NONPARAMETRIC DETECTION AND RECOGNITION OF VISUAL OBJECTS FROM A
SINGLE EXAMPLE

Hae Jong Seo and Peyman Milanfar

Electrical Engineering Department
University of California at Santa Cruz
1156 High Street, Santa Cruz, CA, 95064

ABSTRACT

We present a generic detection/localization algorithm capable
of searching for a 2- or 3-D visual object of interest without
training. The proposed method operates using a single exam-
ple (query) of an object of interest to find similar matches;
does not require prior knowledge (learning) about objects be-
ing sought; and does not require any pre-processing step or
segmentation of a target image/video. Our method is based
on the computation of local regression kernels as descriptors
from a query, which measure the likeness of a pixel to its sur-
roundings. State of the art performance is demonstrated on
several challenging datasets, indicating successful detection
of visual objects in diverse contexts and under varying imag-
ing conditions.

Index Terms— Visual object detection and recognition,
image representation, correlation and regression analysis

1. INTRODUCTION

The central problem in computer vision is “visual object recog-
nition”: namely, the ability to automatically categorize an im-
age or video of interest (a query) as either coming from a
known category (classification), or as being significantly sim-
ilar to an already seen visual target (detection/localization).
In particular, the 2-D object recognition problem (including
face, pedestrian, and vehicle recognition) and human action
recognition problem have attracted much attention recently
due to the increasing demand for developing real-world surveil-
lance systems. Visual object recognition is considered to be
a very difficult problem because objects can typically appear
in completely different context and under different imaging
conditions. Examples of such differences can be wide rang-
ing, but include differing view points, occlusion, lighting, and
scale changes as shown in Fig. 1.

For the last few decades, learning-based methods for rec-
ognizing visual objects have made impressive progress. Typ-
ically, learning-based approaches involve generative or dis-
criminative models for each category based on many training
examples. In other words, these methods are mostly paramet-
ric, relying on visual object models, such as constellation [1],

Fig. 1. (a) A face and some possibly similar images (b) A
waving action and some possibly similar actions

template matching [2], bags of words [3], or shape models [4],
etc. For specific object classes, in particular faces, pedestri-
ans and cars, detectors based on the combination of low-level
features combined with modern machine learning techniques
have been shown effective. However, in order to achieve good
accuracy, these systems require a large number of manually
labeled training data, typically hundreds or thousands of ex-
ample images for each class to be learned. Furthermore, 2-D
object recognition methods were not directly applicable to 3-
D action recognition task, and thus, completely separate ap-
proaches have been proposed for action recognition tasks. In-
deed, even in terms of evaluation of performance, different
criteria and methodologies have been employed in 2-D and
3-D.

Recently, the recognition task with only one query (training-
free) has received increasing attention [5, 6, 7, 8] for impor-
tant applications such as automatic passport control at air-
ports, where a single photo in the passport is the only ex-
ample available. Another application is in image retrieval
from the web [1, 5]. In the retrieval task, a single probe or
query image is provided by users and every gallery image
in the database is compared with the single probe, posing an
image-to-image matching problem. As a successful example
of image-to-image matching, Boiman et al. [9] showed that a
rather simple nearest-neighbor (NN) based image classifier in
the space of the local image descriptors is efficient and even
outperforms the leading learning-based image classifiers such
as SVM-KNN [10], pyramid match kernel (PMK) [11]. Ac-
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Fig. 2. System overview [14]. Top: Object detection frame-
work, Bottom: action detection framework. (There are
broadly three stages.)

tion recognition methods such as those in [6, 12, 7] which
aim at recognizing actions based solely on one query support
these ideas as well.

This paper addresses the generic detection/localization prob-

lem of searching for an object of interest (for instance a pic-
ture of a face or a ballet turning action) within a “target”
with only a single “query”. Denoting the target (7'), and the
query (@), we compute a dense set of local descriptors from
each. These densely computed descriptors are highly infor-
mative, but taken together tend to be over-complete (redun-
dant). Therefore, we derive features by applying dimensional-
ity reduction (namely PCA) to these resulting arrays, in order
to retain only the salient characteristics of the local steering
kernels. Generally, T is bigger than the query . Hence, we
divide the target 7" into a set of overlapping patches which are
the same size as () and assign a class to each patch (7;). The
feature collections from () and 7; form feature matrices Fg
and F,. We compare the feature matrices F7, and Fg from
it" patch of T to Q to look for matches. We employ “Maxtrix
Cosine Similarity” to measure the similarity between feature
sets. In order to deal with the case where the target image may
not include any objects of interest or when there are more than
one object in the target, we also adopt the idea of a signifi-
cance test and non-maxima suppression [13]. Fig. 2 shows
the overview of the proposed system.

