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ABSTRACT

The statistics of natural images play an important role in many image processing tasks. In particular, statis-
tical assumptions about differences between neighboring pixel values are used extensively in the form of prior
information for many diverse applications. The most common assumption is that these pixel difference values
can be described be either a Laplace or Generalized Gaussian distribution. The statistical validity of these two
assumptions is investigated formally in this paper by means of Chi-squared goodness of fit tests. The Laplace and
Generalized Gaussian distributions are seen to deviate from real images, with the main source of error being the
large number of zero and close to zero nearby pixel difference values. These values correspond to the relatively
uniform areas of the image. A mixture distribution is proposed to retain the edge modeling ability of the Laplace
or Generalized Gaussian distribution, and to improve the modeling of the effects introduced by smooth image
regions. The Chi-squared tests of fit indicate that the mixture distribution offers a significant improvement in
fit.

1. INTRODUCTION

Natural image statistics provide a useful tool for many image processing tasks. The statistics of natural images
have been studied extensively, and a survey of this work can be found in.1 This paper focuses on parametric
statistical models for the differences between neighboring pixels. These models find frequent use as prior infor-
mation for many different applications. This spans a wide range of uses including denoising, superresolution,
compression, and many others. Various distributions have been proposed to model the outputs of bandpass
filters applied to images. In this work, derivative statistics are the particular aspect of image statistics under
study. The derivative statistics have been modelled by the Generalized Gaussian distribution in2 and utilized in
many other works, such as in3 and in.4 The Laplace assumption has been proposed explicitly,5 and implicitly
by applications such as total variation denoising.6 The statistical validity of these assumptions has never been
thoroughly investigated. This paper provides an analysis of how well these proposed distributions fit over a wide
variety of images by means of Chi-squared tests of fit. A new distribution, consisting of the mixture of a Gaussian
and a Laplacian is proposed and analyzed under the same framework. The calculated Chi-squared figures are
used to make a comparison of fit between the distributions, similarly to the distribution tests performed for
DCT coefficient statistics in.7 Section 2 contains a description of the pixel differences being studied. Section
2.1 describes the distributions used to describe the pixel differences. The behavior across scale is discussed in
Section 2.2, and Section 3 describes the statistical goodness of fit tests of these distributions. Section 4 contains
a summary and future work.

2. PIXEL DIFFERENCES AND DISTRIBUTION STATISTICS

To obtain the data for which the tests of goodness of fit are to be performed, a sample set of 300 grayscale images
with pixel values in the range [0,1] was used. Each image was shifted vertically and horizontally by a maximum
of three pixels, and then subtracted from the original. No reflection was used at border regions; the areas with
no overlap were simply eliminated from the pixel difference data set. A sampling of 20 images from the test set
is shown in Figure 1.

Following the notation of,8 these pixel differences for a given image, X, can be represented as follows
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Figure 1. Sample of images tested

X(l,m) = X − Sl
xSm

y X, (1)

where X is a column-stacked vector of the original image. Sl
x and Sm

y are matrices that shift X by l and m pixels
in horizontal and vertical directions respectively. X(l,m) is the vector form of image X shifted horizontally by
l pixels and vertically by m pixels and subtracted from the unshifted X. For instance, an image from the test
database, along with the difference image X(1,0), are shown in Figure 2.
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Figure 2. a: Original Image, b: X(1,0)

2.1. Distributions

The pixel differences defined above have been modeled by several different distributions in the past. We present
these distributions along with a proposed alternate distribution below. All distributions are assumed to be
zero-mean∗. In what follows, we model the pixels of the difference images under study by the random variable

∗This assumption was confirmed as valid by allowing the mean to vary for each distribution and comparing to the
zero-mean case. The estimted means were indeed found to be esentially zero in all cases.



x, with n samples denoted by {xi}, 0 < i < n.
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Figure 3. a: X(1,0), b: Laplace ML estimate, c: Generalized Gaussian ML estimate, and d: Mixture model ML estimate

2.1.1. Laplace Distribution

The zero-mean classical Laplace distribution is given by the density function

pL(x; s) =
1
2s

e−|x|/s, −∞ < x < ∞ (2)

where s > 0 is the scale parameter.

