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ABSTRACT
Among the myriad of techniques used in estimating
motion vector fields, perhaps the most popular and
accurate methods are the so calledgradient-based
methods. A critical step in the gradient-based estima-
tion process is the estimation of image gradients using
derivative filters. It is well known that the gradient-
based estimators contain significant deterministic bias
relating the gradient calculation. In this paper, we de-
scribe the fundamental relationship between estimator
bias and derivative filters. From this, we suggest an
image adaptive method addressing the design of bias-
minimizing gradient filters. Simulations validate the
superior performance of such filters for the many
variants of gradient-based estimation including the
widely used multiscale iterative methods.

I. INTRODUCTION

Among the myriad of techniques used in estimating
motion vector fields, perhaps the most popular and
accurate methods are the so calledgradient-based
methods [1]. These methods estimate image motion
by relating the change in image intensity between
images to spatial image gradients. These methods rely
on the intensity conservation assumption that the un-
derlying model for image dynamics follows the form

z1(m, n) = f(m,n) + ε1(m,n) (1)

z2(m, n) = f(m− v1(m,n), n− v2(m,n))

+ε2(m,n) (2)

whereεi(m,n) is typically modelled as white Gaus-
sian noise with varianceσ2. We refer to the indices
m,n for theM by N image as the sample indices for
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the sampled functionsf(mT, nT ) wheref(x, y) rep-
resents the underlying continuous image. The estima-
tion of the motion vector field is commonly referred
to as motion estimation or optical flow estimation.

As the name implies, the gradient-based estima-
tion methods require measurement of image gradient.
These measurements almost always take the form of
simple, linear phase, linear shift invariant filters. Even
though these filters play a vital role in the estimation
scheme, and in fact have been shown to produce
biased motion estimates [2], [3], [4] relatively few
researchers have studied the design of such filters
for optical flow estimation [5], [6]. Rather than study
the errors introduced by such gradient filters, many
researchers treat these errors as random in nature
and attempt to design robust estimation methods to
minimize the effects of such errors.

In this paper, using the bias formulation presented
in [4], we derive bias-minimizing gradient filters in
a fashion similar to [6]. We set up an optimization
scheme whereby a bias-minimizing gradient filter is
designed based on the image under observation. We
experimentally verify the bias-minimizing property of
such filters in both a non-iterative and multiscale iter-
ative framework. Finally, we conclude by suggesting
future work.

II. BIAS IN GRADIENT-BASED ESTIMATORS

To motivate our filter design methodology, we first
explore the gradient-based motion estimation tech-
nique and the bias inherent to such methods. To sim-
plify the analysis, we initially present the ideas using
the 1-dimensional analogue of motion estimation. For
the 1-D case, we suppose that the measured data is
of the form

z1(k) = f(k) + ε1(k) (3)

z2(k) = f(k − v(k)) + ε2(k) (4)



In the derivation of the gradient-based estimator, the
data is reformulated asz(k) = z1(k)−z2(k) = f(k+
v(k)) − f(k) + ε(k) where ε is a Gaussian white
noise random field with varianceσ2 andv(k) is the
unknown motion vector field.

Most of the gradient-based methods simplify the
estimation problem by assuming that the unknown
vector fieldv(k) is comprised of locally parametric
vector fields. The simplest of all models is the trans-
lational model of motion where the vector field is
assumed to be constant over some region in space
v(k) = v, ∀k ∈ Ωi whereΩi is a local region in the
image space or the entire image itself. The gradient-
based method generates an overdetermined set of lin-
ear equation by linearizing the functionf(k+v) about
a pointv = 0 in a Taylor series. The expansion looks
like f(k + v) − f(k) = vf ′(k) + R(k, v) where the
remainder term in the Taylor expansionR is ignored
to produce a linear estimator for the velocityv,

v̂ =
∑

k∈Ωi
f ′(k)z(k)∑

k∈Ωi
(f ′(k))2

(5)

In practice, the gradients (derivatives) were approxi-
mated using a gradient filterg(k) applied to one of
the available imagẽf ′(k) = g(k) ∗ z1(k) (where ∗
represents convolution).