The detail of this paper can be found in two journal pa-
pers' [14, 15] which were accepted for and submitted to IEEE
Transactions on Pattern Analysis and Machine Intelligence
(TPAMI) respectively. In the next section, we specify the al-
gorithmic aspects of our object detection framework, using a
novel feature (the “local steering kernel””) and a reliable sim-
ilarity measure (the “Matrix Cosine Similarity”). In Section

http://users.soe.ucsc.edu/~milanfar/research/
computer-vision.html

3, we demonstrate the performance of the system with some
experimental results, and we conclude this paper in Section 4.

2. VISUAL OBJECT DETECTION IN 2-D AND 3-D

2.1. Local Descriptors
2.1.1. Local Steering Kernel (2-D LSK)

The key idea behind local steering kernels is to robustly ob-
tain the local structure of images by analyzing the radiomet-
ric (pixel value) differences based on estimated gradients, and
use this structure information to determine the shape and size
of a canonical kernel. The local steering kernel is modeled as

/ x)T _x
K (x—x%;)= d;tg(cl)eXp {(Xl XZ)_SLIQ(XI XZ)}, (1)

where | € {1,---, P}, P is the number of pixels in a lo-
cal window; h is a global smoothing parameter. The matrix
C; € R?*2 is a covariance matrix estimated from a collec-
tion of spatial gradient vectors within the local analysis win-
dow around a position x; = [z1, :cQ]lT More specifically, the
covariance matrix C; can be first naively estimated as J lTJ 1
with

zw1(xl)7 Zﬁz(xl)

J 1 = ’
21 (XP>7 Rxy (XP))

where 2, (-) and z,,(-) are the first derivatives along 21—,
and x5 — axes. For the sake of robustness, we compute a more
stable estimate of C; by invoking the singular value decom-
position (SVD) of J; with regularization as [16, 14]

2
C = WZaquvqT e R(®*2), 2)
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where ) and )\ are parameters’that dampen the noise ef-
fect and restrict v and the denominators of a,’s from being
zero. The singular values (s, s2) and the singular vectors
(v1,Vve) are given by the compact SVD of J; = UlSlVlT =
U,diag[s1, s2)i[v1, V2,7 . Fig. 3 illustrates that how covari-
ance matrices and LSK values are computed in an edge re-
gion.

2.1.2. Space-Time Local Steering Kernel (3-D LSK)

Now, we introduce the time axis to the data model so that
x; = [z1,72,t]}: x1 and x5 are the spatial coordinates, ¢ is

2These parameters are used for regularization purpose. They are set and
fixed for all experiment.
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Fig. 3. Graphical description of how LSK values centered
at pixel of interest x;3 are computed in an edge region. Note
that each pixel location has its own C computed from gradient
vector field within a local window illustrated as green and red
one.

the temporal coordinate. In this setup, the covariance matrix
C; can be naively estimated as J7 J; with
z(x1)

Zl’l (X1)> Z{EQ (x1)7

J =

2 (xP), Zay(xp), 2(xp)

where 2z, (+), 2z, (), and z¢(+) are the first derivatives along
r1—,x2—, and t— axes, and P is the total number of sam-
ples in a space-time local analysis window (or cube) around a
sample position at x;. As similarly done in 2-D case, C; is es-
timated by invoking the singular value decomposition (SVD)
of J; with regularization as [17, 15]:
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where ) and )" are parameters that dampen the noise effect
and restrict -y and the denominators of a,’s from being zero.
As mentioned earlier, the singular values (s1, s3, and s3) and
the singular vectors (v, va, and v3) are given by the compact
SVD of Jl = UlSlVlT = Uldiag[sl, S92, Sgh[Vl, Vo, Vg]lT.

Then, the covariance matrix C; modifies the shape and
size of the local kernel in a way which robustly encodes the
space-time local geometric structures present in the video

In what follows, at a position x;, we will essentially be
using (a normalized version of) the function K (x; — x;). To
be more specific, the local steering kernel function K (x; —x;)
is calculated at every pixel location and normalized as follows

i K(x; —x;)
I~ P ’
2o K(x —x3)

where I can be @ or T for query or target.

i=1,---,M, (6)
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Fig. 4. Top: face, car, and helicopter examples, A is learned
from a collection of 2-D LSKs W, and Feature row vec-
tors of Fg are computed from Wq. Bottom: ballet action :
A is learned from a collection of 3-D LSKs W, and Fea-
ture row vectors of Fg and Fr are computed from query )
and target video T respectively. Eigenvectors and feature vec-
tors were transformed to volume and up-scaled for illustration
purposes.

