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Abstract—Recently, there has been much work developing M is a known integer. Second, we assume that the blurring
super-resolution algorithms for combining a set of low quality operation and hence the imaging system’s PSF is spatially
images to produce a set of higher quality images. In most cases,jqariant and can be represented by a convolution operation

such algorithms must first register the collection of images to a ith a k ) iant k L E thi i th
common sampling grid and then reconstruct the high resolution WIth @ KNOWn space-invarant kernel. =rom this assumption, the

image. While many such algorithms have been proposed to addressblurring operatotl becomes a block circulant matrix. Finally,
each one of these subproblems, no work has addressed the overalin our formulation, we suppose that+1 aliased low resolution
performance limits for this joint estimation problem. In this  jmages are available. Without loss of generality, we assume
paper, we analyze the performance limits from statistical first (h4+ the initial imagey, dictates the coordinate system so that

principles using the Cramer-Rao bound. We offer insight into the 7 .
fundamental bottlenecks limiting the performance of multiframe Fo = I and hence we only have to estimate unknown

image reconstruction algorithms and hence super-resolution. translation vectors' during the super-resolution process for a
given set of K + 1 low resolution frames.
|. INTRODUCTION When the motion is global translation, it has been shown that

In the last decade’ several papers have proposed a|g0ritﬁm§arameterizing the problem into two Sequential estimation
addressing the problem of super-resolution. We refer the int€foblems can substantially improve computational efficiency
ested reader to [1] for a broad review of the work in this arebL], [2]. Using the property that the circulant matrickk and
In general, the problem of super-resolution can be expressedfascommute, a natural transformation of the unknown image
that of combining a set of noisy, aliased, low-resolution, blurdy iS given by
images to produce a higher resolution image or image sequence. z = Hx (2)
Commonly, it is assumed that we are given a set of low _ o )
resolution images which consist of noisy, warped, blurred, a¥dlich maps the unknown high resolution image into a blurry
downsampled versions of an unknown high resolution imagéersion of the high resolution images. In both works,
The simplest, and perhaps most commonly utilized, warpiﬁ@'s tra.nsfo.rmatlon was used to break the prqblem of. super-
model assumes that the motion between frames is captured@golution into the two subproblems of multi-frame image
a global shift or a translation. We focus on this type of motioffconstruction (estimating from the data{y}) and image

for the remainder of this paper. restoration (estimating from z). Such an approach is justified

We represent the forward process by the linear measurem@htthe invariance property of the Maximum Likelihood esti-
model mator [3]. For the remainder of this paper, we focus on the
v, = DHF (v, )x + ey @) problem of multi-frame image reconstruction which represents

the core component to super-resolution.

The vectorsy,, represent the samples of the measured imagedn general, the problem of super-resolution is an example
raster scanned to formV; dimensional vectors. Likewises of a separable nonlinear least squares problem. Typically, the
represents the unknown original high resolution image similardstimation problem is divided into the tasks of first registering
scanned to form &y dimensional vector. The matri® cap- the low resolution images (a highly nonlinear estimation prob-
tures the downsampling operatidd, the blurring operation due lem) followed by reconstruction the low-resolution data and
to the imaging system point spread function (PSF), Bitd,,) finally deblurring and interpolating to produce the final high
the translational motion operation with, = [vx,, vk,|? being resolution image (an ill-conditioned linear estimation problem).
the unknown translation parameters for a particular framiistorically, most research in super-resolution tended to focus
Finally, e, represents the vector of additive white Gaussiasn the latter stages assuming that generic image registration
measurement noise with varianeé. algorithms could be trusted to produce estimates with a high

We make several assumptions concerning our forward mod#dgree of accuracy. Relatively recently, researchers have noted
First, we assume that the downsampling r%ﬁg = ﬁ where the importance of solving the estimation problems of image



registration and reconstruction/restoration in a joint fashion [4}f unknown motion parameters defined by-= [vi,...,vg]”.

