The dominant orientation of the local window can

be calculated by computing SVD of G [8]:

G = USVT = U

[
s1 0
0 s2

] [
v1 v2

]T
(2)

where both U and V are orthonormal matrices. The col-

umn vector v1 represents the dominant orientation of the local

gradient field. Correspondingly, the second singular vector

v2 is the direction perpendicular to v1. The singular values

s1 ≥ s2 ≥ 0 represent the energy in the directions v1 and v2,

respectively.

In [4] we illustrated that s1 can serve as a local sharpness

metric when the image is clean. Its value drops if the image

becomes more and more blurry. On the other hand, if a clean

image patch g is corrupted by the white (though not necessar-

ily Gaussian) noise n, the gradient matrix of the noisy image

patch ĝ would become:

Ĝ = G + Gn (3)

and on average the corresponding singular values can approx-

imately be written as [4]:

ŝi ≈
√

s2

i + ξN2σ2, i = 1, 2 (4)

where si denotes the singular values of the latent clean patch

g, σ2 is the noise variance, and ξ is a constant whose value

is determined by the gradient estimation filters.1 The above

equation tells us that ŝ1 is determined by both s1 and σ2.

Given a fixed σ2, the value of ŝ1 drops as s1 gets decreased, or

say when the image patch g is more blurry. Unfortunately, ŝ1

is also monotonically increasing with the noise variance σ2.

In other words, ŝ1 itself cannot be used directly as a metric in

the presence of both blur and noise.

3. NO-REFERENCE IMAGE CONTENT METRIC

We define the image content metric Q as:

Q = s1

s1 − s2

s1 + s2

(5)

Compared with s1, it can be seen that in the definition of Q a

normalizing ratio is introduced:

R =
s1 − s2

s1 + s2

, (6)

1For example, if we use the filters [−1/2, 0, 1/2] and [−1/2, 0, 1/2]T

to estimate image gradients, the corresponding ξ = 1/2.
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Fig. 1. Monte-Carlo simulations using both random noise and

blur for an edged patch. (a): white Gaussian noise with dif-

ferent variance σ2 was added to the clean patch. The average

Q versus σ was plotted in (c). (b): the test patch was blurred

first and added by white Gaussian noise with σ = 0.1. The

averaged Q was given in (d).

which we call the coherence. Consider a noisy image patch

ĝ. Its coherence can approximately be calculated by replacing

s1 and s2 with the ŝ1 and ŝ2 in (4):

R̂ ≈

√
s2

1
+ ξN2σ2 −

√
s2

2
+ ξN2σ2

√
s2

1
+ ξN2σ2 +

√
s2

2
+ ξN2σ2

(7)

=
s2

1
− s2

2

s2

1
+ s2

2
+ 2ξN2σ2 + 2

√
(s2

1
+ ξN2σ2)(s2

2
+ ξN2σ2)

The above illustrates that in a noisy image patch, the com-

puted value of coherence R is roughly inversely propor-

tional to the local noise variance σ2 when s1 > s2, which is

true whenever the underlying clean patch contains a strong

structure, like an edge. We call these structured patches

anisotropic. Under such cases, metric Q serves as an approx-

imation of ŝ1/σ2, which can be thought as an indicator of

local signal to noise ratio [4].

As mentioned before, s1 and s2 represent the energy in

both the dominant direction and its perpendicular direction.

So basically R measures their relative size. Considering a

noise-free region with strong anisotropic geometric structure

(such as an edge), the difference between s1 and s2 is very

large, and in the absence of noise, the value of R is near 1.

If white noise is added, the resulting R would be reduced,

indicating that this region has become less structured, or the

relative strength of the dominant direction has been reduced.

To further understand the performance of metric Q in

anisotropic patches in the presence of both noise and blur,

we employ Monte-Carlo simulations. In the first experiment,

white Gaussian noise with a variety of σ, ranging from 0.01

to 0.3, was added to a test edged patch (shown in Fig.1 (a)).

For each σ, 100 simulations are carried out with indepen-

dent noise realizations. Fig.1 (c) plots the averaged Q across



these realizations, versus σ. In the second experiment, we

take the blurring process into account. The edged patch is

blurred by applying a Gaussian smoothing filter with a grow-

ing standard deviation σb. After that, white Gaussian noise

with σ = 0.1 is added respectively. Again, 100 independent

noise simulations were applied, and the averaged Q versus

σb is given in Fig.1 (d). From this set of experiments, we

can see that for anisotropic patches, the value of metric Q
drops monotonically as the image content becomes more and

more blurred and/or noisy. In other words, only anisotropic

patches should be considered when measuring a test image

using metric Q. Fortunately, these anisotropic patches can be

detected by simply thresholding the local coherence R.2

4. APPLICATION TO DENOISING

Fig. 2. Selecting the tuning parameter using metric Q.

