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ABSTRACT

In the last two decades a variety of super-resolution (SR) methods have been proposed. These methods usually
address the problem of fusing a set of monochromatic images to produce a single monochromatic image with
higher spatial resolution. In this paper we address the dynamic and color SR problems of reconstructing a
high-quality set of colored super-resolved images from low-quality mosaiced frames. Our approach includes a
hybrid method for simultaneous SR and demosaicing, this way taking into account practical color measurements
encountered in video sequences. For the case of translational motion and common space-invariant blur, the
proposed method is based on a very fast and memory efficient approximation of the Kalman filter. Experimental
results on both simulated and real data are supplied, demonstrating the presented algorithm, and its strength.

1. INTRODUCTION

Theoretical and practical limitations usually constrain the achievable resolution of any imaging device. While
higher quality images may result from more expensive imaging systems, often we wish to increase the resolution
of images previously captured under non-ideal situations. For instance, enhancing the quality of a video sequence
captured by surveillance cameras in a crime scene is an example of these situations.

The basic idea behind SR is the fusion of a sequence of low-resolution (LR) noisy blurred images to produce
a higher resolution image. Early works on SR showed that it is the aliasing effects in the LR images that enable
the recovery of the high-resolution (HR) fused image, provided that a relative sub-pixel motion exists between
the under-sampled input images [1]. However, in contrast to the clean and practically naive frequency domain
description of SR in that early work, in general SR is a computationally complex and even numerically ill-posed
problem in many instances [2]. In recent years more sophisticated SR methods were developed (See [2–9] as
representative works).

In this paper we focus on two common resolution-enhancement problems in digital video/photography that
are typically addressed separately, namely, SR and demosaicing. While SR is naturally described for monochrome
images, aiming to increase resolution by the fusion of several frames, the demosaicing is meant to recover missing
color values, decimated deliberately by the sensor. In this work we propose a hybrid method of dealing with
these two problems jointly.

Furthermore, in contrast to most of the existing works so far, we adopt a dynamic point of view, as introduced
in [10], in developing the new SR solution. Dynamic SR refers to the situation in which a sequence of HR images
are estimated from a sequence of LR frames. While it may appear that this problem is a simple extension of the
static SR situation, simply solving static SR again and again, the memory and computational requirements for
the dynamic case are so taxing as to preclude its application without highly efficient algorithms. It is natural
to expect that if the SR problem is solved for time (t-1), our task for time (t) could be using this as a stepping
stone towards a faster and more reliable SR solution. This is the essence of how dynamic SR is to gain its speed
and better results, compared to a sequence of detached static SR routines.

Our goal in this paper is to develop a dynamic SR algorithm for color (filtered - see next section) sequences.
For this algorithm, we sight both visual quality (resolution enhancement and color artifact reduction) and
computational-memory efficiency. This paper has the following contributions. First, we develop a very fast
and memory efficient dynamic SR method. Second, we introduce the multi-frame demosaicing problem as the
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generalization of the color SR problem. We propose a maximum a posteriori (MAP) estimation method to
incorporate the proposed dynamic SR method in a general algorithm for addressing the multi-frame demosaicing
problem.

This paper is organized as follows: In Section 2 we discuss the relation between color and SR. Section 3
addresses a fast dynamic image fusion method for the translational motion model. This method is then extended
in Section 4 to consider the color-SR and multi-frame demosaicing cases. Simulations on both real and synthetic
data sequences are presented in Section 5, and Section 6 concludes this paper.

Before departing to the details, we should like to note that this paper (with all color pictures and a MATLAB
based software package for resolution enhancement) is available at http://www.ee.ucsc.edu/∼milanfar .