[5], [6]. Conversely, the only paper (to our knowledge) concerBecause each set shares the same units, a natural scalar repre-
ing registration of aliased (sub-Nyquist) images [7], does nséntation of the CR bound is given by

directly address the problem of image reconstruction jointly

with registration. Instead, it focuses on mitigating generic (not rmse(0a) > T(6a) ()

image specific) effects of aliasing on the registration algorithm. , 1

In this paper, we study the relationship between the task where we defingmse(0,) = {%{W} S andT(0,) =

image registration and image reconstruction. Tr(3-1(0.))] 2 _ , .

In the current paper, we analyze the joint problem of aliase{dT} and N, is the dimension of the parameter
image registration and high resolution image reconstructi¥gctorf.. Such a representation shows the average overall per-
in the context of fundamental statistical performance limit§ormance bound over the set of parameters while maintaining
Little work has addressed performance limits for the problefi€ units of the unknown parameters.
of super-resolution [8], [9]. Both works study the problem Finally, to address the utility of the CR bound in studying
of super-resolution from an algebraic perspective reducing gfneral estimation problems, we note that the overall usefulness
super-resolution algorithms to that of solving large syster® @ performance limit depends on its ability not only to
of linear equations. Furthermore, both works make the ovefignit, but predict actual estimator performance. For example,
simplistic assumption that the image registration is an indepate might trivially bound MSE performance ag SE(6) > 0.
dently performed operation. One observation noted in [9] is thé¢hile such a bound is provably correct, it offers no useful infor-
for most imaging applications, the enhancement factor of 1.6mation about the estimation problem. The CR bound, however,
"unbreakable”. In retrospect, given the recent success of sevéi@n be shown theoretically to be asymptotically attainable by
approaches in this field, this statement seems inappropriate [if class of Maximum Likelihood (ML) estimators. While there

We study the performance limits of multi-frame image relS no guarantee that such estimators are realizable, it does offer
construction from a statistical perspective enabling us to boufi@pe for predicting performance for a wide class of estimators.
estimator performance in terms of Mean Square Error (MSE)In this paper, we study the performance limits for multi-
using the Cramer-Rao (CR) bound. In general, the CR bouff@me image reconstruction in its entirety which includes
provides the lower bound on the MSEanfyunbiased estimator analysis of both the image registration and reconstruction
6 of an unknown parameter vectérfrom a given set of data problems. To simplify the presentation, we derive and analyze
represented by the data vectdr [10]. Specifically, the CR the CR bounds for the 1-D analogue of the multi-frame image
bound on the error correlation matrig[(6 — 6)(6 — 6)7] for reconstruction problem which has a similar form as (1), with
any unbiased estimator is given by the exception that the translation parameter is given by the
R . - . scalar vy. In both cases, we study both the Fisher information

MSE(0) = E[(6 - 0)(0 —0)"] > I~ (0) (3) associated with each estimation problem as well as the overall
where the matrixJ () is referred to as the Fisher InformationCR bound on joint estimation performance. In each section, we
Matrix (FIM). The inequality indicates that the differencedn@lyze the performance bound as it relates to the image content
between the MSE matrix (left side) and the CR bound matr Motion parameters, downsampling factod/, noise power
(right side) will be a positive semi-definite matrix. The elementg and the number of frame&” + 1. Ultimately, our analysis

of the FIM are defined by offers new insights into the fundamental performance tradeoffs
) inherent to multi-frame image reconstruction and hence super-
(3}, = —E [MM} resolution imaging.
’ 00,00

II. CR BOUND ON THE REGISTRATION OFMULTIPLE

wherel(®, 0) is the joint log-likelihood of the observed data
ALIASED IMAGES

® and the unknown parametefi's
Often, it is convenient that the set of unknown parameflers In this section, we analyze the performance bound for the
be divided into distinct subsets denoted in vector formdhy problem of registering a collection of aliased images. Studying

andd,. In such form, the FIM is partition as the overall performance bourifl(v) we can observe the rela-
J T tionship between registering aliased images and image recon-
J(04,0) = [ J“Z JZb ] struction. To date, the problem of registering aliased images has
a

not been studied in relation to that of image reconstruction. In
We can focus on the bound for one particular set of paramefe], the performance bound on registering a pair of non-aliased
by way of images was studied. In that scenario, the estimation problem
1 _ 1 -1 was independent of the image reconstruction problem. We will
I700) = (Jaa = Jar Ty Tar) “) show that when the images are sampled below the Nyquist rate
For multi-frame image reconstruction, the set of unknowfihence are aliased), image registration and reconstruction are
parameters are the unknown high resolution imaged the set tightly coupled problems. Furthermore, we show that the ideal



