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ABSTRACT

Recently, many computational saliency models have been introduced? % 713:23 to transform a given image into
a scalar-valued map that represents visual saliency of the input image. These approaches, however, generally
assume the given image is clean. Fortunately, most methods implicitly suppress the noise before calculating the
saliency by blurring and downsampling the input image, and therefore tend to be apparently rather insensitive to
noise.'! However, a fundamental and explicit treatment of saliency in noisy images is missing from the literature.
Indeed, as we will show, the price for this apparent insensitivity to noise is that the overall performance over a
large range of noise strengths is diminished. Accordingly, the question is how to compute saliency in a reliable
way when a noise-corrupted image is given. To address this problem, we propose a novel and statistically sound
method for estimating saliency based on a non-parametric regression framework. The proposed estimate of
the saliency at a pixel is a data-dependent weighted average of dissimilarities between a center patch and its
surrounding patches. This aggregation of the dissimilarities is simple and more stable despite the presence of
noise. For comparison’s sake, we apply a state of the art denoising approach before attempting to calculate the
saliency map, which obviously produces much more stable results for noisy images. Despite the advantage of
preprocessing, we still found that our method consistently outperforms the other state-of-the-art? '3 methods
over a large range of noise strengths.
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1. INTRODUCTION

Visual saliency is important both because it directs our attention to what we want to perceive and also because
it affects the processing of information. Visual saliency is also useful to allocate limited perceptual resources to
objects of interest and decrease our awareness of areas worth ignoring in our visual field. From an engineering
point of view, being able to identify small interesting regions or a few objects in a given image is a key to any
machine vision system that could process a flood of visual information. In this paper, we propose a computational
saliency model that transforms the given input image into a scalar-valued map representing visual saliency of
the input image. This map is expected to be useful in applications such as object detection,'® 171824 action
detection,'® and image quality assessment!?'? and more. Recently, many computational saliency models have
been introduced.? % 7:13:23 These approaches, however, generally assume the given image is clean. Fortunately,
these saliency models implicitly suppress the noise by blurring and downsampling the input image, and therefore
tend to be apparently rather insensitive to noise.!! However, a fundamental and explicit treatment of saliency
in noisy images is missing from the literature. Indeed, as we will show, the price for this apparent insensitivity
to noise is that the overall performance over a large range of noise strengths is diminished. Therefore, the aim of
this paper is two-fold. First, we propose a simple and statistically well-motivated computational saliency model
which achieves a high degree of accuracy in predicting where humans look in the given image. Second, with
explicit treatment of saliency in noisy images, the proposed model is more stable when a noise-corrupted image
is given and improves on other state-of-the-art models?® '3 over a large range of noise strengths.

Most saliency models are biologically inspired and based on a bottom-up computational model. Itti et al.”
introduced a saliency model based on the biologically plausible architecture proposed by Koch and Ullman®
and measure center-surround contrast using a Difference of Gaussians (DoG) approach. Bruce and Tsotsos?
measured saliency at a pixel in the image by the self-information of the location with respect to its surrounding
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Figure 1. Overview of saliency detection: We observe dissimilarity of a center patch around x; relative to its surrounding
patches. The proposed saliency model is a weighted average of the observed dissimilarities.

context. Zhang et al.??’s saliency model is also based on the self-information and using natural image statistics

within a Bayesian framework. Gao et al.’® maximize the mutual information between distributions of a set of
features from center and surround regions. Seo and Milanfar'? uses the self-resemblance mechanism to compute
saliency using a nonparametric kernel density estimation based on the matrix cosine similarity measure.