The maximum likelihood† estimate for the scale parameter is given as follows

ŝ =
n∑

i=1

|xi|
n

(3)

In Figure 3b, the histogram of pixel difference values for the pixel difference image of Figure 3a, along with
the superimposed Laplace ML fit, are shown.

†Maximum likelihood (ML) estimators are used due to their desirable properties of consistency, asymptotic normality,
and efficiency.9



2.1.2. Generalized Gaussian Distribution

The Generalized Gaussian (GG) Distribution is given by the following density function

pGG(x; α, β) =
β

2αΓ( 1
β )

exp
(
−

∣∣∣x
α

∣∣∣
β
)

(4)

For the special case of β = 1 the GG distribution becomes a Laplace distribution, and for β = 2, it becomes
a Gaussian distribution.

The ML estimate β̂ is the solution of the following transcendental equation

1 +
ψ(1/β̂)

β̂
−

∑n
i=1 |xi|β̂ log |xi|∑ |xi|β̂

+
log

(
β̂
n

∑n
i=1 |xi|β̂

)

β̂
= 0 (5)

The Newton-Raphson iterative procedure as implemented by Do and Vetterli10 can be used to solve this
equation. With β̂ determined, α̂ is given by

α̂ =

(
β̂

n

n∑

i=1

|xi|β̂
)1/β̂

(6)

In Figure 3c, the histogram of pixel difference values for the pixel difference image of Figure 3a along with
the superimposed Generalized Gaussian ML fit are shown.

2.1.3. Laplace-Gauss Mixture

Several observations can be made about the pixel difference data and the ML fits for the Laplace and Generalized
Gaussian distributions shown above. It appears that the tails of the distributions describe the data well, but the
center region is not described well by either distribution. In other words, the detail or edge regions of the image
are well described, but the relatively uniform areas are not. Motivated by these observations, we suggest a new
distribution which consists of a Laplace distribution to model the edge behavior, and a Gaussian distribution to
model the more uniform regions.

The mixture distribution is defined as follows,

p(x; θ) = ApL(x; s) + (1−A)pG(x;σ2), (7)

where θ = [s, σ2, A], pL is the Laplace distribution defined in Equation 2, and pG is a zero mean Gaussian
distribution defined by

pG(xi; σ2) =
1√

2πσ2
e
−x2

2σ2 . (8)

The parameters for the mixture distribution are estimated by using the EM algorithm.11 Namely, the mixing
parameter, A, is fixed, and the ML estimates for the two distributions are calculated. Next, the mixing parameter
is estimated with the other distribution parameters fixed at the new estimate. This process is repeated until
convergence.11

In Figure 3d, the histogram of pixel difference values for the pixel difference image of Figure 3a, along with
the superimposed Laplace/Gauss mixture ML fit, are shown.



2.2. Parameter Behavior Across Scale

As the scale of the pixel difference varies from fine to coarse (increasing l and m from Equation 1) the parameters
of each distribution vary as well. In order to understand the overall behavior of these distributions, it is desirable
to describe each parameter’s behavior as some simple function of scale. Empirically, each parameter was observed
to exhibit exponential, logarithmic, or linear behavior.

In particular, the s parameter of the Laplace distribution and the Laplace component of the mixture model
was observed to grow according to the exponential relationship

s(l, m) = s0 exp
(

γ(|l|+ |m| − 1)
|l|+ |m|

)
, |l|+ |m| > 0 (9)

where s0 is the s value at the finest scale (|l|+ |m| = 1).

The α parameter of the Generalized Gaussian distribution exhibited logarithmic growth of the form

α(l, m) = α0
ln(ζ(|l|+ |m|))

ln(ζ)
, |l|+ |m| > 0 (10)

where α0 is the α parameter value at the finest scale.

The β parameter of the Generalized Gaussian distribution grows linearly,

β(l,m) = β0 + η(|l|+ |m| − 1), |l|+ |m| > 0 (11)

where β0 is the β parameter value at the finest scale.

The variance of the Gaussian component of the mixture model behaves similarly to α of the Generalized
Gaussian distribution.

