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ABSTRACT the sampled functiong(m1,nT) wheref(x,y) rep-

Among the myriad of techniques used in estimating resents the underlying continuous image. The estima-
motion vector fields, perhaps the most popular andtion of the motion vector field is commonly referred
accurate methods are the so callgéhdient-based 10 as motion estimation or optical flow estimation.
methods. A critical step in the gradient-based estima- As the name implies, the gradient-based estima-
tion process is the estimation of image gradients usingtion methods require measurement of image gradient.
derivative filters. It is well known that the gradient- These measurements almost always take the form of
based estimators contain significant deterministic biassimple, linear phase, linear shift invariant filters. Even
relating the gradient calculation. In this paper, we de- though these filters play a vital role in the estimation
scribe the fundamental relationship between estimatoischeme, and in fact have been shown to produce
bias and derivative filters. From this, we suggest anbiased motion estimates [2], [3], [4] relatively few
image adaptive method addressing the design of biastesearchers have studied the design of such filters
minimizing gradient filters. Simulations validate the for optical flow estimation [5], [6]. Rather than study
superior performance of such filters for the many the errors introduced by such gradient filters, many
variants of gradient-based estimation including the researchers treat these errors as random in nature
widely used multiscale iterative methods. and attempt to design robust estimation methods to
minimize the effects of such errors.
In this paper, using the bias formulation presented
. INTRODUCTION in [4], we derive bias-minimizing gradient filters in

Among the myriad of techniques used in estimating @ fashion similar to [6]. We set up an optimization
motion vector fields, perhaps the most popular andscheme whereby a bias-minimizing gradient filter is
accurate methods are the so callgedient-based designed based on the image under observation. We
methods [1]. These methods estimate image motionexperimentally verify the bias-minimizing property of
by relating the change in image intensity between such filters in both a non-iterative and multiscale iter-
images to spatial image gradients. These methods relyative framework. Finally, we conclude by suggesting
on the intensity conservation assumption that the un-future work.

derlying model for image dynamics follows the form
[I. BIAS IN GRADIENT-BASED ESTIMATORS

zi(m,n) = f(m,n)+ e (m,n) 1) To motivate our filter design methodology, we first
zo(m,n) = f(m—vi(m,n),n—uva(m,n)) explore the gradient-based motion estimation tech-
+eo(m,n) 2) nique and the bias inherent to such methods. To sim-

plify the analysis, we initially present the ideas using
wheree;(m,n) is typically modelled as white Gaus- the 1-dimensional analogue of motion estimation. For
sian noise with variance?. We refer to the indices the 1-D case, we suppose that the measured data is
m,n for the M by N image as the sample indices for of the form
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In the derivation of the gradient-based estimator, the lll. DESIGNING BIAS-MINIMIZING
data is reformulated ag k) = z1(k)—22(k) = f(k+ GRADIENT FILTERS

v(k)) — f(k) + ¢(k) wheree is a Gaussian white  The design of gradient filters for use in motion
noise random field with yananaez andu(k) isthe  estimation has been addressed previously in [5], [6].
unknown motion vector field. o In [5], it was noted that the gradient filters should be
Most of the gradient-based methods simplify the gesigned to match the actual derivative to the contin-
estimation problem by assuming that the unknown s function reconstructed using a specific interpo-
vector fieldwv(k) is comprised of locally parametric |ation kernel (assumed to be a Gaussian kernel). The
vector fields. The simplest of all models is the trans- fjjiers of [5] have been noted to improve estimation
lational model of motion where the vector f.ield IS performance [3], though the filters were not designed
assumed to be constant over some region in spacgpecifically for the purpose of motion estimation. In
v(k) = v, Vk € €; whereQ; is a local region in the  [g] the ideas were extended to address the specific
image space or the entire image itself. The gradient-proplem of gradient-based motion estimation by de-
based method generates an overdetermined set of lingjgning a set of pre-smoothing and gradient filters to
ear equation by linearizing the functigitk+v) about  minimize modelling error. Unfortunately, this method
a pointv = 0 in a Taylor series. The expansion l00ks minimizing the modelling error fails to address the
like f(k +v) = f(k) = vf'(k) + R(k,v) where the interaction of these modelling errors with the struc-
remainder term in the Taylor expansidnis ignored {1 of the estimator. Intuitively, in [6] the energy

to produce a linear estimator for the velocity in the modelling errors is minimized over a range
- Ykeq, [(k)z(k) of unknown translations. The authors note that min-
v= Sieq. (f'(K))? (5) imizing the error alone will not provide good filters

since the optimization tends to create filters which
contain most of their spectral energy at frequencies

. . 5 B where the image spectral energy is lowest. They cor-
the available imagef’(k) = g(k) » z1(k) (where rect this by adding a Lagrangian penalty to focus the

represents convolution). ) . )
b ) . . filters on high energy spectral regions. In our work,
It has been noted on numerous occasions in the

past [2], [3], [4] that the gradient-based estimators we minimize the energy " the estlmator' bias due to
) . . such modelling errors. This acts as the ideal penalty
produce biased estimates. In [4], it was shown that

. : function by taking into account the structure of the
the estimator bias : o
-, estimator. Furthermore, our optimization process pro-
bv) = B e, f'(k)z(k) . (6)  Vvides one optimal gradient filter which minimizes
req, (f(k))? estimator bias instead finding three separate filters as

is dominated by deterministic modelling error for high in [6]. .