2. COLOR AND SR

A color image is represented by combining three separate monochromatic images. Ideally, each pixel should
correspond to three scalar values; one for each of the color bands (red, green, or blue). In practice, to reduce
production cost, many digital cameras have only one color measurement per pixel. The detector array is a grid
of CCDs, each made sensitive to one color by placing a color filter array (CFA) in front of the CCD. The Bayer
pattern shown in Figure 1 (left) is a very common example of such a color filter. The values of missing color
bands at every pixel are then synthesized using some form of interpolation from neighboring pixel values. This
process is known as color demosaicing.

While numerous single-frame demosaicing methods have been proposed (see [11–18] as representative works),
the reconstructed images are almost always contaminated with different amounts of color artifacts. This results
from the ill-posed nature of the demosaicing problem. However, if multiple, spatially offset, color filtered images
of the same scene are available, one can combine them to increase both spatial resolution, and to produce a
more effective overall demosaicing with significantly reduced artifacts. Such an approach may be termed multi-
frame demosaicing. What makes multiframe demosaicing challenging is that almost none of the single-frame
demosaicing methods (but the method in [19]) are directly applicable to it.

A related problem, color SR, addresses fusing a set of previously demosaiced color LR frames to enhance their
spatial resolution. To date, there is very little work addressing the problem of color SR. The typical solution
involves applying monochromatic SR algorithms to each of the color channels independently [20, 21], while using
the color information to improve the accuracy of motion estimation. Another approach is transforming the
problem to a different color space, where chrominance layers are separated from luminance, and SR is applied
only to the luminance channel [3]. Both of these methods are sub-optimal as they do not fully exploit the
correlation across the color bands.

3. DYNAMIC DATA FUSION

In this paper, we use a general linear model as in [3, 4]. A dynamic scene with intensity distribution X is seen
to be warped at the camera lens because of the relative motion between the scene and camera, and blurred by
camera lens and sensor integration. Then, it will be discretized at the CCD resulting in a digitized noisy frame
Y . Discretization in many commercial digital cameras is a combination of color filtering and down-sampling
processes.

We represent this forward model by the following equations:

X(t) = F (t)X(t − 1) + U(t), and (1)

Y (t) = D(t)H(t)X(t) + W (t). (2)
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The equation (1) describes how the ideal super-resolved images relate to each other through time, stating
that up to some innovation (depicted in U(t)), the current image X(t) is a geometrically warped version of the
previous one, where F (t) represents this warp operator. The so-called system noise U is assumed to be additive
white, zero mean Gaussian with Cu(t) as its covariance matrix, reflecting the accuracy of the motion estimation
process. We use the underscore notation such as X to indicate a vector arranged in lexicographic order.

As to equation (2), it describes how the measured image Y (t) is related to the ideal one X(t). The camera’s
point spread function (PSF) is modelled by the blur matrix H(t). D(t) represents the decimation operation at
the CCD (decimation by the factor r). In mosaiced cameras this matrix also represents the effects of the color
filter array, which further down-samples the color image. The noise W is assumed to be zero mean additive white,
Gaussian (thus, its covariance matrix is Cy(t) = I). We further assume that U(t) and W (t) are independent of
each other.

The equations given above describe a system in its state-space form, where the state is the desired ideal image.
Thus, Kalman filter is required to estimate (X(t), t ∈ {1, ..., N}) from the measurements (Y (t), t ∈ {1, ..., N})
causally, assuming that D(t),H(t), F (t), and Cu(t) are all known [10, 22].

While each of the operators D(t),H(t), and F (t) could vary in time, for most situations the decimation,
color filtering, and camera blurring operations remain constant over time. In this paper we further assume that
the camera PSF is space-invariant, and the motion is composed of pure transalations. Thus, both H and F (t)
are block-circulant matrices, and as such, they commute.

We limit our model to the case of translational motion for several reasons. First, as we describe later, such
a motion model allows for an extremely fast and memory efficient dynamic SR algorithm. Second, while simple,
the model fairly well approximates the motion contained in image sequences, where the scene is stationary and
only the camera moves. Third, for sufficiently high frame rates most motion models can be (at least locally)
approximated by the translational model. Finally, we believe that an in-depth study of this simple case yields
much insight into the more general cases of motion in dynamic SR. In Section 4 we show that the proposed
dynamic SR method is easily applicable to multi-frame demosaicing and color SR problems.