σ2(l,m) = σ2
0

ln(ζ(|l|+ |m|))
ln(ζ)

, |l|+ |m| > 0 (12)

where σ2
0 is the variance at the finest scale.

The mixing parameter, A, exhibits linear growth,

A(l, m) = A0 + η(|l|+ |m| − 1), |l|+ |m| > 0 (13)

where A0 is the mixing parameter value at the finest scale.

It is informative to observe the specific case of parameter growth for the average ML parameter estimates.
These averages are taken for each parameter of each distribution across the entire set of test images. In order to
fit the models of Equations 9-13 to the average parameter behavior, γ, ζ, or η was determined for each case by
a least-squares criterion.

For the Laplace distribution, s0 = 0.0457 and the exponential growth parameter γ is 0.6731. The normalized‡

average s values for each scale along with the approximated exponential fit are shown in Figure 4a.

For the Generalized Gaussian distribution, α0 = 0.0219 and the parameter dictating its growth is given by
ζ = 4.327. β0 = 0.6022 and the associated linear slope is η = 0.0434. The normalized average parameters for
the Generalized Gaussian are shown with their approximations in Figure 4b.

For the mixture model, s0 = 0.0620, and the corresponding γ parameter is 0.6534. It is interesting to note
that the rate of growth of the s parameter of the Laplace component of the mixture model is very close to the

‡Each parameter and its estimate are divided by the corresponding minimum parameter value for clarity in Figures
4a,b, and c.



rate of growth of the s component of the Laplace distribution alone. The variance of the Gaussian component
is dictated by σ2

0 = 0.00075 and ζ = 2.0157. The mixing parameter, A, is seen to have an η value of 0, i.e.
constant,with A0 = 0.6795. The normalized parameters for the mixture model along with their least-squares fits
are shown in Figure 4c.
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Figure 4. Parameter Behavior Across Derivative Scale

The results presented above give insight into the behavior of the overall model. Several observations can
be made about the average behavior of the mixture model. The mixing parameter can be seen to describe
what percentage of the image is described by the Laplacian component, and what percentage by the Gaussian
component. On average, A ≈ 0.64 with a slope of 0 across scale, thus the Laplacian component describes
approximately 64% of the image at every scale. The Laplace component has heavier tails at coarser scales, by an
amount dictated by the relationship expressed in Equation 9. This reflects a loss of detail as scale becomes more
coarse. Similarly, the Gaussian component has a larger variance at coarser scales, by an amount dictated by the
relationship of Equation 12, reflecting an increase in local variance of the relatively uniform image regions.

3. GOODNESS OF FIT TESTS

Visually observing the ”quality” of fit of probabilistic distributions to pixel difference data is not sufficient to
evaluate the use of each distribution as a prior. A statistical test is needed to quantitatively evaluate the goodness
of fit, and to give a means of comparison between distributions. The Chi-squared test of fit7, 9 was employed



to test the goodness of fit for all distributions. Each specified distribution, F0(x), was divided into k classes,
which were taken to be successive intervals in the range of x. The probability of an observation coming from
each class can be easily calculated from the assumed distribution function, and is denoted by p0i, i = 1, 2, . . . , k.
The observed frequency in each class is given by ni, with n total observations. The Chi-squared test statistic
follows, approximately, a Chi-squared distribution with (k − c− 1) degrees of freedom where c is the number of
estimated parameters. The Chi-squared statistic is then given by the following formula

χ2 =
k∑

i=1

(ni − np0i)2

np0i
. (14)

The Chi-squared figures were calculated for every image in the test set and averaged for each scale of pixel
difference. k was set to 75 for all calculations to facilitate comparison. The size of k is proportional to the size
of the data sets and a minimum expected frequency per bin is assured. The results are shown in Figure 5.

