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ABSTRACT
Non-local means filtering (NLM), has garnered a large amount of
interest in the image processing community due to its capability to
exploit image patch self-similarity in order to effectively filter noisy
images. However, the computational complexity of non-local means
filtering is the product of three different factors; namely, O(NDK),
where K is the number of filter kernel taps (e.g. search window
size), D is the number of patch taps, and N is number of pixels.

We propose a fast approximation of non-local means filtering
using the multiscale methodology of the pull-push scattered data
interpolation method. By using NLM with a small filter kernel to
selectively propagate filtering results and noise variance estimates
from fine to coarse scales and back, the process can be used to pro-
vide comparable filtering capability to brute force NLM but with
algorithmic complexity that is linear in the number of image pixels
and the patch comparison taps, O(ND). In practical application,
we demonstrate its denoising capability is comparable to NLM with
much larger filter kernels, but at a fraction of the computational cost.

Index Terms— Non-local means, multiscale, pull-push, image
denoising

1. INTRODUCTION

A classic way to improve the performance of a filtering algorithm
is to use a multiscale technique in order to compute a wide filtering
kernel by using smaller filters on a variety of scales. Using a coarse
to fine strategy allows for a small amount of processing at each suc-
cessive level to refine the solution.

Most multiscale approaches use a fine to coarse to fine approach
and use two pyramids, resulting in 1.66 times the complexity of the
direct approach. However, multiscale approaches allow the use of
much simpler and smaller per-level filters, especially when a single
scale filter being approximated is large and not separable.

There are two important contributions we present in this work.
First, although multiscale techniques have been used for decades,
many of these techniques use a fixed (non-data dependent) kernel in
order to generate successively downsampled versions of the original
image. Since these techniques do not alter the filtering kernel based
on the data, they may decompose the data in a way that is not com-
patible with data dependent filtering, i.e. filtering across edges and
propagating erroneous results through the solution. By contrast, in-
stead of a fixed linear filter used in standard multiscale models, in
our approach a nonlinear filter (NLM in this case) is used to con-
struct the multiscale representation.

Second, the original pull-push approach [1] was designed for
fast scattered data interpolation. Here, we extend its domain of use
to a data dependent multiscale algorithm for filtering images effec-
tively and efficiently. More specifically, we expand upon the ideas
of pull-push to accelerate non-local means in a way that provides
competitive results to large kernel (e.g. large search window) NLM

filters, but requires a computation amount comparable to a much
smaller kernel.

2. RELATED WORK

Non-local means [2] is a filtering technique that generalizes bilateral
filtering [3, 4] by using a patch matching score in order to derive
filtering weights. This patch matching allows for a better character-
ization of image pixel distributions in a way that allows for a higher
degree of edge aware denoising than bilateral filtering.

One class of methods for accelerating edge aware filtering in-
volves lifting the filtering space into a higher dimensional space in
which fast non-data-dependent separable filtering can be applied to
perform the bulk of the work [5, 6]. This can be used to decou-
ple the computational complexity from the filter kernel size (e.g.
search window size) K. As an example, the permutohedral lattice [7]
is capable of NLM filtering, but the performance scales quadratically
with the number of comparison patch samples D. i.e. O(ND2).

Other methods for fast edge-aware filtering involve approximat-
ing the bilateral filter as a series of 1D separable [15] or recursive
[16, 17] passes. These approaches have not been extended to NLM.

Multiscale techniques have been used to accelerate NLM in the
original paper [2], but were limited to optimizing the patch compar-
isons or weight computation [8].

[9] uses Laplacian pyramids and performs NLM filtering in
each level as part of the reconstruction of the original image from
the pyramid decomposition. [10] is conceptually similar but uses
a wavelet decomposition. [11] proposes an alternative fixed kernel
pyramid decomposition with bilateral filtering at each level. [12]
also uses multiple image scales generated with non-edge-aware
filtering, but uses NLM to directly fuse these pixels back into the
original level. Other edge preserving multiscale decompositions
exist throughout the literature, such as [13] and [14], but have not
been extended to NLM filtering.

The main difference between our multiscale approach and these
approaches is that by using NLM as the filter in the construction of
the up and down pyramid processing, we avoid combining pixels
together that would not be combined under the brute force NLM
approach.

[18] performs successive iterations of NLM filtering and updates
per pixel variance values based on the estimated variance reduction
from the sum of squared normalized weights. Much of the variance
propagation machinery is similar in our approach, but their approach
is not multiscale and thus processes the full resolution image multi-
ple times. Also, in [18] per-iteration the filter size grows arithmeti-
cally instead of geometrically per-level as multiscale approaches do.

