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ABSTRACT

When applying a filter to an image, it often makes practical
sense to maintain the local brightness level from input to out-
put image. This is achieved by normalizing the filter coef-
ficients so that they sum to one. This concept is generally
taken for granted, but is particularly important where non-
linear filters such as the bilateral or and non-local means are
concerned, where the effect on local brightness and contrast
can be complex. Here we present a method for achieving the
same level of control over the local filter behavior without the
need for this normalization. Namely, we show how to closely
approximate any normalized filter without in fact needing this
normalization step. This yields a new class of filters. We
derive a closed-form expression for the approximating filter
and analyze its behavior, showing it to be easily controlled
for quality and nearness to the exact filter, with a single pa-
rameter. Our experiments demonstrate that the un-normalized
affinity weights can be effectively used in applications such as
image smoothing, sharpening and detail enhancement.

Index Terms— Edge-aware filters, Image enhancement

1. INTRODUCTION AND BACKGROUND

Edge-aware filters are constructed using kernels that are com-
puted from the given image. The adaptation of the filters to
local variations in the image is what endows them with the
power and flexibility to treat different parts of the image dif-
ferently. This adaptability, however, can not be arbitrary. In
particular, the local brightness of the image must often be
maintained in order to yield a reasonable global appearance.
The standard way to achieve this is by normalizing the filter
coefficients pointing to each pixel, so that they sum to 1. In
this paper we propose a new and different way. Namely, we
present a general method to approximate any normalized filter
with one that does not require normalization. This produces
a rather new class of filters with simpler structure, but with
essentially the same functionality.

Approximation ideas centered around nonlinear filters are
not new. In particular, the bilateral filter has been subject to
various interesting algorithmic enhancements [1] which have
resulted in significantly improved computational complexity
with almost no loss in quality.

What we propose here is not another approximation to
the bilateral filter. Our treatment works equally well for any
normalized filter that has a well-defined kernel; bilateral, non-
local means, etc. being just a few popular examples. Our fil-
ter avoids local normalization of the filter coefficients, while
remaining close in its effect to the base filter. This approx-
imation has several interesting properties. First, the fidelity
of the approximation is guaranteed since it is derived from
an optimality criterion; furthermore, this fidelity can be con-
trolled easily with a single parameter regardless of the form
of the base filter (e.g. bilateral, non-local mean, etc.) Second,
the approximate filter is guaranteed to maintain the average
gray level just as the base filter would, regardless of tuning.
Finally, the approximate filter is easy to analyze and provides
intuitively pleasing structure for understanding the behavior
of general image-dependent filters. By way of practical moti-
vation, the approximation allows us to start with an arbitrary
(normalized) base filter and generate a one-parameter family
of simpler nearby filters, which can locally modulate the ef-
fect of the base filter. This is different, and more flexible, than
the typical approach where the base filters (bilateral, NLM,
etc) are controlled with global smoothing parameters. For
various applications such as texture-cartoon decomposition,
guided filtering, and local (e.g. Laplacian) tone mapping, and
even noise suppression, the additional flexibility afforded can
be very useful.

Before moving forward, we establish our notation. Con-
sider the vectorized image y of size n as the input, and the
vectorized image z as the output of the filtering process. The
general construction of a filter begins by specifying a sym-
metric positive semi-definite (PSD) kernel kij ≥ 0 that mea-
sures the similarity, or affinity, between individual or groups
of pixels. This affinity can be measured as a function of both
the distance between the spatial variables (denoted by x), but
more importantly, also using the gray or color value (denoted
by y). While the results of this paper extend to any filter with
an PSD kernel, some popular examples commonly used in the
image processing, computer vision, and graphics literature are
as follows:

Bilateral (BL) [2, 3] and Non-local Mean (NLM) [4, 5]:
These filters take into account both the spatial and value dis-
tances between two pixels, generally in a separable fashion.



For BL we have:
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As seen in the overall exponent, the similarity metric here is
a weighted Euclidean distance between the concatenated vec-
tors (xi, yi) and (xj , yj), where xi and yi represent location
and value of i-th pixel.

The NLM kernel is a generalization of the bilateral kernel
in which the value distance term (1) is measured patch-wise
instead of point-wise:
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where yi and yj refer now to subsets of samples (i.e. patches)
in y.

These affinities are not used directly to filter the images,
but instead in order to maintain the local average brightness,
they are normalized so that the resulting weights pointing to
each pixel sum to one. More specifically,

wij =
kij∑n
j=1 kij

, (3)

where each element of the filtered signal z is then given by

zi =

n∑
j=1

wij yj .

It is worth noting that the denominator in (3) can be computed
by simply applying the filter (without normalization) to an
image of all 1’s.