In this section, we will provide evidence showing that the

proposed metric Q can be used to optimize the parameters

of denoising algorithms. The strategy we take for computing

metric Q is as follows:

Algorithm 1 Algorithmic Procedure for Computing Q

1. Given an input noisy image ĝ, divide it into M non-

overlapping patches of size N ×N (N = 8), and calculate

the local coherence Rk using equation (6) for each patch

k = 1, · · · , M .

2. Find (say m ≤ M ) anisotropic patches by thresholding

the local coherence values as Rk ≥ τ .

3. Apply the test parameter to get a denoised image.

4. For each denoised image, calculate the local metric Qk

using equation (5) on each patch within the anisotropic

patch set identified in step 2. Output the value Q =
1

M

∑m

k=1
Qk as the metric for each output image.

5. Find out the best denoised image and the corresponding

parameter by maximizing metric Q.

One state of the art denoising algorithm, the block-

matching and 3D filtering (BM3D) [9], is used here as a

parameter tuning example. In the BM3D algorithm, a Wiener

2If R ≥ τ , then the patch is detected as anisotropic. This significance test

is based on the pdf of R (in noisy isotropic patches). We set the threshold

τ = 0.234, which is determined by setting the confidence level to be 99.9%.

τ is independent from image content.

(a) Simulated noisy image (b) Real noisy image

Fig. 3. Test input images.

filter is employed for collaborative filtering, which requires

the estimate of a (variance) parameter σ2

est. The value of the

parameter σest can strongly affect the output, and thus needs

to be tuned. In the following experiments, we optimize this

parameter in the broad range of 1 to 30 (the intensity range is

[0, 255]). All the experiments are carried out on a desktop PC

with Intel Pentium D CPU (3.00 GHz) in MATLAB. Com-

puting Q for a 512 × 512 output image takes around 0.25
second.
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Fig. 4. Simulated data experiments.

Both simulated and real data experiments are carried out.

Due to space limitation, we offer only a small part of the re-

sults here3. In the simulated experiments, where noisy images

were produced by adding white Gaussian noise (see Fig.3

(a)), MSE is also calculated. Plots of the results are given

in Fig. 4. It can be seen that metric Q captured the chang-

ing trend of quality in the output images. Both Q and MSE

3The MATLAB code and more experimental results are available at

http://users.soe.ucsc.edu/∼xzhu/doc/metricq.html.
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Fig. 5. Real data experiments

show that as the value of the tuning parameter is increased,

the overall visual quality of the output image rises first due to

the suppression of random noise, and then goes down because

of the blurring effect of the filter. The maximum value of Q
yielded a very good result (in the given experiment, it offers

the same suggestion as MSE) in a completely unsupervised

fashion and without access to a reference image.

Fig.3 (b) illustrates a real noisy image, whose noise comes

from film grain, scanning and compression processes, and is

not Gaussian. Monte-Carlo SURE is implemented as a com-

parison, where the standard deviation of the probing noise is

set to be 0.1 as recommended in [7]. From Fig.5 we can see

that the optimal output image suggested by SURE is inade-

quate for denoising, as obvious noise can be observed. Mean-

while, the Q optimized image shows good visual performance

in balancing between denoising and detail-preservation. This

example is not entirely fair to the SURE method since the as-

sumptions (Gaussian noise model) underlying that method are

violated in this example. But given the lack of a reasonable

alternative, the experiment does illustrate that the metric Q is

nevertheless able to maintain its stable performance, indicat-

ing that our proposed metric can be useful for a more general

variety of practical situations.

5. CONCLUSION

In this paper, we proposed an image content metric Q based

on the singular value decomposition (SVD) of local image

gradients. This metric can reflect the amount of both blur and

random noise of images without any prior knowledge, so that

it can be used in parameter optimization problems for various

image restoration algorithms. We studied the particular case

of denoising algorithms here. Simulated and real data exper-

iments demonstrated that this metric can capture the trend of

quality change during the denoising process, and can yield

parameters that show good visual performance in balancing

between denoising and detail preservation.
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