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Abstract— Recently, there has been much work developing
super-resolution algorithms for combining a set of low quality
images to produce a set of higher quality images. In most cases,
such algorithms must first register the collection of images to a
common sampling grid and then reconstruct the high resolution
image. While many such algorithms have been proposed to address
each one of these subproblems, no work has addressed the overall
performance limits for this joint estimation problem. In this
paper, we analyze the performance limits from statistical first
principles using the Cramer-Rao bound. We offer insight into the
fundamental bottlenecks limiting the performance of multiframe
image reconstruction algorithms and hence super-resolution.

I. I NTRODUCTION

In the last decade, several papers have proposed algorithms
addressing the problem of super-resolution. We refer the inter-
ested reader to [1] for a broad review of the work in this area.
In general, the problem of super-resolution can be expressed as
that of combining a set of noisy, aliased, low-resolution, blurry
images to produce a higher resolution image or image sequence.
Commonly, it is assumed that we are given a set of low
resolution images which consist of noisy, warped, blurred, and
downsampled versions of an unknown high resolution image.
The simplest, and perhaps most commonly utilized, warping
model assumes that the motion between frames is captured by
a global shift or a translation. We focus on this type of motion
for the remainder of this paper.

We represent the forward process by the linear measurement
model

yk = DHF(vk)x + ek. (1)

The vectorsyk represent the samples of the measured images
raster scanned to formNL dimensional vectors. Likewise,x
represents the unknown original high resolution image similarly
scanned to form aNH dimensional vector. The matrixD cap-
tures the downsampling operation,H the blurring operation due
to the imaging system point spread function (PSF), andF(vk)
the translational motion operation withvk = [vk1 , vk2 ]

T being
the unknown translation parameters for a particular frame.
Finally, ek represents the vector of additive white Gaussian
measurement noise with varianceσ2.

We make several assumptions concerning our forward model.
First, we assume that the downsampling ratioNL

NH
= 1

M where

M is a known integer. Second, we assume that the blurring
operation and hence the imaging system’s PSF is spatially
invariant and can be represented by a convolution operation
with a known space-invariant kernel. From this assumption, the
blurring operatorH becomes a block circulant matrix. Finally,
in our formulation, we suppose thatK+1 aliased low resolution
images are available. Without loss of generality, we assume
that the initial imagey0 dictates the coordinate system so that
F0 = I and hence we only have to estimateK unknown
translation vectorsvk during the super-resolution process for a
given set ofK + 1 low resolution frames.

When the motion is global translation, it has been shown that
re-parameterizing the problem into two sequential estimation
problems can substantially improve computational efficiency
[1], [2]. Using the property that the circulant matricesH and
Fk commute, a natural transformation of the unknown image
x is given by

z = Hx (2)

which maps the unknown high resolution image into a blurry
version of the high resolution imagesz. In both works,
this transformation was used to break the problem of super-
resolution into the two subproblems of multi-frame image
reconstruction (estimatingz from the data{yk}) and image
restoration (estimatingx from ẑ). Such an approach is justified
by the invariance property of the Maximum Likelihood esti-
mator [3]. For the remainder of this paper, we focus on the
problem of multi-frame image reconstruction which represents
the core component to super-resolution.

In general, the problem of super-resolution is an example
of a separable nonlinear least squares problem. Typically, the
estimation problem is divided into the tasks of first registering
the low resolution images (a highly nonlinear estimation prob-
lem) followed by reconstruction the low-resolution data and
finally deblurring and interpolating to produce the final high
resolution image (an ill-conditioned linear estimation problem).
Historically, most research in super-resolution tended to focus
on the latter stages assuming that generic image registration
algorithms could be trusted to produce estimates with a high
degree of accuracy. Relatively recently, researchers have noted
the importance of solving the estimation problems of image



registration and reconstruction/restoration in a joint fashion [4],
[5], [6]. Conversely, the only paper (to our knowledge) concern-
ing registration of aliased (sub-Nyquist) images [7], does not
directly address the problem of image reconstruction jointly
with registration. Instead, it focuses on mitigating generic (not
image specific) effects of aliasing on the registration algorithm.
In this paper, we study the relationship between the task of
image registration and image reconstruction.