It has been noted on numerous occasions in the
past [2], [3], [4] that the gradient-based estimators
produce biased estimates. In [4], it was shown that
the estimator bias

b(v) = E

[∑
k∈Ωi

f̃ ′(k)z(k)
∑

k∈Ωi
(f̃ ′(k))2

]
− v (6)

is dominated by deterministic modelling error for high
SNR situations. For many computer vision applica-
tions, the effective SNR falls into this high SNR regime.
This deterministic bias results from a combination of
the linearized data model and the gradient approxima-
tion. The approximate function for the deterministic
bias in [4] is given in the frequency domain as

b(v) =
∫ π
−π |F (θ)|2 [

G(θ) sin(vθ)− vG2(θ)
]
dθ∫ π

−π |G(θ)F (θ)|2dθ
.

(7)
where F (θ) is the Fourier transform of the image
function (we assume that the image is sampled above
the Nyquist rate) andG(θ) is the transform of the
gradient filter. It is this bias function that we use to
set up a process for designing gradient filters.

III. DESIGNING BIAS-MINIMIZING
GRADIENT FILTERS

The design of gradient filters for use in motion
estimation has been addressed previously in [5], [6].
In [5], it was noted that the gradient filters should be
designed to match the actual derivative to the contin-
uous function reconstructed using a specific interpo-
lation kernel (assumed to be a Gaussian kernel). The
filters of [5] have been noted to improve estimation
performance [3], though the filters were not designed
specifically for the purpose of motion estimation. In
[6], the ideas were extended to address the specific
problem of gradient-based motion estimation by de-
signing a set of pre-smoothing and gradient filters to
minimize modelling error. Unfortunately, this method
minimizing the modelling error fails to address the
interaction of these modelling errors with the struc-
ture of the estimator. Intuitively, in [6] the energy
in the modelling errors is minimized over a range
of unknown translations. The authors note that min-
imizing the error alone will not provide good filters
since the optimization tends to create filters which
contain most of their spectral energy at frequencies
where the image spectral energy is lowest. They cor-
rect this by adding a Lagrangian penalty to focus the
filters on high energy spectral regions. In our work,
we minimize the energy in the estimator bias due to
such modelling errors. This acts as the ideal penalty
function by taking into account the structure of the
estimator. Furthermore, our optimization process pro-
vides one optimal gradient filter which minimizes
estimator bias instead finding three separate filters as
in [6].

From (7) we see that the bias depends on three
factors: the image contentf , the gradient filterg,
and the unknown translationv. We start from the
assumption that translation is limited to some range
v ∈ [−V, V ]. From this we construct the following
cost function for a particular image

J(a) =
∫ V

−V
b2(v, F (θ),a)dv

≈
∑
vi

b2 (vi, F (θ),a) (8)

wherea is the vector of filter coefficients such that
G(θ) = 2

∑
i ai sin(θi). Because the cost function is

highly nonlinear in the unknown variables, we rely on
a simple black box optimization routinefminunc



provided by Matlab. Such an filter design method
provides bias minimizing gradient filters for a given
image. The optimization process can be used to find
any linear phase antisymmetric derivative filter with
2N + 1 taps by optimizing over theN filter coeffi-
cientsa.

As an example, we construct a bandlimited signal
f(k) =

∑D
d=1

1
d sin(πkd

100 − φd), k = 1 . . . 100 where
φd is a fixed phase generated by drawing from a
uniform distribution. We performed an optimization
to find a 5 tap filter to compare with three popular
gradient filters from [1], [7] which we refer to as
the Fleet, Nestares, and Central (for central differ-
ence kernel) filters. The bias-minimizing filters were
designed assuming a translation range ofv ∈ [−2, 2].
We then computed actual estimator bias by applying
each filter pairs of signals perfectly shifted by con-
struction. The resulting biases are shown in Figure 1.
When comparing the various filters, it becomes clear
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Fig. 1. Estimator biasb(v) vs translationv for differ-
ent gradient filters

that the optimized filter minimizes the estimator bias
within this region. In fact, we found that the bias
for the optimized filter outperformed the other filters
outside the region of optimization as well.