A common optimization for NLM is to reorder the loops in the
algortihm and use separable filtering for the weight computation [19,
20]. This technique can also be applied to the pull-push algorithm
presented in this paper as an additional optimization.
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Fig. 1. Diagram of how the pull-push algorithm keeps track of per-
pixel weights to represent the pixel coverage each coarser level has.
These weights are used to combine samples in successively coarser
or finer levels.

2.1. Overview of Pull-Push

The pull-push algorithm was originally designed as an efficient,
GPU amenable, scattered data interpolation method for Lumigraph
rendering [1]. The basic problem addressed was to fill in the missing
pixels in an image where only a subset of the pixels are specified.
Figure 1 shows the data flow for pull-push. For the initial finest
level, a weight of 1 is used for pixels that are present and a weight
of 0 for pixels that are missing.

The first step in pull-push is to build an image pyramid. Each
successive level is generated recursively by a ’pull’ (analogous to
downsampling) filter. This filter uses normalized per-pixel weight-
ing, to selectively incorporate present pixels. In addition to this, for
each pixel generated, a weight is computed which is proportional to
the number of present pixels used to generate that pixel. This weight
can be thought of as a coverage fraction.

After the pull stage is evaluated to the coarsest desired level, the
push stage blends in missing pixels starting from the coarsest level
and blending in finer levels iteratively using the computed weights.

A few key concepts about pull-push should be noted here. Like
other multiscale frameworks such as Laplacian pyramids, pull-push
still maintains the capability to much more efficiently filter over large
regions than a single scale method. Because of this, and since a small
fixed size kernel is used per level, the overall complexity of the pull-
push approach is not dependent on the effective filter size.

Each pull-stage down-fused pixel can be considered as a distri-
bution of the pixel values in the finer levels above it, where the pixel
value functions as a mean, and the weight function as an encoding
of the strength or reliability of the mean (e.g. how many pixels were
combined to represent it). Regions which have less reliable, or no in-
formation incorporate more data from the wider region around them
in order to form an estimate. Most crucially, this selective filtering
and reliability (i.e. information) propagation is what makes push-
pull different than existing multiscale frameworks.

2.2. Overview of NLM

Non-local means [2] is a filtering technique that uses a patch match-
ing score in order to derive filtering weights. Given an image x to
filter, the kernel weight wi,k per-pixel location i and tap location k
is based on a patch neighborhood with patch taps p. Consider σs to
be a smoothing parameter based on the amount of sensor noise. The
weights are designed as follows

∆i,k =
∑
p

(
xi+p − xi+k+p

σs

)2

(1)

wi,k = exp(−∆i,k) (2)

Normalizing by the sum of weights:

ŵi,k =
wi,k∑
k wi,k

(3)

Each new filtered pixel is a weighted average of its kernel neigh-
borhood:

x̂i =
∑
k

ŵi,k xi+k. (4)

Patch matching comes at additional computational expense. The
additional work in the per-pixel inner loop over the patch taps is
multiplicative and increases the computational complexity of the al-
gorithm from the O(NK) of a brute force bilateral implementation
to O(NDK), where K is the number of filter kernel taps, D is the
number of patch samples, andN is number of pixels. Note that in the
original NLM paper [2], K included all pixels in the image, but in
practice this is often limited to a relatively small local window with
a fixed number of kernel taps. By combining NLM with a pull-push
approach we show how the algorithmic complexity can be reduced
to O(ND).

3. PULL-PUSH NLM

Using the standard NLM formulation with patch matching based on
a Gaussian noise model, on a per-pixel basis, a variable number of
pixels are averaged together based on their patch similarities. Con-
sidering the sensor noise for a pixel as uncorrelated Gaussian with
mean µi and standard deviation σn, the estimated distribution of
the filtered sample (a weighted average of Gaussian samples) can be
computed from the sum of the squared normalized kernel weights
[21]:

x̂i ∼ N

(∑
k

ŵi,k xi+k , σ
2
n

∑
k

ŵ2
i,k

)
(5)

Considering the variance reduction from Eq. 5, the NLM ker-
nel weights can be used to determine of the reliability of a filtered
sample. By outputting the sum of squared normalized weights along
with the NLM filtered pixel values, we are in effect providing a sim-
ple characterization of a neighborhood distribution of samples used
to create the sample. By propagating this information through the
layers, we enable tracking a simplified model of the neighborhood
statistics for successively larger regions in a multiscale manner.