SNR situations. For many computer vision applica- From (7) we see that the bias dePe”dSt on three
tions, the effective SNR falls into this high SNR regime.faCtorS: the image contery_t, the gradient filterg,
This deterministic bias results from a combination of and the .unknown transl'atlo.n. We start from the
the linearized data model and the gradient approxima-assumpt'on that trans_latlon is limited to some range
tion. The approximate function for the deterministic ¥ € -V, V]. From this we construct the following

bias in [4] is given in the frequency domain as cost function for a particular image
s . 4
b(o) = I™_|F(0)2 [G(6) sin(v0) — vG2(6)] dO J(a) = / B (v, F(6), a)dv
- -V

JZL GO)F(0)[2d0
7) ~ ZbQ (vi, F(6),a) (8)
where F'(0) is the Fourier transform of the image Vi

function (we assume that the image is sampled abovevherea is the vector of filter coefficients such that
the Nyquist rate) and>(0) is the transform of the G(0) = 2", a;sin(i). Because the cost function is
gradient filter. It is this bias function that we use to highly nonlinear in the unknown variables, we rely on
set up a process for designing gradient filters. a simple black box optimization routinininunc

In practice, the gradients (derivatives) were approxi-
mated using a gradient filter(k) applied to one of




provided by Matlab. Such an filter design method the complexity of the costly integration required in
provides bias minimizing gradient filters for a given multidimensional case. To address this concern we
image. The optimization process can be used to findmake the following approximations. Using vector no-
any linear phase antisymmetric derivative filter with tation, v = [v,, v,]T and@ = [0,, 6,]7 and G(¢) =
2N + 1 taps by optimizing over theV filter coeffi- [G2(8), Gy(8)]F. we can express the 2-D gradient-
cientsa. based estimator bias as

As an example, we construct a bandlimited signal _ )
F) 2 S (T o k= 1o 100 whers PV =@ [ IF@PG®) sin@"v)a8 ~ v (9)
¢4 Is a fixed phase generated by drawing from a
uniform distribution. We performed an optimization
to find a 5 tap filter to compare with three popular
gradient filters from [1], [7] which we refer to as
the Fleet, Nestares, and Central (for central differ-
ence kernel) filters. The bias-minimizing filters were
designed assuming a translation range ef [—2, 2].
We then computed actual estimator bias by applying b(v) ~ |v] {Q—l / PO)PG@)E ndd - n }
each filter pairs of signals perfectly shifted by con- - =T TR
struction. The resulting biases are shown in Figure 1.
When comparing the various filters, it becomes clear

whereQ = [|F(9)|? [G(Q)G(Q)T] df. To simplify
the bias expression, we approXximate #is func-
tion using a second order Taylor seriem(QTv) ~
0"v — (6" v)3. Using the fact that” v = [v|¢"ny,
wheren,, is the unit vectorcos(v) sin(¢)]T we can
approximate the bias function (9) as

N [ ipwra@@rata
= vler(s) — IPea) 10

We rewrite the 2-dimensional version of (8) in po-
lar coordinates as

TV
J(ay,a,) =2 /O /0 b(v) b(v)dlv|dy  (11)

If desired, one could design an optimal filter assum-
ing that the motion was constrained to a particular
angular direction. In practice, we approximate (11)
as
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Optimized Thus, the costly integrals performed in computing the

T Ea— T : " ) bias now require only one set of integrations to com-
Translation v pute thec(v)’s once for each angle. This greatly

_ _ _ _ _ improves the speed in computing the cost function

Fig. 1. E_stlma.tor bia$(v) vs translatiorv for differ- J(a,,a,). It is this approximation that we use to

ent gradient filters generate the 2-D gradient filters. In the section V we
o . L _ _verify the utility of such an optimization scheme.

that the optimized filter minimizes the estimator bias |y practice, iterative multiscale estimation provides

within this region. In fact, we found that the bias gjgnificant improvements in estimator accuracy [8].

for the optimized filter outperformed the other filters the multiscale approach decomposes the pair of im-

1 2 1
Z §V3C1Tcl + VicTeg + —VTcley (12)
()

outside the region of optimization as well. ages into dyadic pyramids of lowpass filtered and
downsampled images denoted,(in,n) where the
IV. 2-D MULTISCALE ESTIMATION superscripth denotes the level of pyramid. This cre-