2.2. Feature Representation

In order to organize Wg and Wr, which are densely com-
puted from @ and 7', let W o, W be matrices whose columns
are vectors wg,w7, which are column-stacked (rasterized)
versions of Wq,Wr respectively:

Wy, =
Wr =

2
[W(}?, T awél] € RP ><n’
[w%,-~- W] e RP*xnr | @)

where n and np are the number of patches where LSKs are
computed in the query image () and the target image T re-
spectively. Applying PCA to W we can retain the first
(largest) d principal components which form the columns of
a matrix Ag € RY *xd_Next, the lower dimensional features
are computed by projecting W and W onto Ag:

Fo =l fg] = AqWo c R, ®)
Fr=[f, - £37] = AgWp € RV,
Fig. 4 illustrates the principal components in A g and shows

what the features F g, Fr look like for some examples such
as face, car, helicopter, and ballet turning action.



Significance tests

1) Owerall Test
max f(p) > 1

) Teston the number of objects

| E>| Empirical PDF E>
i ! r=0.3183 -

Non-maxima suppression

—1 B

Fig. 5. Left: Non-parametric thresholding of resemblance
map (RM) yields reliably similar objects which are accurately
localized in the target image

i I
i

2.3. Resemblance Map and Significance Testing

The next step in the proposed framework is a decision rule
based on the measurement of a “distance” between the com-
puted features Fg, Fr,. Motivated by the effectiveness of
correlation-based similarity measures, we use “Matrix Cosine
Similarity (MCS)” for the matrix case. The “Matrix Cosine
Similarity” is defined as a natural generalization using the
“Frobenius inner product” between two normalized matrices
as follows:

= = FSFr,
o(Fo,Fr,) =<Fgq, FTi>F:trace(7> el-1,1],
I lF | F7; ||r
— kg - g
where Fo = iy and Fr = -

The next step is to generate a so-called “resemblance map”
(RM), which will be an image of pixels indicating the likeli-
hood of similarity between ) and 7" at each pixel position. As
for the final test statistic comprising the values in the resem-
blance map, we use the proportion of shared variance (p?) to
that of the “residual” variance (1 — p?). More specifically,
RM is computed using the function f(-) as follows:

2

RM:f(pi)zlfi"pz, i=0,-,M—1.

(10)
From a quantitative point of view, we note that f(p;) is essen-
tially the Lawley-Hotelling Trace statistic [18], which is used
as an efficient test statistic for detecting correlation between
two data sets.

Next, we employ a two-step significance test as shown
in Fig 5. The first is an overall threshold () on the RM
to decide whether there is any sufficiently similar object or
action present in the target at all. If the answer is yes at suf-
ficiently high confidence, we would then want to know how
many objects or actions of interest are present in the target
and where they are. Therefore, we need two thresholds: an

overall threshold ? 7, as mentioned above, and a threshold *
7 to detect the (possibly) multiple occurrences of the same
object or action in the target.

After the two significance tests with 7,, 7 are performed,
we employ the idea of non-maxima suppression [13] for the
final detection. We take the region with the highest f(p;)
value and eliminate the possibility that any other object or ac-
tion is detected within some radius of the center of that region
again. This enables us to avoid multiple false detections of
nearby objects or actions already detected. Then we iterate
this process until the local maximum value falls below the
threshold 7.

3. EXPERIMENTAL RESULTS

In this section, we show experimental results on several chal-
lenging datasets such as the general object dataset [5], the hu-
man action dataset [6], the Weizmann action dataset [19], and
the KTH action dataset [20]. Our method detects the presence
and location of objects (actions) similar to the given query and
provides a series of bounding boxes (cubes) with resemblance
map embedded around detected objects (actions). Note that
no background/foreground segmentation is required in the pro-
posed method. This method can also handle modest amount
of variations in rotation (up to =15 degrees), and spatial and
temporal scale change (up to +20%).

3.1. General object detection

We compute LSK of size 9 x 9 as descriptors, as a conse-
quence, every pixel in () and T yields an 81-dimensional lo-
cal descriptor W and W respectively. The smoothing pa-
rameter h for computing LSKs was set to 2.1. We end up
with Fg, Fr by reducing dimensionality from 81 to d = 4
and then, we obtain RM by computing the MCS measure be-
tween F, F7,. The threshold 7 for each test example was
determined by the confidence level = 0.99. Irani’s gen-
eral object dataset [5] consists of many challenging pairs of
color images (60 pairs with queries such as flowers, hearts,
peace symbols, face, and human poses.) Figs. 6 and 7 show
qualitative results.