By substituting Z(t) = HX(t), we obtain from (1) and (2) an alternative model, where the state vector is
Z(t),

Z(t) = F (t)Z(t − 1) + V (t), and (3)

Y (t) = DZ(t) + W (t). (4)

Note that the first of the two equations is obtained by multiplication (1) by H and using the fact that it commutes
with F (t). Thus, the vector V (t) is a colored version of U(t), leading to Cv(t) as the covariance matrix.

This way, the solution of the inverse problem at hand decomposes without loss of optimality into the
much simpler sub-tasks of fusing the available images to estimate the blurry image Z(t) followed by a de-
blurring/interpolation step† estimating X(t) from Ẑ(t).

Kalman filtering should be used to estimate Z(t). In general, the application of Kalman filter requires the
update of the state-vector’s covariance matrix per each temporal point, and this update requires an inversion
of this matrix. If the super-resolved image has N pixels, this matrix is of size N × N , implying a prohibitive
amount of computations and memory.

Fast and memory efficient alternative ways are to be found, and such methods has been proposed in [10]. Here
we show that significant speedups are achieved for the case of translational motion and common space-invariant
blur. However, unlike [10], where the information-pair approach to Kalman filtering was employed, our approach
is based on the more traditional, direct mean-covariance formulation of the Kalman filter. The following defines
the Kalman propagation and update equations [22]. We start with the covariance Propagation Matrix:

M̃(t) = F (t)M(t − 1)FT (t) + Cv(t), (5)

†In this section, we treat the three color bands separately. For instance, only the red band values in the input frames,
Y (t), contribute to reconstruct the red band values in Z(t). The correlation of the different color bands are discussed and
exploited in the next Section.
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the Kalman Gain Matrix is given by:

K(t) = M̃(t)DT [Cy(t) + DM̃(t)DT ]−1. (6)

The updated state vector mean is computed by

Ẑ(t) = F (t)Ẑ(t − 1) + K(t)[Y (t) − DF (t)Ẑ(t − 1)] (7)

The final stage requires the update of the covariance matrix:

M(t) = (I − K(t)D)M̃(t) (8)

While in general the above equations require the propagation of intolerable sized matrices in time, if we
refer to Cv(t) as a diagonal matrix, disregarding its off-diagonal entries, all the matrices involved here become
diagonal. This is a key assumption in transferring the general Kalman filter into a simple and fast procedure,
and as we shall see, the approximated version emerging is quite faithful.

The matrices F and D and their transposes can be exactly interpreted as direct image operators such as
shift and decimation [5, 6]. Applying these matrices as a sequence of image operations spares us from explicitly
constructing them as matrices. This property helps our method to be implemented in an extremely fast and
memory efficient way

Note that the incorporation of each newly measured LR image effectively only updates the value of a few
corresponding pixels, due to the diagonality imposed . This property enables us to simplify the equations (5),
(6), (7), and (8) to the following rather intuitive procedure:

1. For a pixel at spatial position q with a current estimated value [Ẑ(t− 1)]q, and covariance [M(t− 1)]q, we
need to update those two by motion compensation, applying the shift given by F (t), and resulting with
[Ẑ0(t)]q, and covariance [M0(t)]q.