One last point is that eventually we will need to combine esti-
mates with different variances during the pull stage. Inverse variance
weighting is a common method to aggregate multiple independent
observations yk each with different variances σ2

yk . Given this input,
inverse variance weighting is known to be the minimum variance es-
timate using all the uncorrelated observations [22][23]. This takes
the form:

ŷ =

∑
k
yk
σ2
yk∑

k
1
σ2
yk

(6)

In Subsection 3.3, we show how inverse variance weighting is
used to derive our reliability score.

3.1. Pull stage: Downfuse

In order to aggregate filtering results for a neighborhood of pixels
without filtering across edges NLM filtering is used to generate sub-
sequent coarser pyramid levels during the pull stage. Because it is
not performing a scaling operation but rather performing a selective



combination of pixels, we call this a downfuse pass instead of down-
scaling. A basic approach is to perform NLM every other pixel in
level [r], and store the results in the next coarsest level [r + 1]. Su-
perscripts are used to denote pyramid level.

∆
[r]
i,k =

∑
p

(
x
[r]
i+p − x

[r]
i+k+p

σ
[r]
s

)2

(7)

w
[r]
i,k = exp(−∆

[r]
i,k) (8)

ŵ
[r]
i,k =

w
[r]
i,k∑
k w

[r]
i,k

(9)

x
[r]
i =

∑
k

ŵ
[r−1]
2i,k x

[r−1]
2i+k (10)

Different samples will fuse together differing numbers of sam-
ples. However, since the power of the pull-push approach relies on
propagating reliability information in order to selectively combine
data from level to level we also compute reliability per-pixel for each
downfused sample. One statistically motivated way to do this is the
following:

ρ
[r]
i =

1∑
k(ŵ

[r−1]
2i,k )2

(11)

This reliability measure is the inverse of the variance scale factor
for weighted sum of random variables from the previous subsection.
This reliability is analogous to the way weights are propagated in the
pull-push technique. Incorporating the reliability score into NLM
can be performed as weighted NLM for r ≥ 1:

w
[r]
i,k = ρ

[r−1]
i,k exp(−∆

[r]
i,k) (12)

3.2. Push stage: Upfuse

Now that a pyramid has been constructed containing filtering results,
each with a reliability measure, a push stage will be run in order
to up-integrate the results. Just as in the pull stage, the push stage
also uses NLM, but also incorporates samples from lower pyramid
levels. Analogous to downfuse we call the push stage the upfuse
stage because of the selective filtering and upintegration of samples.

However, in order to determine the patch comparison weights to
incorporate samples from a coarser level, we perform patch compar-
isons from the level upsampled into. Note that during the downfuse
stage each NLM result sample was generated from one level finer,
including the patch comparisons to generate that sample. Therefore,
it makes sense that a center tap patch used by the downfuse stage to
generate a coarser sample serves as a signature for the neighborhood,
and can be used for patch comparison to determine weights for the
coarser sample. For upfusing, the tap offsets k come from two dif-
ferent locations. Tap offsets from the current level are denoted as kf ,
and the tap offsets for samples from the coarser level will be denoted
as kc. The set of taps containing both kf and kc is k.

The weights for sample offsets for the different levels are:

w
[r]
i,kf

= exp(−∆
[r]
i,kf

) (13)

w
[r]
i,kc

= ρ
[r+1]

g(i+kc)/2
exp(−∆

[r]

i,g(kc)
) (14)

where g(j) is the tap location in the finer level that generated the
downfused sample in the coarser level for location j.

Fig. 2. This series of images shows a zoomed in portion of an im-
age and how filtering progresses through the downfuse and upfuse
process.

Again the weights are normalized using the sum over all weights
(e.g. from both the coarse and fine levels),

ŵ
[r]
i,k =

w
[r]
i,k∑
k w

[r]
i,k

(15)

y
[r]
i = (

∑
kf

ŵ
[r]
i,kf

x
[r]
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) +
∑
kc

ŵ
[r]
i,kc

y
[r+1]

g(i+kc)/2
(16)

with the exception of the coarsest level which is just a direct copy of
the coarsest downfused level. Figure 2 shows a zoomed in portion
of an image being filtered and how filtering progresses through the
downfuse and upfuse process.

3.3. Selective Up-Integration using Reliability

During the upfuse process it is important to prevent incorporating
unreliable data from lower pyramid levels. Due to local image struc-
ture, filtered results may not be reliable or useful if too few samples
were combined to create the result. Furthermore, but if few samples
were combined, it signifies the region may contain some form of
local structure, and directly using the coarser results may introduce
undersampling artifacts. In order to prevent this, we only combine
samples for which the reliability score is above a given threshold.
In practice, we found a threshold corresponding to least 3 samples
being combined ρthresh = 3 is effective to eliminate artifacts. Fig-
ure 3 shows how reliability downweighting alleviates artifacts. In
order to prevent artifacts from a sharp thresholding and to provide a
smooth transition based on the reliability, we subtract and clamp in
order to implement this threshold.