In order to further justify the use of LSKs, we compare the
quantitative performance with state-of-the-art local descrip-
tors evaluated in [22] as similarity done in [S]. More specif-

3Ina typical scenario, we set the overall threshold 7, to be, for instance,
0.96 which is about 50% of variance in common (i.e., p? = 0.49). In other
words, if the maximal f(p;) is just above 0.96, we decide that there exists at
least one object or action of interest.

4We employ the idea of nonparametric testing. We compute an empirical
probability density function (PDF) from M samples f(p;) and we set T so
as to achieve, for instance, a 99 % (o = 0.99) significance level in deciding
whether the given values are in the extreme (right) tails of the distribution.
This approach is based on the assumption that in the target, most patches do
not contain the object or action of interest (in other words, object or action of
interest is a relatively rare event), and therefore, the few matches will result
in values which are in the tails of the distribution of f(p;).
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Fig. 7. Query: hearts, hand-drawn face, peace symbol and flower. Some targets and examples of correction detections/ local-
izations in Shechtman’s object test set [5] are shown. Some false positives appeared in a girl’s T-shirt and candle. o was set to

0.98.

ically, we compare ROC curves. We densely computed such
local descriptors as gradient location-orientation histogram
(GLOH) [22], Shape Context [23], and SIFT [21] using the
implementation in [22]. By replacing LSKs with these de-
scriptors, but keeping the rest of the steps the same, we re-
peated the experiment on this test set. The ROC curve in Fig.
8 verifies that our LSKs have more discriminative power than

other local descriptors. The proposed method is also evalu-
ated on full CIE L*a*b* data. If we look at detection rates
in the range of 0 < false positives rate < 0.5 x 10~* in Fig.
8, we can see that full CIE L*a*b* data provide more infor-
mation as also observed in [5]. Consistent with these results,
it is worth noting that Shechtman and Irani [5] also showed
that their local self-similarity descriptor clearly outperformed
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nel only and CIE L*a*b* channel on the Shechtman’s test set
[5]. It is clearly shown that such descriptors as SIFT [21],
GLOH [22], Shape Context [23] turn out to be inferior to
LSKs in terms of discriminative power.

other state-of-the-art descriptors in their ensemble matching
framework. However, the performance figures they provide
are rather incomplete. Namely, they mentioned 86% detec-
tion rate without specifying either any precision rates or false
alarm rates. Therefore, we claim that our proposed method
is more general and practical than the training-free detection
method in [5] .

3.2. Human Action Detection

In this section, we show action detection experiment results.
Once given ) and T (typically ) of 60 x 70 pixels and T" of
180 x 360 pixels), we blur and downsample both () and T'
by a factor of 3 in order to reduce the time-complexity. We
then compute 3-D LSK of size 3 x 3 (space) X7 (time) as de-
scriptors so that every space-time location in () and 7" yields
a 63-dimensional local descriptor W g and W respectively.
We end up with Fg, Fr by reducing dimensionality from 63
to d = 4 and then, we obtain RM by computing the MCS
measure between Fg, Fr. The threshold 7 for each test ex-
ample was determined by the 99 percent confidence level.
Fig. 9 shows the results of searching for instances of
walking people in a target beach video (460 frames of 180 x
360 pixels). The query video contains a very short walking
action moving to the right (14 frames of 60 x 70 pixels) and
has a background context which is not the beach scene. In
order to detect walking actions in either directions, we used
two queries (@ and its mirror-reflected version) and gener-
ated two RMs. By voting the higher score among values from
two RMs at every space-time location, we arrived at one RV
which includes correct locations of walking people in the cor-
rect direction. Fig. 9 (a) shows a few sampled frames from Q).
In order to provide better illustration of 7', we divided 7" into
3 non-overlapping sections. Fig. 9 (b) and (c) represent each
part of T" and its corresponding RV respectively. Red color

represents higher resemblance while blue color denotes lower
resemblance values. Fig. 9 (d) and (e) show a few frames
from T and RMs superimposed on T respectively.

3.3. Action Category Classification

Our baseline algorithm is designed for detecting actions in
videos, but this method can also be extended to action clas-
sification. We conducted an extensive set of experiments to
evaluate the action classification performance of the proposed
method on the Weizmann action dataset ([19]) and the KTH
action dataset ([20]).