In the current paper, we analyze the joint problem of aliased
image registration and high resolution image reconstruction
in the context of fundamental statistical performance limits.
Little work has addressed performance limits for the problem
of super-resolution [8], [9]. Both works study the problem
of super-resolution from an algebraic perspective reducing all
super-resolution algorithms to that of solving large systems
of linear equations. Furthermore, both works make the overly
simplistic assumption that the image registration is an indepen-
dently performed operation. One observation noted in [9] is that
for most imaging applications, the enhancement factor of 1.6 is
”unbreakable”. In retrospect, given the recent success of several
approaches in this field, this statement seems inappropriate [1].

We study the performance limits of multi-frame image re-
construction from a statistical perspective enabling us to bound
estimator performance in terms of Mean Square Error (MSE)
using the Cramer-Rao (CR) bound. In general, the CR bound
provides the lower bound on the MSE ofanyunbiased estimator
θ̂ of an unknown parameter vectorθ from a given set of data
represented by the data vectorΦ [10]. Specifically, the CR
bound on the error correlation matrixE[(θ̂ − θ)(θ̂ − θ)T ] for
any unbiased estimator is given by

MSE(θ) = E[(θ̂ − θ)(θ̂ − θ)T ] ≥ J−1(θ) (3)

where the matrixJ(θ) is referred to as the Fisher Information
Matrix (FIM). The inequality indicates that the difference
between the MSE matrix (left side) and the CR bound matrix
(right side) will be a positive semi-definite matrix. The elements
of the FIM are defined by

{J}i,j = −E

[
∂2l(Φ, θ)
∂θi∂θj

]

where l(Φ, θ) is the joint log-likelihood of the observed data
Φ and the unknown parametersθ.

Often, it is convenient that the set of unknown parametersθ
be divided into distinct subsets denoted in vector form byθa

andθb. In such form, the FIM is partition as

J(θa, θb) =
[

Jaa Jab

Jab Jbb

]

We can focus on the bound for one particular set of parameter
by way of

J−1(θa) =
(
Jaa − JabJ−1

bb Jab

)−1
(4)

For multi-frame image reconstruction, the set of unknown
parameters are the unknown high resolution imagez and the set

of unknown motion parameters defined byv = [v1, . . . ,vK ]T .
Because each set shares the same units, a natural scalar repre-
sentation of the CR bound is given by

rmse(θa) ≥ T (θa) (5)

where we definermse(θa) =
[

Tr(MSE(θa))
Na

] 1
2

and T (θa) =
[

Tr(J−1(θa))
Na

] 1
2

and Na is the dimension of the parameter
vectorθa. Such a representation shows the average overall per-
formance bound over the set of parameters while maintaining
the units of the unknown parameters.

Finally, to address the utility of the CR bound in studying
general estimation problems, we note that the overall usefulness
of a performance limit depends on its ability not only to
limit, but predict actual estimator performance. For example,
we might trivially bound MSE performance asMSE(θ) ≥ 0.
While such a bound is provably correct, it offers no useful infor-
mation about the estimation problem. The CR bound, however,
can be shown theoretically to be asymptotically attainable by
the class of Maximum Likelihood (ML) estimators. While there
is no guarantee that such estimators are realizable, it does offer
hope for predicting performance for a wide class of estimators.

In this paper, we study the performance limits for multi-
frame image reconstruction in its entirety which includes
analysis of both the image registration and reconstruction
problems. To simplify the presentation, we derive and analyze
the CR bounds for the 1-D analogue of the multi-frame image
reconstruction problem which has a similar form as (1), with
the exception that the translation parameter is given by the
scalar vk. In both cases, we study both the Fisher information
associated with each estimation problem as well as the overall
CR bound on joint estimation performance. In each section, we
analyze the performance bound as it relates to the image content
z, motion parametersv, downsampling factorM , noise power
σ2 and the number of framesK + 1. Ultimately, our analysis
offers new insights into the fundamental performance tradeoffs
inherent to multi-frame image reconstruction and hence super-
resolution imaging.