While the computation of cost function is simple ates an image pair at the top of the pyramid to be the
enough for the 1-D version of the problem, we found coarsest image of sizé% by 2% And, the original
that further simplifications were necessary to reduceimage sequence lies at the bottom of the pyramid. The



iterative multiscale estimation begins by estimating restrict the experimentation to the case whefe=
translation between the image pair at the coarsest, < [0,2] because of the bias symmetry. Figure
scale (the top of the pyramid) using the estimator of 2 shows the magnitude of the estimator bias using
(5). After estimating the translatioi' at the coarsest these different gradient filters. As indicated by the
level, the first image at the next finer resolution level graph, the bias of all the filters becomes severe as the
of the pyramidzi"l(m, n) is shifted according to  magnitude of the translation increases, but the bias for
2x the estimatesy! to create a a new image pair the optimizing filter is minimized. In fact, for large
ngl(m, n) containing only the residual motion (bias) translations the bias for the optimal filter is at least 30
from the previous estimate. Then, this residual motion percent less than the the Nestares filters and half that
v" is estimated from this image pajﬁgl(m,n) and of the Fleet filter. The optimized filters have the co-
an the original estimate is updated according to= efficientsg, = [—1.5978 2.6721 0 — 2.6721 1.5978|
2v! + 7. This process repeats while moving down andg, = [—1.2368 1.9353 0 —1.9353 1.2368]7. We
the pyramid in a coarse to fine fashion.

The multiscale approach improves estimator per- Bias Magnitude vs Translation Magnitude
formance for a variety of reasons, the most impor- o] | | |
tant being that the magnitude of the motion in the  945| o Fleet
. . . < Nestares
downsampled images will necessarily be reduced by o4} Optimal
the downsampling ratio, effectively “shrinking¥.
Noting that Figure 1 exhibits the tendency of the
bias to grow unacceptably large as the magnitude
of the translation increases, minimizing translation
magnitude helps ensure that the initial guess is indeed
close to the actual estimate improving the likelihood
of convergence to an unbiased estimate.

Traditionally, the same gradient filter was applied
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at each level of the pyramid. The performance and  o0o0sf e /
. 4 —
rate of convergence of the multiscale method can NP e ‘ ‘
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be further improved using optimally designed bias- Translation Magnitude, Vx=Vy (pix)

minimizing filters. We suggest the novel approach of

using different gradient filters at each level of the Fig. 2. Magnitude of estimator biag(v)| vs trans-
pyramid where each filter is designed according to lation v, = v, for different gradient filters

the bias-minimizing cost function (12). We show in

the following section that using a collection of bias- found that these results reflect the general perfor-
minimizing filters provides superior performance in mance of the bias-minimized filters for translations

multiscale estimation. other thanu, = v,.
Next, to understand the effect of the bias-minimizing
V. EXPERIMENTS filters in the context of multiscale estimation, we con-

To verify the utility the bias-minimizing cost func- duct a similar experiment using multiscale gradient-
tion of (12), we compare the performance of the typ- based estimation. For this experiment we utilized a
ical filters mentioned in Section Ill. with the bias- Gaussian pyramid with three levels designing an op-
minimized filters. All of the filters were separable timal filter for each level. All of the filters were de-
linear phase filters with five taps (2 coefficients). The signed for the range,, v, € [—2,2]. For this exper-
image used in the experiments is the tree image fromiment, we restricted actual motion to the cage=
[1]. The image was filtered with a Gaussian low-passv, € [0,6]. Figure 3 shows the magnitude of the
filter to replicate the common practice of image pre- estimator bias for the multiscale estimators displaying
smoothing which has been shown to improve estima-the capacity of the multiscale method for improving
tor performance [1]. While the bias-minimizing filters estimator performance compared with Figure 2. Over-
were designed for the range,, v, € [—2,2], we all, the bias-minimizing filters provide a dramatic im-



provement in estimator accuracy over the entire rangeexperiments on multiscale methods, the filters de-
of translations. In examining the results, a few obser- signed at each scale might be more efficient if spe-
vations are worth noting. While the bias functions no cial attention were given to the region of operation
longer have the predictable form given by (9), the at each level of the pyramid. Further investigation
functions appear to have a certain similarity to their into the cost function might provide more efficient
structure. This suggests the possibility for deriving means of finding optimal filters. While the work here
an expression for the bias function in the multiscale has focused on the high SNR regimes where bias
estimation. Also, the biases of the Fleet and Centraldominates estimator error, further work might find
difference filters seem to grow rapidly at large trans- mean square error (MSE) minimizing filters using the
lation magnitudes. Presumabily, this effect stems frombounds given in [4]. Finally, we hope that this work
the inability to compensate for very poor coarse scalemight be extended in some fashion to improved the
initial estimates. Overall, the bias-minimizing filters performance of optical flow estimation as performed
in [6].
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ble directions for future work. For instance, in our
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vs translatiorw, = v, for different filters
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ters.
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