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Abstract

We present a definition and analysis of the concept of resolution and its enhancement in imaging based
on statistical detection and estimation. We also present an overview of the problem of Super-resolution in
imaging, which (similar to notions in MIMO communications) involves the reconstruction of high resolution
images from a collection of ”diverse” views of the same scene captured either in the presence of relative motion
between the sensor and the scene (synthetic aperture), or with multiple nearby cameras (real aperture).
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1 Statistical Analysis of Resolution

We know that the optics (lens, aperture, etc.) of an imaging system limit the amount of information — more
specifically spatial frequency — that is received by the imager (CCD or CMOS device). Furthermore, the
spatial sampling of the image at the focal plane by the imager also involves loss of information, particularly
if it results in aliasing. While the above observation is nothing new, the same notions when discussed in the
context of noisy measurements are less trivial. In particular, one may ask the question ”What is the highest
resolution one can measure with a camera in the presence of noise?” The popular measures provided to the
public in terms of so many mega-pixels may sound wonderful in marketing copy, but are not very informative
when we try to quantify the performance of these sensors in the presence of noise.

But what does resolution really mean? To address this question, we take the canonical case of a simple
”pinhole” camera in 1-D, composed of a slit and a sampler. Reducing the problem to its basic essence,
one can define resolution as the ability of the imaging system (or more generally an algorithm acting on an
image) to distinguish the presence of two nearby point sources in the presence of noise. In particular, we
can define two hypotheses — namely, whether one point source is being observed, or two, where the distance
between the point sources is an unknown parameter d. The profile of two point sources imaged through
such a system is an incoherent sum of two sinc functions. With proper normalization, in the classical view
of resolution according to the Rayleigh limit, the point sources would not be ”resolvable” if d < 1. This rule
of thumb does not define the resolution limit of the imaging system. Instead, as we describe below, it is the
SNR and the number of samples acquired by the sensor that dictate its ability to resolve.

To be more mathematically precise, we can write the ideal scene comprised of two point sources as:

a5(x—g)+ﬁ5(x+g), (1)

where in general the distance d, and the amplitudes o and 3 are unknown. The measured signal is composed
of discrete samples of the response of the imaging system to this input (measured at positions zj for k =
1,---, N on the image plane), and corrupted with additive (readout) noise. That is to say, the measurement
model can be described as:

g(zy) =ah (Ik - g) +pBh <Jﬂk - g) + w(zg) (2)
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where w(zy,) is assumed to be a zero-mean Gaussian white noise process! with variance o, For our specific
. 2
case of incoherent imaging, h(z) = sinc? (x) = % is the point-spread function (PSF) of the system?.
Posed in terms of the parameter d, the above hypothesis test is equivalent to one that asks whether d is equal
to zero (null hypothesis Hp) or not (alternate hypothesis Hy). This "toy” problem is in fact a composite
one-sided hypothesis test that leads to an optimum (uniformly most powerful) detector for small separations
d— the only case of real interest. A question of great practical value, which is quite similar in nature to
those asked by researchers studying communication systems, is ”What is the minimum distance d between
two point sources that is detectable with very high probability of detection (say Py = 0.99) and very low false
alarm rate (say Py = 107%) at a given SNR?” As we have discovered, the answer turns out to be given by

a power law [5]:
c

N2 ®)
where the constant ¢ depends on the shape of the PSF (i.e. h(z)) and the selected Py and P,, and N2
denotes the number of samples taken by the imager3. The above power law seems to be fundamental to
the extent that even with a more complex imaging system model (e.g. inclusion of lenses, and more careful
modelling of the spatial sampling process), the scaling law persists.

SNR =~

2 Overcoming Sensor Limitations by Post-processing

Given the above limitations we identified related to the sensor, one can proceed along a path of improved
resolution by constructing a better sensor with more complex optics, higher number of pixels, and better
SNR per pixel. This approach would likely not be scalable in the face of physical limitations, and economic
constraints. An alternative approach is to collect a set of moving images of the scene of interest with the
sensor at hand, and attempt to extract an enhanced image from this collection of frames.

The problem of resolution enhancement by fusion of multiple images (sometimes called super-resolution
or SR) is one which has seen a flurry of recent activity [4]. In our ongoing work, we have addressed
critical questions in the theoretical and practical aspects of resolution enhancement by developing a robust
estimation framework for this problem [2, 3]. We have also extended this framework to treat the problem
of color resolution enhancement [1] for sensors which measure incomplete color information (i.e. single-CCD
Bayer-patterned images).

Figure 1 demonstrates a typical example of the aforementioned technology as applied to a "real-world”
measured sequence. The success of these techniques in fact prompted us to develop a software package?.
The SR problem can be modelled as a nonlinear estimation problem as

»

Figure 1: Multi-frame color super-resolution implemented on a real-world data sequence.

vi = DHF(vi)x+w, = y=A(v)x+w, (4)

1 This idealization implies an imaging system that is not photon-limited. This assumption may be relaxed to allow a more
general analysis within the same mathematical framework.

2The same approach can be applied for other choices of PSF’s as well.

3Note that the sensor noise variance 2 is absorbed into the definition of SNR.

4See http://www.soe.ucsc.edu/~milanfar/SR-software.htm
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where £ = 1,---, M index the number of available frames. The vectors y; here represent the measured
images scanned to form column vectors. Likewise, x represents the unknown high resolution image to be
reconstructed (similarly scanned). The matrix D captures the down-sampling operation, H the blurring
operation due to the imaging system point spread function (PSF), and F(vy) the (translational) motion
operator with v = [v1 g, va )T being the translation vector. Finally, wy, represents the vector of additive
measurement noise.

It is well-known in practice that even small errors in the values of the motion vector set v can cause
severe and visually disturbing artifacts in the reconstructions. These observations led us to consider robust
statistical estimation procedures for the solution of the SR problem. More specifically, we have employed
the following penalty function

P P
Cx,v) = |y = AW)x[i +AY - > o™ lx = S;.5y"x] ()

=0 m=0

where the first term is relating the measurements to the desired image x through the model we described
earlier, while in the second term, S! and S, are operators corresponding to shifting the image by [ pixels in
horizontal direction and m pixels in vertical direction, respectively. This last operation corresponds roughly
to computing ”derivatives” across multiple scales. The scalar weight o, 0 << 1, is applied to give a spatially
decaying effect to differences of pixels that are farther away.

3 Some Future Directions

Along with the continuing work on identifying the performance limits of sensors and related algorithmic
approaches, we have endeavored to use the results of such analysis to design improved imaging systems. We
have also worked toward integration of sensing and processing mechanism that will overcome the limitations
of the parts by appropriate exchange of information between the sensor and the processor. One such direction
we have recently embarked upon is the study of optimal image/video capture from a custom-designed sensor
which will adapt its (spatial and temporal) sampling rate to the scene being observed. The aim is to produce
a data stream that contains the most information (in terms of details in space and time), and which is most
amenable to post-processing in the manner such as the resolution enhancement algorithms we described
above. This is ongoing work.
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