In matrix notation, the collection of the weights used to
produce the i-th output pixel is the vector [wi1, · · · , win];
and this can in turn be placed as the i-th row of a filter matrix
W so that

z = Wy.

We note again that due to the normalization of the weights, the
rows of the matrix W sum to one; That is, for each 1 ≤ i ≤ n,

n∑
j=1

wij = 1.

Viewed another way, the filter matrix W is a normalized ver-
sion of the symmetric positive definite affinity matrix K con-
structed from the unnormalized affinities kij , 1 ≤ i, j,≤ n.
As a result, W can be written as a product of two matrices

W = D−1K, (4)

where D is a diagonal matrix with diagonal elements [D]ii =∑n
j=1 kij = di. To avoid the normalization, we will replace

the filter W with an approximation Ŵ that only involves D
rather than its inverse. More specifically,

Ŵ = I+ α(K−D). (5)

In what follows, we will motivate and derive this approxima-
tion from first principles, while also providing an analytically
sound and numerically tractable choice for the scalar α > 0
that gives the best approximation to W in the least-squares
sense. Before doing so, it is worth noting some of the key
propeties and advantages of this approximate filter which are
evident from the above expression (5).

• Regardless of the value of α, the rows of Ŵ always
sum to one.

• While the filter W is not neccessarily symmetric, the
approximate Ŵ is always symmetric. The advantages
of having a symmetric filter matrix are many, as docu-
mented in the recent work [6].

• The normalized filter weights in W are typically non-
negative valued. The elements in Ŵ however, can be
negative valued, meaning that the behavior of the ap-
proximate filter may differ from its reference value.

2. THE NORMALIZATION-FREE FILTER Ŵ

To derive the approximation promised in the previous section,
we first note that the standard filter can be written as:

W = I+D−1(K−D) (6)

Comparing this form to the one presented earlier in (5),
we note that the approximation is replacing the matrix inverse
(on the right hand side) with a scalar multiple of the identity:

D−1 ≈ αI

As an illustration, an image containing the normalization
terms dj (which comprise the diagonal elements of D) is
shown in Fig. 1. The proposal, as we elaborate below, is to
replace these normalization factors in (6) with a constant.

The motivation for this approximation is a Taylor series
in terms of D for the filter matrix. In particular, let’s consider
the first few terms in the series around a nominal D0:

D−1K ≈ I+D−1
0 (K−D)−D−2

0 (D−D0)(K−D) (7)

The series expressses the filter as a perturbation of the
identity, where the second and third terms are linear and
quadratic in D. For simplicity, we can elect to retain only the
linear term, arriving at the approximation

D−1K ≈ I+D−1
0 (K−D). (8)

Letting D0 = α−1I, we arrive at the suggested approxima-
tion in (5).
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Fig. 1. (Left) Input, (Right) Values of dj for the old man
photo. Large values shown in red indicate pixels that have
many “nearest neighbors” in the metric implied by the bilat-
eral kernel.

2.1. Choosing the best α

A direct approach to optimizing the value of the parameter α
is to minimize the following cost function using the matrix
Frobenius norm:

min
α
‖W − Ŵ(α)‖2 (9)

We can write the above difference as

J(α) = ‖W − Ŵ(α)‖2 = ‖(D−1K− I− α(K−D)‖2

This is a quadratic function in α. Upon differentiating and
setting to zero, we are led to the global minimum solution:

α̂ =
tr(KD−1K)− 2tr(K) + tr(D)

tr(K2)− 2tr(KD) + tr(D2)
(10)

For sufficiently large n, the terms tr(D) and tr(D2) dominate
the numerator and the denominator, respectively. Hence,

α̂ ≈ tr(D)

tr(D2)
=
s1
s2
, (11)

where

s1 =

n∑
i=1

di, and s2 =

n∑
i=1

d2i (12)

This ratio is in fact bounded as 1
n ≤

s1
s2
≤ 1

d
, which for large

n justifies a further approximation:

α̂ ≈ 1

d
(13)

where d = mean(dj). An image smoothing example using
our approximated filter is shown in Fig. 2. As can be seen,
output of the approximated filter is visually close to the exact
filter result.
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Fig. 2. (Left) Input y; (Center) exact BL filter z , and (right)
un-normalized BL filter ẑ

3. PROPERTIES OF Ŵ

As a matter of practical importance, we look at how the ap-
proximation changes the weights applied for computing any
given pixel of the output image. To construct the pixel zi of
the output from the input image, the exact weights used (in
the j-th row of W) are:

zi = wT
i y =

1

di
[ki1, · · · , kii, · · · , kin]y

In contrast to this, the approximate filter uses the weights

ẑi = ŵT
i y = α

[
ki1, · · · , α−1 + kii − di, · · · , kin

]
y

Note that the center (self) weight corresponding to the po-
sition of interest i has been changed most prominently, and
the other weights are pushed in the opposite direction as the
change in this weight in order to maintain the sum as 1. The
center weight in fact can become negative, while the other
weights must remain positive.