2. For a pixel at spatial position q which is to be updated, we have to update the estimation by

[Ẑ(t)]q =
[Cy(t)]q

[Cy(t)]q + [M0(t)]q + [Cv(t)]q
[Ẑ0(t)]q +

[M0(t)]q + [Cv(t)]q
[Cy(t)]q + [M0(t)]q + [Cv(t)]q

[Y (t)]q (9)

Similarly, the covariance update becomes:

[M(t)]q =
[Cy(t)]q ([M0(t)]q + [Cv(t)]q)
[Cy(t)]q + [M0(t)]q + [Cv(t)]q

(10)

3. For pixel q which is not updated by a LR frame at time (t) (the effect of zero filling in up-sampling
operation), we get that the estimate is simply

[Ẑ(t)]q = [Ẑ0(t)]q. (11)

The covariance is updated by
[M(t)]q = [M0(t)]q + [Cv(t)]q (12)

Such a recursive solution shows that there is no need to keep previous LR frames (except the most recent
one) in memory. Only the HR image estimate Ẑ(t − 1) at any given time and a (same size) weighting image
containing the updated diagonal matrix M(t) need to be stored in memory, leading to a very efficient algorithm.
Furthermore, the update operation is simply shifting the previous estimates Ẑ(t−1), and M(t−1) and updating
the proper pixels using (9)-(10) or (11)-(12). Throughout this paper, we refer to this process as the Shift-And-Add
process and call Ẑ(t) the Shift-And-Add image.

At this point, we have an efficient recursive estimation algorithm producing estimates of the blurry HR image
sequence Ẑ(t). From these frames, the sequence X̂(t) must be estimated. Note that some (if not all) frames will
not have estimates for every pixel in Ẑ(t), necessitating a further joint interpolation and deblurring step. In any
case, the above process is to be applied separately on the R, G, and B layers, producing the arrays we will start
from in the next stage.
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4. DEMOSAICING AND DEBLURRING

To perform robust deblurring and interpolation, we use the MAP cost function

ε (X(t)) = ‖A(t)(HX(t) − Ẑ(t))‖2
2 + λΓ(X(t)), (13)

and define our desired solution as
X̂(t) = ArgMin

X(t)

ε (X(t)) . (14)

Here, the matrix A(t) is a diagonal matrix whose values are chosen in relation to our confidence in the measure-
ments that contributed to make each element of Ẑ(t). These values have inverse relation to the corresponding
elements in the matrix M(t). The regularization parameter, λ, is a scalar for properly weighting the first term
(data fidelity cost) against the second term (regularization cost), and Γ(X) is the regularization cost function.
The regularization term stabilizes the solution of this ill-posed problem, improves the rate of convergence, and
helps remove artifacts. For the case of mono-chromatic SR, many regularization terms have been proposed (e.g.
see [6] for a comparison of Tikhonov, Total Variation, and Bilateral regularization cost functions). In this section,
we propose regularization terms that yield good results for the case of color SR and multi-frame demosaicing
problems.

Referring to the mosaic effects, the geometry of the single-frame and multi-frame demosaicing problems are
fundamentally different, making it impossible to simply cross apply traditional demosaicing algorithms to the
multi-frame situation. To better understand the multi-frame demosaicing problem, we offer an example for the
case of translational motion. Suppose that a set of color filtered LR images are available (images on the left in
Figure 1). We use the two step process explained in Section 3 to fuse these images. The Shift-And-Add image in
the right side of Figure 1 illustrates the pattern of sensor measurements in the HR image grid. In such situations,
the sampling pattern is quite arbitrary depending on the relative motion of the LR images. This necessitates a
different demosaicing algorithm than those designed for the original Bayer pattern.

Figure 1 shows that treating the green channel differently than the red or blue channels, as is done in many
single-frame demosaicing methods before, is not particulary useful for the multi-frame case. While globally there
are more green pixels than blue or red pixels, locally any pixel may be surrounded by only red or blue colors.
So, there is no general preference for one color band over the others.

Another assumption, the availability of one and only one color band value for each pixel, is also not correct
in the multi-frame case. In the under-determined cases ‡, there are not enough measurements to fill the HR grid.
The symbol “?” in Figure 1 represents such pixels. On the other hand, in the over-determined case§, for some
pixels, there may in fact be more than one color value available.