algorithm will solve the registration problem using the entirtn plotting the information as a polar function gf we can

set of observed low-resolution images. compare the information function for various downsampling
First, we examindl,, the sub-matrix of the FIM related to factors. Immediately, we see that the information can vary quite

image registration. As we shall show, there is much intuition

about the estimation problem to acquire through direct exam- 0 o

ination of the FIM. We observe thak,, is a diagonal matrix

whose elements are given by
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(d"Q(vr)d) (6)

whereC represents the matrix form for an ideal spatial deriva-
tive operator. The derivative (or gradient for the 2-D case) can
be represented by a linear operator because we assume that
the imagez is sampled above the Nyquist rate. We simplify
the expression by definind = Cz (first derivative signal) and
Q(vi) = F7(v;,)DTDF(v). In other words, the information
necessary for registration depends on the energy in the spatial
derivatives of the unknown signal projected into the lower 270
dimensional measurement sub-space via the projection operator
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Q(vx). As one would expect, we see that the information {29 2= Polar plot ofd”Q(¢)d (in units of £ e ) versesg (in
. . T egrees) for different downsampling factors.
inversely proportional to the noise powet.
dramatically for different sampling offset$¢ when aliasing

occurs M > 1). Because the performance bound can vary
so widely for different values o, it is important to explore
the entire space of translatiomswhen evaluating a particular
registration algorithm. We note that this has generally not
been the practice in the past, where typically algorithms are
evaluated only for whole pixel motions (or in units
in the low-resolution image coordinates). Third, we note that
the downsampling operation significantly reduces the overall
amount of available information. As a rule of thumb, the
downsampling operation reduces the overall information on the
order of .
We now examine the actual CR bound on overall estima-
Fig. 1. Plot of the signak. tion performance in estimating the set of motion parameters
v. Because of the complicated structure of the CR bound,
There are several observations that we can make about ieeceforth we compute the bounds numerically for a given
Fisher information as it relates to the motion parametgrand signal, set of translations, and noise power. For example, Figure
the signalz. First, we observe that any low pass filtering dug8 shows the overall performance boulidv), over the set of
to the blurring effect of the imaging system reduces the abilitynknown motions for the signal shown in Figure 1. Each point
to register the images by damping the energy in the higherthe plot indicates the performance bound for a sekcf 1
spatial frequencies (texture). This generalizes the observatfoaimes with equally-spaced translations definedvpy= %
introduced in [11] that higher frequency information or textureiith a noise power oz2 = 1. We note that increasing the
improves the ability to register images for the non-aliasetumber of frames does not affect the performance bound for
scenario. Second, we note that the Fisher information istte non-aliased scenario wheh/(= 1). This suggests that an
periodic function ofv;, with a period of M pixels. Intuitively, algorithm that performs pairwise registration could conceivably
this can be interpreted as meaning that the information depemawk as well as a more complicated algorithm which estimates
only on the sampling offset phasg, = % for the kth a set of registration parameters using the entire collection of
measured low resolution image. For example, Figure 2 sholesv resolution images. This is not the case, however, when
the value ofd” Q(¢)d throughout the range of sample phasthe low resolution images contain aliasing. For downsampling
offsets ¢ for the signalz shown in Figure 1. The function is factors greater than/ = 1, we see that increasing the number
shown in polar coordinates about the sampling phase offsetof measured frames improves the overall performance bound.