Another way to make the comparison is more illustrative.
Define the shifted Dirac delta vector:

δi = [0, 0, · · · , 0, 1, 0, 0, · · · , 0]

where the subscript i indicates that the value 1 occurs in the
i-th position. We have

ŵT
i = δi + α ([ki1, · · · , kii, · · · , kin]− diδi) (14)

Rewriting this last expression we have a rather simple rela-
tionship between the exact and un-normalized filter coeffi-
cients:

ŵT
i − δi = α di

(
wT
i − δi

)
(15)

So if we subtract 1 from the self-weight, then the resulting two
filters are simply scaled by the coefficient αdi, which controls
the difference between the exact and the approximated filter.
In particular, if at pixel location i the normalization factor di



is close to the mean d, then at that pixel, the approximation is
nearly perfect. More generally, gathering all terms like (15),
the respective filter matrices are related as

(Ŵ − I) = R(W − I) (16)

where R = αD.
Canonically, if we consider the two filters W and Ŵ

as edge-aware low-pass (or smoothing) filters, then their
counter-parts W − I and Ŵ − I are high pass filters.
In fact, these filters are directly related to different (but
well-established) definitions of the graph Laplacian oper-
ator emerging from the same affinity matrix K. Namely,
L = I − D−1K = I −W is known as the random walk
Laplacian [7], whereas L̂ = D−K = (I− Ŵ)/α is known
as the un-normalized graph Laplacian [7].

So what does all this tell us about how approximating the
filter distorts the output image? As (16) makes clear, the dis-
tortion is concentrated in the higher-frequency components
of the output. Furthermore, the degree of distortion is given
pixel-wise by the ratio dj/d. The overall distortion is small
when the coefficients dj are tightly concentrated around the
mean d (see Fig. 1).

4. APPLICATIONS

A linear combination of the normalization-free filters can rep-
resent a multiscale image enhancement framework [8] as:

z = β1(I− Ŵ1)y + β2(Ŵ1 − Ŵ2)y + Ŵ2y (17)

where Ŵ1 and Ŵ2 are filters with different smoothing pa-
rameters h1 and h2. Coefficients βi control the behavior of
this filtering framework by varying effect of the band-pass
and high-pass terms, (Ŵ1 − Ŵ2)y and (I − Ŵ1)y, respec-
tively1. Several enhancement applications such as detail/tone
enhancement, sharpening and edge-aware smoothing are fea-
sible using this proposed filtering paradigm.

Here we select NLM as our baseline kernel (computed
in a neighborhood of size 5 × 5) to showcase applications
of (17). Fig. 3 depicts examples of smoothing (β1 = 0.2,
β2 = 1.2) and detail enhancement (β1 = 1.2, β2 = 3) using
the normalization free filter. Another enhancement scenario
can be sharpening of degraded images. Fig. 4 shows detail
enhancement of the mildly blurred input image. As can be
seen, unlike other methods, our algorithm effectively boosts
the image details and supresses the existing artifacts. Finally,
the proposed filtering method is applied on images corrupted
by real noise (see Fig. 5). We compare our results with the
edge-preserving filtering scheme of He et al. [9]. For nearly
the same running time budget, our approach produces sharper
results (β1 = 0.05, β2 = 1.25) . The experimental results

1Equivalently z = y + (β1 − β2)α1L̂1y + (β2 − 1)α2L̂2y, which
represents a multi-Laplacian interpretation.

Fig. 3. (Left) Input; (Center) Edge-aware smoothing, and
(Right) Tone and detail enhancement.

(a) Input (b) [10] (c) [11] (d) Ours

Fig. 4. Comparing existing detail enhancement methods with
our proposed algorithm.

Fig. 5. Denoising example. (Left) Input; (Center) smoothed
by [9], and (Right) Ours.

presented in this work are obtained by our C++ implementa-
tion, which works at nearly 21 Mega pixel per seconds on an
Intel Xeon CPU @ 3.5 GHz.

5. CONCLUSION

We presented a conceptually simple method for approximat-
ing a class of normalized non-linear filters with ones that
avoid pixel-wise normalization. The approximate filters are
easy to construct, and surprisingly accurate. We studied the
behavior of the approximated filter and showed how it can
be controlled with a single parameter for both quality and
nearness to the base filter. The approximated filter can be
used for various real-time detail manipulation applications.
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