The proposed saliency model is also based on the bottom-up computation. As such, an underlying hypothesis
is that human eye fixations are driven to conspicuous regions in the test image, which stand out from their
surroundings. In order to measure this distinctiveness of region, we observe dissimilarities between a center
patch of the region and nearby patches (Fig. 1). Once we have measured these dissimilarities in the region, the
problem of interest is how to aggregate them to obtain an estimate of the underlying saliency of that region. We
look at this problem from an estimation theory point of view so as to propose a novel and statistically sound
saliency model. We assume that each observed dissimilarity has an underlying true value, but with some noise.
Given these noisy observations, we estimate the underlying saliency by solving a local data-dependent weighted
least squares problem. As we will see in the next section, this results in a linear combination of the dissimilarities
with weights depending on a kernel function to be specified. We define the kernel function so that it gives higher
weight to similar patch pairs than dissimilar patch pairs. Giving higher weights to more similar patch pairs would
seem counter-intuitive at first. But this process will ensure that only truly salient objects would be declared so,
sparing us from too many false declarations of saliency. The proposed estimate of saliency at pixel x; is defined
as:

N
5(x;) = Zwiyi (1)
i=1

where y; and w; are the observed dissimilarity (to be defined shortly in Section 2) and the weight of i-th patch
pair, respectively. We will describe details later in the next section.

It is important to highlight the direct relation of our approach to two earlier approaches of Seo and Milanfar'?
and Goferman et al.° We make this comparison explicit here because these methods too involve aggregation
of local dissimilarities. While this was not made entirely clear in either® or,'? it is interesting to note that
these methods employed arithmetic and harmonic averaging of local dissimilarities, respectively. In,'* Seo and
Milanfar defined the estimate of saliency at pixel x; by
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where y; = exp(—2) and p; is the cosine similarity between visual features extracted from the center patch
around the pixel x; and its nearby patch. This saliency model is (to within a constant) the harmonic mean of

. ,
dissimilarities, y;’s.

Goferman et al.% proposed a context-aware saliency detection based on four basic principles of human visual



attention and formularized the saliency at pixel x; as

1 N
) =1—exp( — > ) (3)
=1

———
arithmetic mean

where y; = d(p;, ¢;) and d(-) is the dissimilarity measure® between a center patch p; around the pixel x; and any
other patch ¢; observed in the test image. This saliency model is the arithmetic mean of y;’s, which is equivalent
to ours except for the exponential and the subtraction from one. The important difference is that while the
weights they have are constant, our approach is using more adaptive weights.

Consequently, among those saliency models in which the level of dissimilarities locally (or globally) observed
are combined by different aggregation techniques, our proposed method is using a simpler, better justified, and
indeed more effective arithmetic aggregation based on kernel regression. Moreover, while other saliency models
described above use constant weights for their respective modes of aggregation, the proposed one is using varying
weights based on non-parametric regression. Furthermore, our saliency model is not only mathematically simple
but also stable when a noise-corrupted image is given, as will be discussed in Section 4.

The paper is organized as follows. Section 2 provides further technical details about the proposed saliency
model. Section 3 demonstrates the performance of this saliency model in predicting human fixations with other
two state-of-the-art models? 3 . In section 4, we investigate the stability of our method in the presence of noise.
Section 5 will conclude the paper.

2. NON-PARAMETRIC REGRESSION FRAMEWORK FOR SALIENCY

In this section, we seek to estimate the saliency at a pixel of interest from observations of dissimilarity between
a center patch around the pixel and its nearby patches (See Fig. 1). Let us denote by p; the similarity between
a patch centered at a pixel of interest, and its i-th neighboring patch. Then, the dissimilarity is measured as a
decreasing function of p as follows:

yi=e P, i=1,.,.N (4)

The similarity function p can be measured in a variety of ways,% 131519 for instance using the matrix cosine
similarity between visual features computed in the two patches.!®> For our experiments, we shall use the LARK
features as defined in,?! which have been shown to be robust to the presence of noise and other distortions. From
an estimation theory point of view, we assume that each observation y; is in essence a measurement of the true
saliency s;, but measured with some error. This observation model can be posed as:

vi=8+mn, t=1,.,N (5)

where 7; is some noise. Given these observations, we assume a locally constant model of saliency and estimate
the expected saliency at pixel x; by solving the weighted least squares problem