IV. 2-D MULTISCALE ESTIMATION

While the computation of cost function is simple
enough for the 1-D version of the problem, we found
that further simplifications were necessary to reduce

the complexity of the costly integration required in
multidimensional case. To address this concern we
make the following approximations. Using vector no-
tation,v = [vx, vy]T andθ = [θx, θy]T andG(θ) =
[Gx(θ), Gy(θ)]T . we can express the 2-D gradient-
based estimator bias as

b(v) = Q−1
∫
|F (θ)|2G(θ) sin(θTv)dθ − v (9)

whereQ =
∫ |F (θ)|2

[
G(θ)G(θ)T

]
dθ. To simplify

the bias expression, we approximate thesin func-
tion using a second order Taylor series,sin(θTv) ≈
θTv − 1

6(θTv)3. Using the fact thatθTv = |v|θTnψ

wherenψ is the unit vector[cos(ψ) sin(ψ)]T we can
approximate the bias function (9) as

b(v) ≈ |v|
[
Q−1

∫
|F (θ)|2G(θ)θTnψdθ − nψ

]

−|v|
3

6

∫
|F (θ)|2G(θ)(θTnψ)3dθ

= |v|c1(ψ)− |v|3c2(ψ) (10)

We rewrite the 2-dimensional version of (8) in po-
lar coordinates as

J(ax,ay) = 2
∫ π

0

∫ V

0
b(v)Tb(v)d|v|dψ (11)

If desired, one could design an optimal filter assum-
ing that the motion was constrained to a particular
angular direction. In practice, we approximate (11)
as

∑

ψ

1
3
V 3cT

1 c1 +
2
5
V 5cT

1 c2 +
1
7
V 7cT

2 c2 (12)

Thus, the costly integrals performed in computing the
bias now require only one set of integrations to com-
pute thec(ψ)’s once for each angleψ. This greatly
improves the speed in computing the cost function
J(ax,ay). It is this approximation that we use to
generate the 2-D gradient filters. In the section V we
verify the utility of such an optimization scheme.

In practice, iterative multiscale estimation provides
significant improvements in estimator accuracy [8].
The multiscale approach decomposes the pair of im-
ages into dyadic pyramids of lowpass filtered and
downsampled images denotedzh

1,2(m,n) where the
superscripth denotes the level of pyramid. This cre-
ates an image pair at the top of the pyramid to be the
coarsest image of sizeM2h by N

2h . And, the original
image sequence lies at the bottom of the pyramid. The



iterative multiscale estimation begins by estimating
translation between the image pair at the coarsest
scale (the top of the pyramid) using the estimator of
(5). After estimating the translation̂v1 at the coarsest
level, the first image at the next finer resolution level
of the pyramidzh−1

1 (m,n) is shifted according to
2× the estimateŝv1 to create a a new image pair
žh−1
1,2 (m,n) containing only the residual motion (bias)

from the previous estimate. Then, this residual motion
v̂r is estimated from this image paiřzh−1

1,2 (m,n) and
an the original estimate is updated according tov̂2 =
2v̂1 + v̂r. This process repeats while moving down
the pyramid in a coarse to fine fashion.

The multiscale approach improves estimator per-
formance for a variety of reasons, the most impor-
tant being that the magnitude of the motion in the
downsampled images will necessarily be reduced by
the downsampling ratio, effectively “shrinking”v.
Noting that Figure 1 exhibits the tendency of the
bias to grow unacceptably large as the magnitude
of the translation increases, minimizing translation
magnitude helps ensure that the initial guess is indeed
close to the actual estimate improving the likelihood
of convergence to an unbiased estimate.