II. CR BOUND ON THE REGISTRATION OFMULTIPLE

ALIASED IMAGES

In this section, we analyze the performance bound for the
problem of registering a collection of aliased images. Studying
the overall performance boundT (v) we can observe the rela-
tionship between registering aliased images and image recon-
struction. To date, the problem of registering aliased images has
not been studied in relation to that of image reconstruction. In
[11], the performance bound on registering a pair of non-aliased
images was studied. In that scenario, the estimation problem
was independent of the image reconstruction problem. We will
show that when the images are sampled below the Nyquist rate
(hence are aliased), image registration and reconstruction are
tightly coupled problems. Furthermore, we show that the ideal



algorithm will solve the registration problem using the entire
set of observed low-resolution images.

First, we examineJvv, the sub-matrix of the FIM related to
image registration. As we shall show, there is much intuition
about the estimation problem to acquire through direct exam-
ination of the FIM. We observe thatJvv is a diagonal matrix
whose elements are given by

[
Jvv

]
kk

=
1
σ2

(
zT CT FT (vk)DT DF(vk)Cz

)

=
1
σ2

(
dT Q(vk)d

)
(6)

whereC represents the matrix form for an ideal spatial deriva-
tive operator. The derivative (or gradient for the 2-D case) can
be represented by a linear operator because we assume that
the imagez is sampled above the Nyquist rate. We simplify
the expression by definingd ≡ Cz (first derivative signal) and
Q(vk) ≡ FT (vk)DT DF(vk). In other words, the information
necessary for registration depends on the energy in the spatial
derivatives of the unknown signald projected into the lower
dimensional measurement sub-space via the projection operator
Q(vk). As one would expect, we see that the information is
inversely proportional to the noise powerσ2.
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Fig. 1. Plot of the signalz.

There are several observations that we can make about the
Fisher information as it relates to the motion parametersvk and
the signalz. First, we observe that any low pass filtering due
to the blurring effect of the imaging system reduces the ability
to register the images by damping the energy in the higher
spatial frequencies (texture). This generalizes the observation
introduced in [11] that higher frequency information or texture
improves the ability to register images for the non-aliased
scenario. Second, we note that the Fisher information is a
periodic function ofvk with a period ofM pixels. Intuitively,
this can be interpreted as meaning that the information depends
only on the sampling offset phaseφk = vk2π

M for the kth
measured low resolution image. For example, Figure 2 shows
the value ofdT Q(φ)d throughout the range of sample phase
offsetsφ for the signalz shown in Figure 1. The function is
shown in polar coordinates about the sampling phase offsetφ.

In plotting the information as a polar function ofφ, we can
compare the information function for various downsampling
factors. Immediately, we see that the information can vary quite
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Fig. 2. Polar plot ofdT Q(φ)d (in units of gray levels2

pixel2
) versesφ (in

degrees) for different downsampling factors.

dramatically for different sampling offsetsφ when aliasing
occurs (M > 1). Because the performance bound can vary
so widely for different values ofφ, it is important to explore
the entire space of translationsv when evaluating a particular
registration algorithm. We note that this has generally not
been the practice in the past, where typically algorithms are
evaluated only for whole pixel motions (or in units of1M
in the low-resolution image coordinates). Third, we note that
the downsampling operation significantly reduces the overall
amount of available information. As a rule of thumb, the
downsampling operation reduces the overall information on the
order of 1

M .
We now examine the actual CR bound on overall estima-

tion performance in estimating the set of motion parameters
v. Because of the complicated structure of the CR bound,
henceforth we compute the bounds numerically for a given
signal, set of translations, and noise power. For example, Figure
3 shows the overall performance boundT (v), over the set of
unknown motions for the signal shown in Figure 1. Each point
in the plot indicates the performance bound for a set ofK + 1
frames with equally-spaced translations defined byvk = kM

K+1

with a noise power ofσ2 = 1. We note that increasing the
number of frames does not affect the performance bound for
the non-aliased scenario when (M = 1). This suggests that an
algorithm that performs pairwise registration could conceivably
work as well as a more complicated algorithm which estimates
a set of registration parameters using the entire collection of
low resolution images. This is not the case, however, when
the low resolution images contain aliasing. For downsampling
factors greater thanM = 1, we see that increasing the number
of measured frames improves the overall performance bound.
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Fig. 3. Plot of the CR boundT (v) vs number of framesK + 1 for equally
spaced translations.