We propose an algorithm for producing a high quality color image from a collection of LR color (filtered)
images. Our computationally efficient MAP estimation method is motivated by the color image perception
properties of human visual system. This method is directly applicable to both color SR (given full RGB LR
frames), and the more general multi-frame demosaicing problems.

As described in Section 3, our method is a two step process of image fusion and simultaneous deblurring and
interpolation. For the case of color SR, the first step involves nothing more than the application of the recursive
image fusion algorithm separately on three different color bands. Image fusion of color filtered images is done
quite similarly, where each single channel color filtered frame is treated as a sparsely sampled three-channel color
image. The second step, deblurring and interpolating the missing values of different color channels, is based on
minimizing a MAP cost function with several terms composing the overall function ε (X(t)).

Data Fidelity Penalty Term: This term penalizes the dissimilarity between the raw data and the HR estimate,
and is defined as:

J0(X(t)) =
∑

i=R,G,B

‖Ai(t)
(

HX̂i(t) − Ẑi(t)
)

‖2
2 , (15)

‡where the number of non-redundant LR frames is smaller than the square of resolution enhancement factor.
§where the number of non-redundant LR frames is larger than the square of resolution enhancement factor.
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Figure 1. Fusion of 7 Bayer pattern LR images with relative translational motion (the figures in the left side of the

accolade) results in a HR image (Ẑ) that does not follow Bayer pattern (the figure in the right side of the accolade). The
symbol “?” represents the High-resolution pixel values that were undetermined after the Shift-And-Add step (result of
insufficient LR frames).

where ẐR, ẐG, and ẐB are the three color channels of the color Shift-And-Add image, Ẑ. AR, AG, and AB

keep track of the known red, green, and blue sensor values in Ẑ. The Ai∈{R,G,B} matrices for the multi-frame
demosaicing problem are sparser than the corresponding matrices in the color SR case. X̂R, X̂G, and X̂B are
the three color components of the reconstructed HR image X̂.

Luminance Penalty Term: The human eye is more sensitive to the details in the luminance component
of an image than the details in the chrominance components [14]. Therefore, it is important that the edges
in the luminance component of the reconstructed HR image look sharp. Applying Bilateral-TV regularization
to the luminance component will result in this desired property [6], where L1 norm is used to force spatial
smoothness while creating sharp edges. The luminance image can be calculated as the weighted sum XL =
0.299XR + 0.597XG + 0.114XB as explained in [23]. The luminance regularization term is defined as:

J1(X) =
P∑

l=−P

P∑

m=0
︸ ︷︷ ︸

l+m≥0

α|m|+|l|‖XL(t) − Sl
xSm

y XL(t)‖1 , (16)

Sl
x and Sm

y are the operators corresponding to shifting the image represented by X by l pixels in horizontal
direction and m pixels in vertical direction, respectively. This cost function in effect computes derivatives across
multiple scales. The scalar weight α, 0<α<1, is applied to give a spatially decaying effect to the summation of
the regularization term. Note that image shifting and differencing operations are very cheap to implement.

Chrominance Penalty Term: The human eye is more sensitive to chromatic change in the low spatial frequency
region than the luminance change [18]. As the human eye is less sensitive to the chrominance channel resolution,
it can be smoothed more aggressively. Therefore, L2 regularization is an appropriate method for smoothing the
Chrominance term:

J2(X(t)) = ‖ΛXC1(t)‖2
2 + ‖ΛXC2(t)‖2

2 , (17)

where Λ is the matrix realization of a high-pass operator such as the Laplacian filter. The images XC1(t) and
XC2(t) are the I and Q layers in the YIQ color representation.
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Orientation Penalty Term: This term penalizes the non-homogeneity of the edge orientation across the color
channels. Although different bands may have larger or smaller gradient magnitudes at a particular edge, the
statistics of natural images shows that it is reasonable to assume a same edge orientation for all color channels.
That is, for instance, if an edge appears in the red band at a particular location, then an edge with the same
orientation should appear in the other color bands at the same location as well. Following [13], minimizing the
vector product norm of any two adjacent color pixels forces different bands to have similar edge orientation. With
some modifications to what was proposed in [13], our orientation penalty term is a differentiable cost function:

J3(X) =
1∑

l=−1

1∑

m=0
︸ ︷︷ ︸

l+m≥0

[‖XG(t) � Sl
xSm

y XB(t) − XB(t) � Sl
xSm

y XG(t)‖2
2+

‖XB(t) � Sl
xSm

y XR(t) − XR(t) � Sl
xSm

y XB(t)‖2
2 + ‖XR(t) � Sl

xSm
y XG(t) − XG(t) � Sl

xSm
y XR(t)‖2

2

]

where � is the element by element multiplication operator.

The overall cost function ε (X(t)) is the summation of these cost functions:

X̂(t) = ArgMin
X(t)

[J0(X(t)) + λ′J1(X(t)) + λ′′J2(X(t)) + λ′′′J3(X(t))] . (18)

Steepest descent optimization may be applied to minimize this cost function. In the first step, the derivative of
(18) with respect to one of the color bands is calculated, assuming the other two color bands are fixed. In the
next steps, the derivative is computed with respect to the other color channels.

For example, the derivative with respect to the green band (XG) is calculated as:

∇XG(t) = HT AT
G(AGHXG(t) − AGẐG(t)) +

λ
′

P∑

l=−P

P∑

m=0
︸ ︷︷ ︸

l+m≥0

0.587αm+l[I − S−m
y S−l

x ]sign
(
XL(t) − Sl

xSm
y XL(t)

)
+

λ
′′

1∑

l=−1

1∑

m=0
︸ ︷︷ ︸

l+m≥0

[

2(Xl,m
B (t) − S−l

x S−m
y XB(t))(Xl,m

B (t)XG(t) − XB(t)Sl
xSm

y XG(t))+

2(Xl,m
R (t) − S−l

x S−m
y XR(t))(Xl,m

R (t)XG(t) − XR(t)Sl
xSm

y XG(t))
]

+

λ
′′′

ΛT Λ [−0.1536 × XR(t) + 0.2851 × XG(t) − 0.1316 × XB(t)] , (19)

where S−l
x and S−m

y define the transposes of matrices Sl
x and Sm

y , respectively and have a shifting effect in the
opposite directions as Sl

x and Sm
y . XR, and XB are the diagonal matrix representations of the red and blue

bands and Xl,m
R and Xl,m

B are the diagonal representations of these matrices shifted by l and m pixels in the
horizontal and vertical directions, respectively. Similar to the matrices in Section 3 all incorporated matrices
such as H, Λ, Sl

x, and Sm
y and their transposes can be exactly interpreted as direct image operators such as blur,

high-pass filtering, and shift.

The gradient of the other channels are computed in the same way, and the following steepest descent iterations
are set up to calculate the HR image estimate iteratively,

X̂
n+1

i (t) = X̂
n

i (t) − β∇X̂
n

i (t), (20)

where i ∈ {R,G,B} and the scalar β is the step size.
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5. EXPERIMENTS

Experiments on synthetic and real world data sets are presented in this section. In the first experiment, we
synthesized a sequence of low-resolution color filtered images from a single color image of size 1200 × 1600
captured with a 1CCD OLYMPUS C-4000 digital camera. A 128 × 128 section of this image was blurred with
a symmetric Gaussian low-pass filter of size 4 × 4 with standard deviation equal to one. The resulting images
were subsampled by the factor of four in each direction and further color filtered with Bayer pattern creating a
32× 32 image. We consecutively shifted the 128× 128 window on the original high-resolution image by one pixel
in right, down, or up directions, and repeated the same image degradation process. In this fashion, we created
a sequence of 250 frames.