ρ̂i = min(ρi − ρthresh, 0) (17)

4. EXPERIMENTAL RESULTS

The experiments were run on a 6 Core Xeon CPU running at 2.4GHz
using Halide [24] for vectorization and parallelization support. The
implementation was run on 4032x3024 YUV imagery with 8-bit full
resolution luma and half resolution chroma. In order to best com-
pare algorithm performance, both the pull-push NLM and standard
NLM implementations use floating point math and the same 3x3
patch comparison size. Other than using Halide vectorization and
parallelization and an optimizing compiler, no other optimizations
were used for this comparison.



Fig. 3. The left image shows the effect of pull-push filtering without
reliability downweighting. Near the edge of the banana, the upfused
samples contained a high amount of structure and resulted in aliasing
artifacts. The right side image shows the same region filtered using
the reliability adjustment to mitigate the artifacts.

Fig. 4. Graph comparing denoising performance of pull-push NLM
vs standard NLM for a range of synthetic noise levels.

We compared the algorithms using a suite of 143 different clean
real world images by adding synthetic Gaussian noise, and perform-
ing filtering. For comparison we use SSIM [25] to measure the
difference between the noiseless base image, and the processed de-
noised image. The standard recommended values from [25] were
used for all parameters. For each algorithm, the input sigma param-
eters resulting in the highest SSIM score were used on a per-image
basis.

We found that the pull-push NLM approach runs in a little less
time than NLM using a 7x7 filter kernel (e.g. search window),
(320ms vs 350ms per megapixel). Comparison with the 7x7 NLM
can be considered as a quality comparison for equivalent runtime.
In order to show an output quality comparison of pull-push NLM
vs large kernel NLM we compare against NLM with a 15x15 fil-
ter kernel (1660ms per megapixel). Note that all of these timings
can be improved by an order of magnitude with standard NLM
optimizations such as those described in [26].

The results are summarized in Figure 4. Trials were run on a
wide range of synthetic noise levels ranging in standard deviation
from mild noise (σ = 1) to heavy noise (σ = 150). Each data point
on the graph represents the mean best-case SSIM for the given algo-
rithm across the 143 images. For noise σ ≤ 15, the three approaches
resulted in very similar SSIM scores. However as σ increased, the
pull-push NLM approach performed better than 7x7 NLM with the
difference widening as noise increased. Even against NLM using a
15x15 kernel (and taking 5 times as much time to process the same
image) the pull-push approach provided better quality results from
σ ranging from 20 to 125.

We found the pull push NLM algorithm performed optimally
using 5 pyramid levels. Additional pyramid levels were compara-
tively free, but offered little additional denoising, due to the fact that
a 5 level pyramid offers up to a 31 pixel filter radius (63x63) and
can potentially combine thousands of samples. Experimentally we
found that halving the patch comparison sigma for each level down
the pyramid gave the best results.

Figures 5, 6, 7, and 8 show a visual comparison of the results
and the associated SSIM scores.

Fig. 5. From left to right, image with additive Gaussian noise
with σ=85 (SSIM:0.065), 7x7 NLM (SSIM:0.799), 15x15 NLM
(SSIM:0.918), pull-push NLM (SSIM:0.935). It is recommended
to view these figures zoomed in on a high resolution screen.

Fig. 6. From left to right, image with additive Gaussian noise
with σ=85 (SSIM:0.078), 7x7 NLM (SSIM:0.748), 15x15 NLM
(SSIM:0.833), pull-push NLM (SSIM:0.840)

Fig. 7. From left to right, synthetic image with text with additive
Gaussian noise with σ=85 (SSIM:0.089), 7x7 NLM (SSIM:0.794),
15x15 NLM (SSIM:0.864), pull-push NLM (SSIM:0.874)

Fig. 8. From left to right, synthetic image of a solid cir-
cle with additive Gaussian noise with σ=60 (SSIM:0.082), 7x7
NLM (SSIM:0.834), 15x15 NLM (SSIM:0.945), pull-push NLM
(SSIM:0.973)

5. CONCLUSION

We have presented a framework to efficiently compute an approxi-
mation to NLM filtering with large spatial kernels. In practice we
are able to achieve much better filtering results than the brute force
NLM approach taking roughly the same amount of time.

One minor limitation of the proposed algorithm is that repetitive
patterns within an image may not receive as much filtering as in
a brute force NLM algorithm with a large kernel size. However,
pull-push achieves better noise reduction in smooth regions which
is where the sensor noise tends to be the most noticeable by human
eyes.
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