3.3.1. Weizmann Action Data Set

The Weizmann action dataset contains 10 actions (bend, jump-
ing jack, jump forward, jump in place, jump sideways, skip,
run, walk, wave with two hands, and wave with one hand)
performed by 9 different subjects. The testing was performed
in a “leave-one-out” setting, i.e., for each run the videos of 8
subjects are labeled and the videos of the remaining subject
are used for testing (query). We classify each testing video
as one of the 10 action types by 3-NN (nearest neighbor) as
similarly done in [12]. The results are reported as the average
of nine runs. We were able to achieve a recognition rate of
96% for all ten actions. The recognition rate comparison is
provided in Table 1 as well. The proposed method which is
training-free performs favorably against state-of-the-art meth-
ods [24, 25, 26, 27, 28, 29] which largely depend on training.
We further provide the results using 1-NN and 2-NN for com-
parison in Table 1.

Table 1. Comparison of average recognition rate on the Weiz-
mann dataset ([19])

[ Our Approach (1-NN) Juenjo et al. ([25]) Liu et al. ([26]) ]

[ [
[ 90% [ 9533% | 90%
l Our Approach (2-NN) [ Niebles et al. ([24]) [ Ali et al. ([28]) ]
[ 90% [ 90% [ 9%5.7% |
| Our Approach 3-NN) | Jhuang ef al. ([27]) | Batra et al. ([29]) |
[ 96% I 98.8% I 92% ]

3.3.2. KTH Action Data Set

In order to further verify the performance of our algorithm,
we also conducted experiments on the KTH dataset. The
KTH action dataset contains six types of human actions (box-
ing, hand waving, hand clapping, walking, jogging, and run-
ning), performed repeatedly by 25 subjects in 4 different sce-
narios: outdoors (¢1), outdoors with camera zoom (c3), out-
doors with different clothes (c3), and indoors (c4). This dataset
seems more challenging than the Weizmann dataset because
there are large variations in human body shape, view angles,
scales, and appearance. The “leave-one-out” cross validation



Fig. 9. Results searching for walking person on the beach (a) query video (a short walk clip) (b) target video (c) Resemblance
maps (RM) (d) a few frames from 7' (e) frames with resemblance map on top of it.

is again used to measure the performance. More specifically,
for each run the videos of 24 subjects are designated as la-
beled video sets and the videos of the remaining subject is
used for testing. We were able to achieve a recognition rate
of 95.66% on these six actions. The recognition rate compar-
ison with competing methods is provided in Table 2 as well.
It is worth noting that our method outperforms all the other
state-of-the-art methods and is fully automatic.

Table 2. Comparison of average recognition rate on the KTH
dataset

[ Our Approach (I-NN) | Kimetal ((30]) | Ningeral (12]) |

\ 89% 95.33% [ 92.31% (3-NN) |
| Our Approach (2-NN) | Alieral. ([28]) [ Niebles er al. ([24]) |
\ 93% 57.7% \ S1.5% \
| Our Approach (3-NN) | Dollar ez al. ((31]) [ Wong et al. ([32]) |
\ 95.66% [ 81.17% | 8% \

3.4. Discussion

Our system is designed with recognition accuracy as a high
priority. A typical run of the object detection takes about 25
second on a target image 7" of size 550 x 800 using a query )
of size 60 x 60 in the Intel Pentium CPU 2.66 Ghz machine.
A typical run of the action detection system takes a little over
1 minute on a target video 7" (50 frames of 144 x 192 pixels)
using a query @ (13 frames of 90 x 110). Most of the run-time
is taken up by the computation of MCS (about 9 seconds, and
16.5 seconds for the computation of 3-D LSKs from @) and T’
respectively, which needs to be computed only once.) There
are many factors that affect the precise timing of the calcu-

lations, such as query size, complexity of the video, and 3-D
LSK size. Our system runs in Matlab but could be easily
implemented using multi-threads or parallel programming as
well as General Purpose GPU for which we expect a signif-
icant gain in speed. Even though our method is stable in the
presence of moderate amount of camera motion, our system
can benefit from camera stabilization methods as done in [33]
and [34] in case of large camera movements.

4. CONCLUSION

In this paper, we have described a novel training-free non-
parametric object and action detection, and recognition algo-
rithm by employing local steering kernels (LSKs) which ro-
bustly capture underlying space-time data structure. The pro-
posed method can automatically detect in the target the pres-
ence, the number, as well as location of objects (actions) sim-
ilar to the given query. Challenging sets of real-world exper-
iments demonstrated that the proposed approach achieves a
high accuracy and improves upon other state-of-the-art meth-
ods. The proposed method does not require any prior knowl-
edge (learning) about actions being sought; and does not re-
quire any segmentation or pre-processing step of the target.
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