In some cases, the presence of additional frames cuts the
overall performance bound in half. We can interpret this to
mean that optimal aliased image registration algorithms must
estimate the set of translations{vk} from a set of low resolution
measurements in a joint fashion. Estimating translations in
using subsets of the collection of measured images{yk} will
necessarily result in a poorer performance bound. We shall see
an example of such performance degradation shortly. After a
certain number of frames, however, the benefit of observing
more low-resolution images does little to improve the average
performance bound.

We now compare the estimator performance of the aliased
image registration algorithm [7] with the corresponding CR
bounds on multi-frame aliased image registration. The Stone
et.al. algorithm [7] was specifically proposed to address the
problem of registering a pair of aliased images. In deriving
the algorithm, the authors make several heuristic observations
which they use to motivate the algorithm. In particular, the
algorithm applies a nonlinear weighting of zeros and ones (a
mask) to prune away portions of the image spectrum where the
negative effects of aliasing are assumed to worsen estimation
performance. For our experiments, we used parameter settings
recommended in [7].

We perform our experiments using the Tree image shown
in Figure 4. We conduct experiments using an equally-spaced
translation on a 2-D grid. The translations is defined by the set
of ordered pairs{. . . kM

K+1 . . .} × {. . . kM
K+1 . . .} In order that

the estimation problem be well conditioned, we useK +1 = 8
frames forM = 2 andK + 1 = 16 frames forM = 3. Such
offset locations guarantee that the FIM is well conditioned for
both downsampling factors.

We evaluated the estimator performances for SNR values
ranging from 20 to 60 db. Both registration algorithms were
applied in a pair-wise fashion assuming the same reference

Fig. 4. Tree test image.

frame. Figure 5 compares the performance of the two algo-
rithms with the CR bound for the given set of images. Each
point on the curve represents the value ofrmse(vk) computed
numerically for 500 Monte Carlo (MC) simluation runs. The
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Fig. 5. Experimentalrmse(v) versus CR bound forM = 2 andM = 3.

algorithm shows a flattening out of RMSE performance as SNR
increases beyond 30 dB indicative of significant estimator bias.
Presumably, this occurs due to the heuristic assumptions made
while designing the algorithm. For a downsampling factorM =
3, the bias for the algorithm of Stone et. al. is greater than1

10
of a pixel. While such bias is highly dependent on the original
image content, such estimator performance suggests that there
is much work yet to do in the area of aliased image registration.
Overall, we conclude from these experiments that the current
approach to registering aliased images, utilizing a heuristically
designed algorithm, leads to sub-optimal performance.

III. CR BOUND ON MULTI -FRAME IMAGE

RECONSTRUCTION

In this section we analyze the CR bound on multi-frame
image reconstruction performance. Much work has been done



in the area of signal and image reconstruction from multiple
aliased images including very comprehensive performance anal-
ysis [12]. Such work, however, has assumed that the sampling
phase offsets were known prior to reconstruction. In this
section, we examine the degradations when the motions or
sampling offsets must be estimated from the observed data.

The FIM term associated with the image reconstruction
problem is given by

Jzz =
1
σ2

(
K∑

k=0

Q(vk)

)
(7)

From (7) we see that the information pertaining solely to the
unknown imagez depends only on the motion parameters. It is
primarily the condition number ofJzz which is studied in pa-
pers such as [12]. In such works, it was shown that the condition
number of a matrix of the form (7) is maximized with equally
spaced sampling offsets on the high resolutionsampling grid.
Thus, were the sampling offsets known perfectly, the problem
of image reconstruction would be a that of solving a linear
system of equations. When the motions were equally spaced
on the high resolution grid, one could expect a performance
bound of the formMσ2

K+1 independent of the signalz.
When the motion parameters must also be estimated from

the data, however, the performance bound depends on the
unknown signalz. We begin by analyzing the simple scenario
whereM = 1, or no downsampling (and hence no aliasing).
The performance bound for this case characterizes the general
behavior of the performance bound forM > 1. By way of the
matrix-inversion lemma [13], we see that the general inverse
J−1(z) can be written as

J−1(z) = J−1
zz + J−1

zz JzvJ−1(v)JT
zvJ

−1
zz (8)

WhenM = 1, we have

J−1(z) =
1

K + 1
I +

K

(K + 1)
ddT

dT d
(9)

Thus, we see that whenM = 1, the form forJzz is independent
of the translations. The second term of (9) is a rank 1, unit
eigenvalue matrix composed of outer product of the spatial
derivative signald. Such a term reflects the idea that image
reconstruction (and later restoration) is more difficult in the
textured regions. Essentially, this reflects the intuitive observa-
tion that errors in motion estimation will be most detrimental to
image restoration in highly textured or high spatial frequency
areas. It has been noted in the past that poor registration during
multi-frame image reconstruction causes an edge-like feature to
be distorted, creating jagged artifacts [1].