L L
50 100 150



Registration RMSE Bound vs Number of Frames
0.03 T T T

===

ooax
ENEARNI

0.025

=4

o

=
T

RMSE Bound (pix)

0.0151

0.011-

<+
<<
R R R AR R PR PP PRI PPPN R

Fig. 4. Tree test image.
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. frame. Figure 5 compares the performance of the two algo-
Fig. 3. Plot of the CR bound’(v) vs number of framed( + 1 for equally  rithms with the CR bound for the given set of images. Each
spaced translations. .

point on the curve represents the valuenfse(vy) computed
numerically for 500 Monte Carlo (MC) simluation runs. The

In some cases, the presence of additional frames cuts the Algorithm Performance vs SNR
overall performance bound in half. We can interpret this to 4.

mean that optimal aliased image registration algorithms must R g

estimate the set of translatiofis, } from a set of low resolution W
measurements in a joint fashion. Estimating translations in e e §

using subsets of the collection of measured images} will L
necessarily result in a poorer performance bound. We shall see

an example of such performance degradation shortly. After a
certain number of frames, however, the benefit of observing

RMSE (pix)
=
©,
T
s
a
’
4
4

more low-resolution images does little to improve the average
performance bound. Tl e
We now compare the estimator performance of the aliased ./ [a"soe Asorm vz

image registration algorithm [7] with the corresponding CR g el ]

bounds on multi-frame aliased image registration. The Stone

et.al. algorithm [7] was specifically proposed to address the ‘ ‘ ‘ ‘ ‘ ‘ L T
. : X X i T 20 25 30 35 40 45 50 55 60

problem of registering a pair of aliased images. In deriving SR (db)

the algorithm, the authors make several heuristic observatioE% 5
which they use to motivate the algorithm. In particular, the

algorithm applies a nonlinear weighting of zeros and ones g ithm shows a flattening out of RMSE performance as SNR
mask) to prune away portions of the image spectrum where {i¢ o 7505 heyond 30 dB indicative of significant estimator bias.
negative effects of aliasing are assumed to worsen eSt'm"’lf[l-{*rrésumably, this occurs due to the heuristic assumptions made
performance. For our experiments, we used parameter settijgSe designing the algorithm. For a downsampling factbr—
recommended in [7]. 3, the bias for the algorithm of Stone et. al. is greater tl;—i@m

We perform our experiments using the Tree image Shov#f a pixel. While such bias is highly dependent on the original
in Figure 4. We conduct experiments using an equally-spaGgghge content, such estimator performance suggests that there
translation on a 2-D grid. The translations is defined by the sgtmuch work yet to do in the area of aliased image registration.
of ordered pairs{... 245 ...} x {... £45 ...} In order that Qverall, we conclude from these experiments that the current
the estimation problem be well conditioned, we use-1 =8  approach to registering aliased images, utilizing a heuristically
frames forM/ =2 and K + 1 = 16 frames forM = 3. Such designed algorithm, leads to sub-optimal performance.
offset locations guarantee that the FIM is well conditioned for
both downsamp"ng factors. I1l. CR BOUND ON MULTI-FRAME IMAGE

We evaluated the estimator performances for SNR values RECONSTRUCTION
ranging from 20 to 60 db. Both registration algorithms were In this section we analyze the CR bound on multi-frame
applied in a pair-wise fashion assuming the same refererineage reconstruction performance. Much work has been done

ExperimentaFmse(v) versus CR bound foM/ = 2 and M = 3.



in the area of signal and image reconstruction from multipleound has two distinct characteristics. First, the sawtooth-
aliased images including very comprehensive performance arlikde periodic function reflects the amount of measured data
ysis [12]. Such work, however, has assumed that the samplagsociated with each pixel location in the high resolution image.
phase offsets were known prior to reconstruction. In thibhis term is independent of the signaland depends only
section, we examine the degradations when the motions ar the number of low-resolution images and their respective
sampling offsets must be estimated from the observed datasampling offsets. Second, the spikes in performance bound
The FIM term associated with the image reconstructiacorrespond to the locations of the 'edges’ or high-frequency

problem is given by detail in the original spatial domain signal In these regions,
K image reconstruction performance is degraded by the need to
J,, = % (Z Q(vk)> (7) estimate the motion parameters in a joint fashion.
k=0
From (7) we see that the information pertaining solely to the Pixevise RMSE Bound in Spatial Domain

unknown imagez depends only on the motion parameters. It is
primarily the condition number of,, which is studied in pa-
pers such as [12]. In such works, it was shown that the condition ~ *7
number of a matrix of the form (7) is maximized with equally 16f
spaced sampling offsets on the high resolutsampling grid
Thus, were the sampling offsets known perfectly, the problem
of image reconstruction would be a that of solving a linear
system of equations. When the motions were equally spaced
on the high resolution grid, one could expect a performance
bound of the formj‘lf—ji independent of the signal