Lower Chi-squared figures indicate a better fit. The Chi-squared values confirm what Figures 3b, c, and
d suggest. The Laplace/Gauss mixture model offers the best fit at all scales tested, even with the additional
recovery of one degree of freedom over the Generalized Gaussian distribution taken into account. Tables 1, 2,
and 3 contain the average Chi-squared figures for each distribution across the set of test images. All Chi-squared
figures indicate that on average, for the degrees of freedom used in the test, the hypothesis that the data is
derived from any of the proposed distribution is rejected, even at a significance level of 0.01. This lack of
statistical significance does not imply that these distributions are not useful as priors, only that they are not
perfect statistical descriptors of the data. However, the relative fit of each distribution is apparent in Figure 5.
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Figure 5. Average Chi-squared figures.

4. CONCLUSION

Several distributions were presented that have been used to describe pixel difference statistics. A new distribution
that consists of the mixture of a Laplace component and a Gauss component was proposed as an alternative
distribution. The behavior of each distribution was analyzed across scale, and simple models were presented
to explain this behavior. A Chi-squared test of fit was performed for each distribution across scale. The
results of these tests indicate that the proposed mixture model presents the best fit on average for each scale
tested. The logical extension of this work would be to take the model presented and use it as a prior in image
processing tasks. As mentioned in the introduction, a wide range of applications utilize assumptions on the pixel
difference distributions. A prior that is a better fit should provide better results for any of these applications, if
a computationally efficient framework can be found.
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l=0 l=1 l=2 l=3
m=0 s=0.0445 s=0.0630 s=0.0705

χ2=13058 χ2=13230 χ2=12282
m=1 s=0.0469 s=0.0567 s=0.0671 s=0.0738

χ2=12019 χ2=11626 χ2=11691 χ2=11160
m=2 s=0.0670 s=0.0694 s=0.0742 s=0.0792

χ2=11991 χ2=11363 χ2=11083 χ2=10307
m=3 s=0.0758 s=0.0779 s=0.0813 s=0.0849

χ2=11178 χ2=10526 χ2=10122 χ2=9511

Table 1. Average Laplace Parameters

l=0 l=1 l=2 l=3
α=0.0205 α=0.0303 α=0.0353

m=0 β=0.5790 β=0.6052 β=0.6315
χ2=786.1 χ2=888.8 χ2=1005.6

α=0.0234 α=0.0286 α=0.0341 α=0.0390
m=1 β=0.6254 β=0.6318 β=0.6377 β=0.6510

χ2=947.1 χ2= 868.6 χ2= 953.2 χ2= 1053.0
α=0.0355 α=0.0376 α=0.0410 α=0.0450

m=2 β=0.6529 β=0.6660 β=0.6758 β=0.6897
χ2=1037.1 χ2=1066.2 χ2=1125.2 χ2=1232.1
α=0.0440 α=0.0463 α=0.0491 α=0.0524

m=3 β=0.6973 β=0.7099 β=0.7186 β=0.7296
χ2=1324.0 χ2=1478.4 χ2=1473.9 χ2=1478.9

Table 2. Average Generalized Gaussian Parameters

l=0 l=1 l=2 l=3
s=0.0599 s=0.0854 s=0.0949

m=0 σ2=7e-4 σ2=1.6e-3 σ2=1.9e-3
A=0.6908 A=0.6774 A=0.6756
χ2=609.74 χ2=515.07 χ2=496.46

s=0.0642 s=0.0770 s=0.0911 s=0.0987
m=1 σ2=8e-4 σ2=1.3e-3 σ2=1.7e-3 σ2=2.1e-3

A=0.6683 A=0.6743 A=0.6718 A=0.6763
χ2=575.75 χ2=508.56 χ2=486.67 χ2=482.75
s=0.0919 s=0.0944 s=0.0997 s=0.1050

m=2 σ2=1.7e-3 σ2=1.8e-3 σ2=2.0e-3 σ2=2.4e-3
A=0.6641 A=0.6656 A=0.6734 A=0.6758
χ2=597.73 χ2=548.23 χ2=537.97 χ2=541.86
s=0.1006 s=0.1037 s=0.1073 s=0.1110

m=3 σ2=2.2e-3 σ2=2.5e-3 σ2=2.9e-3 σ2=2.5e-3
A=0.6710 A=0.6702 A=0.6765 A=0.6780
χ2=734.86 χ2=683.79 χ2=685.94 χ2=680.6

Table 3. Average Mixture Model Parameters
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