For example, the graph of Figure 6 shows the variance bound
(diagonal ofJ−1(z)) for estimating the gray level for each pixel
for the signal shown in the graph of Figure 1. The bound was
calculated assuming four measured low resolution images with
the translations{0.5, 1, 2}, a downsampling factor ofM = 3
and noise powerσ2 = 1. Here, we show the bound in the spatial
domain to simplify its interpretation. The per-pixel variance

bound has two distinct characteristics. First, the sawtooth-
like periodic function reflects the amount of measured data
associated with each pixel location in the high resolution image.
This term is independent of the signalz and depends only
on the number of low-resolution images and their respective
sampling offsets. Second, the spikes in performance bound
correspond to the locations of the ’edges’ or high-frequency
detail in the original spatial domain signalz. In these regions,
image reconstruction performance is degraded by the need to
estimate the motion parameters in a joint fashion.
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Fig. 6. Variance bounds on image reconstruction shown for every pixel.

To give an idea of the overall degradation in performance due
to uncertainty about the motion parameters, we compare the
complete CR boundT (z) with a the performance bound under
the conditions that the sampling offsets are known perfectly
prior to image reconstruction. As mentioned earlier, for equally-
spaced sampling offsets, this weak (optimistic) bound reduces

to
(

tr(J−1
zz )

NH

) 1
2

= Mσ2

K+1 . In comparing these two performance
bounds, we can quantify the expected degradation in perfor-
mance when the motions must be estimated from the data. In
Figure 7 we shows the degradation in the performance bound
when the motions must be estimated from the low-resolution
images forM = 4, σ2 = 1 for our test signal. Here, we see
that the loss of information can be quite significant. Relatively
speaking, the performance ranges from 10 to 25 percent loss
in gray level estimation accuracy as the number of available
frames increase. We note, that such performance degradation
is even more severe for the 2-D scenario when much more
information is lost due to downsampling.

Finally, we would like to compare the performance of an
actual multiframe image reconstruction algorithm with the
derived bound. To do so, we implemented a two-step algorithm
composed of first registering the collection of images using the
method of [7] followed by a direct estimate of the image as
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given by

ẑ =

(∑

k

Q(v̂k)

)−1 (∑

k

Q(v̂k)T yk

)
. (10)

Again, the Tree image of Figure 4 was used as the signal
and equally-spaced sampling offsets as in the previous section.
Figure 8 compares the actual estimator performance with the
CR bound as a function of the number of frames. Again, each
point represents 500 MC runs at SNR values of 30, 40, and
50 dB. The downsampling factor isM = 2. Here, we see
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Fig. 8. Experimentalrmse(z) (points) and CR bound (solid lines) versus the
number of framesK + 1.

that the CR bound predicts the actual estimator performance
for SNR of 30 and 40 dB reasonably well. At this SNR, the
reconstruction error due to mis-registration is masked by the
error due to the additive noise. At 50dB, however, the bias of the

registration algorithm prevents the actual estimator performance
from tracking the CR bound as well as before. Overall, we
observe that the CR bound offers an efficient mechanism for
bounding and predicting actual estimator performance over a
wide range of SNRs.

IV. CONCLUSION

In this paper, we have derived and explored the use of the
Craḿer-Rao inequality in bounding the MSE performance for
the problem of multi-frame image reconstruction which is the
backbone of the superresolution problem. We have shown for
the case of translational motion how this problem naturally
relates to the more general problem of super-resolution. We
analyzed the relationships between the sub-problems of aliased
image registration and image reconstruction and characterized
the performance limits of each. We have compared modern
estimators to these performance bounds. In doing so, we
observe that the CR bound offers a useful means of bounding as
well as predicting actual estimator performance. Moreover, we
have shown the need for further algorithm development into
the area of aliased image registration for multi-frame image
reconstruction.
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