When the motion parameters must also be estimated from 11
the data, however, the performance bound depends on the

RMSE Bound (gray levels)

unknown signakz. We begin by analyzing the simple scenario MM/\MMM
where M = 1, or no downsampling (and hence no aliasing). o9F - o 5 - o e o
The performance bound for this case characterizes the general PixelLocation

beha\/i(_)r of the performance bound fbf > 1. By way of t_he Fig. 6. Variance bounds on image reconstruction shown for every pixel.
matrix-inversion lemma [13], we see that the general inverse

J~1(z) can be written as

To give an idea of the overall degradation in performance due

-1 _ -1 -1 -1 T -1
I = T H I dad T (W (8) to uncertainty about the motion parameters, we compare the
When M =1, we have complete CR bound’(z) with a the performance bound under
1 K ddT the conditions that the sampling offsets are known perfectly
JNz) = KT 1I + (K +1)d’d (9) prior to image _reconstruction_. As mentioqeq efirlier, for equally-
o spaced sampllng offsets, this weak (optimistic) bound reduces
Thus, we see that wheld = 1, the form forJ,, is independent (=) 2 Mo? )
of the translations. The second term of (9) is a rank 1, uf® |~ = %47+ In comparing these two performance

eigenvalue matrix composed of outer product of the spatlPunds, we can quantify the expected degradation in perfor-
derivative signald. Such a term reflects the idea that imagB'@nce when the motions must be estimated from the data. In
reconstruction (and later restoration) is more difficult in thEigure 7 we shows the degradation in the performance bound
textured regions. Essentially, this reflects the intuitive observiben the motions must be estimated from the low-resolution
tion that errors in motion estimation will be most detrimental tdnages forM = 4, ¢ = 1 for our test signal. Here, we see
image restoration in highly textured or high spatial frequenépat the loss of information can be quite significant. Relatively
areas. It has been noted in the past that poor registration durfig§aking, the performance ranges from 10 to 25 percent loss
multi-frame image reconstruction causes an edge-like featurdodray level estimation accuracy as the number of available
be distorted, creating jagged artifacts [1]. frames increase. We note, that such performance degradation
For example, the graph of Figure 6 shows the variance bouideven more severe for the 2-D scenario when much more
(diagonal ofJ ~!(z)) for estimating the gray level for each pixelinformation is lost due to downsampling.
for the signal shown in the graph of Figure 1. The bound wasFinally, we would like to compare the performance of an
calculated assuming four measured low resolution images wibtual multiframe image reconstruction algorithm with the
the translation§0.5, 1, 2}, a downsampling factor oM = 3 derived bound. To do so, we implemented a two-step algorithm
and noise powet? = 1. Here, we show the bound in the spatiabomposed of first registering the collection of images using the
domain to simplify its interpretation. The per-pixel variancenethod of [7] followed by a direct estimate of the image as



Reconstruction CR Bound vs Number of Frames with and without motion information
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Fig. 7. Reconstruction CR bourid(z) and the weak boun@, ¢, (z) versus
the number of framedC + 1.

given by

1
> Q) yx (10)
K

registration algorithm prevents the actual estimator performance
from tracking the CR bound as well as before. Overall, we

observe that the CR bound offers an efficient mechanism for
bounding and predicting actual estimator performance over a
wide range of SNRs.

IV. CONCLUSION

In this paper, we have derived and explored the use of the
Cranér-Rao inequality in bounding the MSE performance for
the problem of multi-frame image reconstruction which is the
backbone of the superresolution problem. We have shown for
the case of translational motion how this problem naturally
relates to the more general problem of super-resolution. We
analyzed the relationships between the sub-problems of aliased
image registration and image reconstruction and characterized
the performance limits of each. We have compared modern
estimators to these performance bounds. In doing so, we
observe that the CR bound offers a useful means of bounding as
well as predicting actual estimator performance. Moreover, we
have shown the need for further algorithm development into
the area of aliased image registration for multi-frame image
reconstruction.
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