N
8(x;) = argmin Y [y — s(x;)* K (yi, y) (6)

s(x;) i=1

where s(x;) is an underlying saliency and y, is a reference observation. Depending on the difference between
this reference observation y, and each observation y;, the kernel function K(-) gives higher or lower weight to

each observation as follows: )
(Yi—yr)

K(yi,yr) =€ 7 (7)
The reference observation can be chosen as the minimum of the N given observations, which corresponds to the
most similar patch pair. Therefore, the weight function gives higher weight to similar patch pairs than dissimilar
patch pairs. The rationale behind this way of weighting is to avoid frivolously declaring saliency; that is, the
aggregation of dissimilarities for a truly salient region should be still high even if we put more weight on the
most similar patch pairs. As we illustrate later in the experimental results, this approach is quite useful when



the input image is corrupted by noise. Namely, we do not easily allow any region to be declared salient and thus
we reduce the likelihood of false alarms. While we define the way of weighting each noisy observation according
to the kernel function, we set the weight of the reference observation itself as the maximum of the rest of weights
for other observations. This setting avoids the excessive weighting of the reference observation in the average.
The parameter h controls the decay of the weights, and is determined as a function of the variance of noise 7
defined in the observation model Equation (5).

Solving Equation (6), the result is merely a weighted average of the measured dissimilarities, where the
weights are computed based on ”distances” between each observation and the reference observation,

K(
5(x;) = Yy K (i ur) vi szyz -
Z'L IK(y“yT) =1

In Section 3, we first evaluate our saliency model for clean images against two existing saliency models,? '3

and then investigate the stability of our saliency model for noisy images in Section 4.

3. PERFORMANCE EVALUATION

In this section, we evaluate the proposed saliency model in predicting human eye fixations on Bruce & Tsotsos’s
dataset®. For quantitative performance analysis, we use area under the receiver operating characteristic curve
(AUC) and the linear correlation coefficient (CC). The AUC metric determines how well fixated and non-fixated
locations can be discriminated by the saliency map using a simple threshold.?? If the values of saliency map
exceed the threshold then we declare them as fixated. By sweeping the threshold between the minimum and
maximum values in the saliency map, the true positive rate (declaring fixated locations as fixated) and the false
positive rate (declaring non-fixated locations as fixated) are calculated and the ROC curve is constructed by
plotting the true positive rate as a function of the false positive rate across all possible thresholds. The CC
metric measures the degree of similarity between the saliency map and a fixation density map produced based
on fixation points (See Fig. 2). If they are independent, the correlation coefficient is zero.

Zhang et al.?®> pointed out two problems in using the AUC metric: First, simply using a Gaussian blob
centered in the middle of the image as the saliency map produces excellent results because most human eye
fixation data have a center bias and human photographers tend to place objects of interest in the center of
photograph.6:20 Secondly, most of saliency models? '3 have image border effects due to the invalid filter re-
sponses at the borders of images and this also produces an artificial improvement in AUC metric. To avoid
these problems, they set the non-fixated locations of a test image as the fixated locations of a randomly chosen
image from the test set. We follow the same procedure: For each test image, we first compute a histogram of
saliency at the fixated locations of the test image and a histogram of saliency at the fixated locations, but of a
randomly chosen image from the test set. Then, we compute all possible true positive and false positive rates by
varying the threshold on these two histograms respectively. Finally, we compute the AUC. All AUC’s computed
for the various images in the database are averaged to derive and overall AUC. Because the test images for the
non-fixations setting are randomly chosen, we repeat this procedure 100 times and compute the mean and the
standard error of the results. The mean of AUC’s of the proposed saliency model and the other state-of-the-arts
models are shown in Table 17. As Table 1 shows, our saliency model is competitive with the other state-of-the-art
models in terms of both AUC and CC metrics. Fig. 2 demonstrates a qualitative comparison of the proposed
model with the human eye fixations, the fixation density map and the saliency maps produced by other models.
Our method is seen to have fewer spurious salient regions than others because we avoid frivolously declaring
saliency by giving higher weight to similar patch pairs when we combine the observed dissimilarities.