Traditionally, the same gradient filter was applied
at each level of the pyramid. The performance and
rate of convergence of the multiscale method can
be further improved using optimally designed bias-
minimizing filters. We suggest the novel approach of
using different gradient filters at each level of the
pyramid where each filter is designed according to
the bias-minimizing cost function (12). We show in
the following section that using a collection of bias-
minimizing filters provides superior performance in
multiscale estimation.

V. EXPERIMENTS

To verify the utility the bias-minimizing cost func-
tion of (12), we compare the performance of the typ-
ical filters mentioned in Section III. with the bias-
minimized filters. All of the filters were separable
linear phase filters with five taps (2 coefficients). The
image used in the experiments is the tree image from
[1]. The image was filtered with a Gaussian low-pass
filter to replicate the common practice of image pre-
smoothing which has been shown to improve estima-
tor performance [1]. While the bias-minimizing filters
were designed for the rangevx, vy ∈ [−2, 2], we

restrict the experimentation to the case wherevx =
vy ∈ [0, 2] because of the bias symmetry. Figure
2 shows the magnitude of the estimator bias using
these different gradient filters. As indicated by the
graph, the bias of all the filters becomes severe as the
magnitude of the translation increases, but the bias for
the optimizing filter is minimized. In fact, for large
translations the bias for the optimal filter is at least 30
percent less than the the Nestares filters and half that
of the Fleet filter. The optimized filters have the co-
efficientsgx = [−1.5978 2.6721 0 − 2.6721 1.5978]
andgy = [−1.2368 1.9353 0 −1.9353 1.2368]T . We
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Fig. 2. Magnitude of estimator bias|b(v)| vs trans-
lation vx = vy for different gradient filters

found that these results reflect the general perfor-
mance of the bias-minimized filters for translations
other thanvx = vy.

Next, to understand the effect of the bias-minimizing
filters in the context of multiscale estimation, we con-
duct a similar experiment using multiscale gradient-
based estimation. For this experiment we utilized a
Gaussian pyramid with three levels designing an op-
timal filter for each level. All of the filters were de-
signed for the rangevx, vy ∈ [−2, 2]. For this exper-
iment, we restricted actual motion to the casevx =
vy ∈ [0, 6]. Figure 3 shows the magnitude of the
estimator bias for the multiscale estimators displaying
the capacity of the multiscale method for improving
estimator performance compared with Figure 2. Over-
all, the bias-minimizing filters provide a dramatic im-



provement in estimator accuracy over the entire range
of translations. In examining the results, a few obser-
vations are worth noting. While the bias functions no
longer have the predictable form given by (9), the
functions appear to have a certain similarity to their
structure. This suggests the possibility for deriving
an expression for the bias function in the multiscale
estimation. Also, the biases of the Fleet and Central
difference filters seem to grow rapidly at large trans-
lation magnitudes. Presumably, this effect stems from
the inability to compensate for very poor coarse scale
initial estimates. Overall, the bias-minimizing filters
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Fig. 3. Magnitude of multiscale estimator bias|b(v)|
vs translationvx = vy for different filters

provide significant improvement over the standard fil-
ters.

VI. CONCLUSIONS AND FUTURE WORK

In our work, we have presented the fundamental
relationship between gradient-based motion estima-
tor bias and the choice of gradient filters. We have
shown how this knowledge permits the design of bias-
minimizing gradient filters. We have experimentally
verified the utility of such filters for improving esti-
mator performance and suggested a means of incor-
porating the filter design process into a multiscale es-
timation framework providing substantially improved
estimation.

The work presented here suggests several possi-
ble directions for future work. For instance, in our

experiments on multiscale methods, the filters de-
signed at each scale might be more efficient if spe-
cial attention were given to the region of operation
at each level of the pyramid. Further investigation
into the cost function might provide more efficient
means of finding optimal filters. While the work here
has focused on the high SNR regimes where bias
dominates estimator error, further work might find
mean square error (MSE) minimizing filters using the
bounds given in [4]. Finally, we hope that this work
might be extended in some fashion to improved the
performance of optical flow estimation as performed
in [6].
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