Figures 2(a) & 2(b) show two sections of the HR image¶. Figures 2(c) & 2(d) show frames #50 and #250
of the LR sequence ( for the sake of presentation each frame has been demosaiced following the method of [11]).
We created a sequence of HR fused images using the method described in Section 3 (factor of four resolution
enhancement). Figures 2(e) & 2(f) show frames #50 and #250 of this sequence, where the missing values were
filled in using bilinear interpolation ‖. Later each frame was deblurred-demosaiced using the method described
in Section 4. Figures 2(g) & 2(h) show frames #50 and #250 of this reconstructed sequence, where the color
artifacts have been almost completely removed. The corresponding parameters for this experiment (tuned by
trial-and-error) were as follows: α = 0.9, β = 0.06, λ′ = λ′′ = 0.001, and λ′′′ = 10. Fifteen iterations of steepest
descent were used for this experiment.

a c e g

b d f g

Figure 2. A sequence of 250 LR color filtered images where recursively fused (Section 3), increasing their resolution by
the factor of 4 in each direction. They were further deblurred and demosaiced (Section 4), resulting in images with much
higher-quality than the input LR frames. In (a) & (b) we see the ground-truth for frames #50 and #250, and (c) & (d)
are the corresponding synthesized LR frames. In (e) & (f) we see the recursively fused HR frames and (g) & (h) shows
the deblurred-demosaiced frames.

Our next experiment was preformed on a real-world (already demosaiced) compressed image sequence courtesy
of Adyoron Intelligent Systems Ltd., Tel Aviv, Israel. Two frames of this sequence (frames # 20 and #40) are
shown in Figures 3(a) & 3(d). We created a sequence of HR fused images (factor of four resolution enhancement)
using the method described in Section 3( Figures 3(b) & 3(e)). Later each frame in this sequence was deblurred
using the method described in Section 4 ( Figures 2(c) & 3(f) ). The corresponding parameters for this experiment
are as follows: α = 0.9, β = 0.1, λ′ = λ′′ = 0.005, and λ′′′ = 50. Fifteen iterations of steepest descent were
used for this experiment. The (unknown) camera PSF was assumed to be a 4× 4 Gaussian kernel with standard
deviation equal to one. As the relative motion between these images followed the translational model, we only

¶We cut out some border pixels in these images, and the corresponding LR and reconstructed images.
‖For this under-determined experiment, it is easy to show that only 1

3
of the pixel values in Ẑ(t) are determined by

the Shift-And-Add process.
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d e f

Figure 3. A sequence of 60 real-world LR compressed color frames (a & d) are recursively fused (Section 3), increasing
their resolution by the factor of four in each direction (b & e). They were further deblurred (Section 4), resulting in
images with much higher-quality than the input LR frames (c & f).

needed to estimate the motion between the luminance components of these images [24]. We used the method
described in [25] to computed the motion vectors.

6. SUMMARY AND FUTURE WORK

In this paper, we presented algorithms to enhance the quality of a set of noisy, blurred, and possibly color
filtered images to produce a set of color HR images with less noise and blur effects. We used MAP estimation
technique to derive a hybrid method of dynamic SR and multi-frame demosaicing. Our method is also applicable
to the case of color SR.

For the case of translational motion and common space-invariant motion we justified a two-step algorithm.
In the first step, we used the Kalman filtering framework for fusing LR images recursively in a fast and memory
efficient way. In the second step, while deblurring and interpolating the missing values, we reduced luminance
and color artifacts by using appropriate penalty terms. These terms were based on our prior knowledge of the
statistics of natural images and the properties of the human visual system. All matrix-vector operations in the
proposed method are implemented as simple image operators.

While the proposed demosaicing method is applicable to a very wide range of data and motion models, our
dynamic SR method is developed for the case of translational motion and common space-invariant blur. A fast
and robust recursive data fusion algorithm based on using L1 norm minimization applicable to general motion
models is part of our ongoing work.
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