From the quantitative performance analysis in Table 1, it seems that our saliency model does not significantly
outperform Seo and Milarfar'3’s method, though it is significantly simpler to describe and implement. However,
as we will see in the next section, our regression based model is more stable when the input images are corrupted
by noise, and thus produces better performance as the noise strength is increased.

*Available at http://www-sop.inria.fr/members/Neil.Bruce/
TThe evaluation code is available at https://sites.google.com/site/saliencyevaluation/evaluation-measures



Table 1. Performance in predicting human fixations

Model AUC (SE) CC
Burce & Tsotsos® | 0.672 (0.0006) | 0.257
Seo & Milanfar!® | 0.696 (0.0007) | 0.327
Proposed method | 0.697(0.0007) | 0.338
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Figure 2. Examples of saliency map. From left to right in each row: An original image with human fixations shown as
yellow crosses; the fixation density map produced based on the fixation points; the saliency map by Bruce & Tsotsos; the
saliency map by Seo & Milanfar; and the saliency map by the proposed saliency model

Figure 3. Examples of noisy images and saliency maps of the proposed method. From left to right, a clean image, and
noisy images with noise variance ¢ = {0.01, 0.05, 0.1, 0.2}, respectively



4. STABILITY OF SALIENCY MODELS FOR NOISY IMAGES

In this section, we investigate the stability of saliency models for noisy images. The same original test images
from Bruce and Tsotsos’s database are used and the noise added to the test images is a white Gaussian noise
with different variance o? which equals to 0.01, 0.05, 0.1 or 0.2f. Examples of noisy test images and their saliency
maps are depicted on Fig. 3. As we may expect, the performance in predicting human fixations decreases in
noisy images (See solid curves in Fig. 4).

However, we note that our saliency model produces better performance than Seo and Milanfar’s model when the
noise strength is increased because of our explicit treatment of noisy images. More specifically, when we compute
the weights using the kernel function Equation (7), we set the smoothing parameter h as 1.603], where 0,27 is the
variance of 1 defined in the observation model, y; = s; + 7;. Because o2 is not known, we learned it from the
clean and noisy images as follows: First, we assume that the variance of noise in the test image, o2 is known and
add that amount of noise to the training images®. Next, according to the observation model, we subtract the
dissimilarities observed from the clean training images from the ones observed from the noisy training images,
which is 7; = y; — s;. Last, the estimate of 03, is the sample variance of (y; — s;)’s that are computed using all
the training images. We precomputed af] for each different noise variance 0. The constant 1.6 is determined

empirically and fixed for all experiments.

As we alluded to earlier, all saliency models implicitly suppress the noise by blurring and downsampling the
input image. Seo and Milanfar downsampled the input image to 64x64. Bruce and Tsotsos used input image
down-sampled by a factor of two. We also downsample the input image to 64 x64. However, as illustrated in Fig.
4, the price for this implicit treatment is that the overall performance over a large range of noise strengths is
diminished. Although our regression based model gives better performance compared to other models when the
noise strength is increased, the accuracy for the noisy case is still much lower than the one for the clean case. As
such, we can apply a denoising approach before attempting to calculate the saliency map, which is an obvious
alternative but surprisingly has not been tried. We use a state of the art denoising method, the block-matching
3-D filter® (BM3D)Y. In Fig. 4, a significant improvement is obtained for all models with this preprocessing step,
and we note that even in this case, our saliency model still consistently outperforms others in a wide range of
noise strengths.

5. CONCLUSION

In this paper, we have proposed a simple and statistically well-motivated saliency model based on non-parametric
regression. The proposed method is practically appealing and more effective because of its simple mathematical
form which is a convex combination of the dissimilarities observed in the given image. Due to its data-dependent
weights and the setting of the smoothing parameter in the kernel function based on the noise variance, the
proposed saliency model not only achieves a high degree of accuracy, but also improves on other state-of-the-art
models for noisy images. Furthermore, even with the advantage of the denoising preprocessing, we found that
our method still consistently outperforms others over a large range of noise strengths.
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