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ABSTRACT

Bilateral filtering!2 has proven to be a powerful tool for adaptive denoising purposes. Unlike conventional filters,
the bilateral filter defines the closeness of two pixels not only based on geometric distance but also based on
radiometric (graylevel) distance. In this paper, to further improve the performance and find new applications,
we make contact with a classic non-parametric image reconstruction technique called kernel regression,® which
is based on local Taylor expansions of the regression function. We extend and generalize the kernel regression
method and show that bilateral filtering is a special case of this new class of adaptive image reconstruction
techniques, considering a specific choice for weighting kernels and zeroth order Taylor approximation. We show
improvements over the classic bilateral filtering can be achieved by using higher order local approximations of
the signal.

1. INTRODUCTION

The bilateral filter was first proposed in Ref. 1 as a very effective one pass adaptive filter for denoising purposes
while keeping the edges relatively sharp. Since its advent, the idea of bilateral filtering has been modified and
improved, and its relation to some of the most popular image enhancement and reconstruction algorithms has
been established.To take a notable example, Elad? proved that such filter is a single Jacobi iteration of a weighted
least squares minimization, and suggested using more iterations to enhance the smoothing effect of estimation.
In related works, Barash et. al.**® established the analogy between the geometric interpretation in anisotropic
diffusion, mean shift algorithm, and bilateral filtering.

To reduce computational complexity and improve compression efficiency, a modified implementation of bi-
lateral filter is recently proposed in Ref. 6. In another venue, application of bilateral filtering for color image
enhancement has been studied in Refs. 7,8. Moreover, a few papers have reported on a specific class of Maximum
a Posteriori (MAP) image reconstruction techniques® ¥ that benefit from coupling bilateral filtering with Total
Variation'! defining very efficient adaptive regularization terms.

The data-adaptive kernel regression framework, proposed in Ref. 12 based on the classic kernel regression
framework,? has wide ranging applications for image and video processing; for example, image denoising, and
image interpolation/reconstruction from regularly and irregularly sampled data (i.e. image upscaling, image
fusion, and super-resolution). In Ref. 12, we found that the bilateral filter!:? is a special case of data-adaptive
kernel regression which is called bilateral kernel regression (BKR) or higher order bilateral filter. The purpose
of this paper is to review BKR and examine its performance and behavior numerically and visually in filtered
images.
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2. HIGHER ORDER BILATERAL FILTERS

The kernel regression (KR) framework® defines its data model in 2-D as
yi=z(xi) e, i=1- P x = [, a2 (1)

where y; is a noisy sample at x;, z(-) is the (hitherto unspecified) regression function to be estimated, &; is an
ii.d zero mean noise, and P is the total number of samples in a neighborhood (window) of interest. As such,
the kernel regression framework provides a rich mechanism for computing point-wise estimates of the regression
function with minimal assumptions about global signal or noise models.

While the specific form of z(-) may remain unspecified, we can rely on a generic local expansion of the function
about a sampling point x;. Specifically, if x is near the sample at x;, we have the (N + 1)-term Taylor series*
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where V and H are the gradient (2 x 1) and Hessian (2 x 2) operators, respectively, and vech(-) is the half-
vectorization operator which lexicographically orders the lower triangular portion of a symmetric matrix. Fur-
thermore, By is z(x), which is the pixel value of interest, and the vectors 3; and 3, are
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Since this approach is based on local approximations, a logical step to take is to estimate the parameters

{8, }N_, from all the samples {y;}1_; while giving the nearby samples higher weights than samples farther away.
A formulation of the fitting problem capturing this idea is to solve the following optimization problem,
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where N is the regression order, Kg(+) is the kernel function (a radially symmetric function), H(= hl) is the
(2 x 2) smoothing matrix, and h is the global smoothing parameter. We control the strength of the smoothing
effect by h.

For images, the signal of interest often has discontinuities. Although one way to ensure that the estimated
signal approximates such discontinuities is to set N large, the larger N we choose, the dramatically higher the
computational complexity of the resulting algorithm becomes. Thus, without setting N large, we add an extra
parameter to the kernel function, namely radiometric distance. That yields BKR:
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where Kg,(x; — x)Kp, (y; — y) is specifically a product of two kernels: spatial kernel and radiometric kernel.
H, (= h,I) is the 2 X 2 smoothing matrix, h, is the spatial smoothing parameter, and h, is the radiometric
smoothing parameter. These two smoothing parameters dictate the “footprint” of the bilateral kernel function.

The optimization problem (6) can be expressed in matrix form as a weighted least-squares optimization
problem, '3 14

b = arg mbin Hy — Xbuz)Vx

= argmin (y — Xxb) Wi(y — Xxb), (7)

*Other localized representations are also possible and may be advantageous.
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Figure 1. The footprints of the bilateral equivalent weight function W;(x; —x,y; —y, N) at a variety of image structures;
flat, strong edge, corner, texture, and weak edge for zeroth and second order (N = 0 and 2). (Note: Each weight function
is respectively normalized, and Fig. 2 illustrates the detail of the weight function at the strong edge.)
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with “diag” defining a diagonal matrix. Regardless of the regression order (IV), since our primary interest is
to compute an estimate of the image (pixel values), the necessary computations are limited to the ones that
estimate the parameter (3. Therefore, the weighted least-squares estimation is simplified to

2(x) = fo = e (XIW, Xy ) " XI W, y, (11)

where ey is a column vector with the first element equal to one, and the rest equal to zero. This estimator can
be summarized the form of the weighted linear combination of all the samples using the bilateral “equivalent”
weight function W, as follows:
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For N = 0, the estimator (12) becomes a generalization of the Nadaraya-Watson estimator!® with the bilateral

kernel:
P

P e

z i= K s X; —X T i i
2x)=Po= Wi(xi—x,yi—y,O)yi:Z‘PI i, { M, (v —9)y
i=1 Ei:l Ku, (xi —x)Kn, (v — )

(13)



x10°
16

10,3 Zeroth order
X 145 R — '~ Second order |
15 !
12 !

10t "

n10

Equivalent kernel weight, W.

" ‘ ‘ ‘ ‘ ‘
-30 -20 -10 0 10 20 30
Spatial difference, X~ %,
(a) Zeroth order (b) Second order (c) Horizontal slices of W,

Figure 2. The footprints of the bilateral equivalent weight function Wj(x; — x,y; — y, N) at the strong edge for zeroth
and second order (N = 0 and 2): (a)-(b) the footprints of W for zeroth and second order, respectively, (c) the horizontal
slices pointed by the arrows of W of (a) and (b).

which is nothing but the recently well-studied and popular bilateral filter.:? Fig. 1 illustrates the bilateral
equivalent weight function W; at a variety of image structures for the zeroth and second order cases (N = 0 and
2) (Note: Each weight function is respectively normalized), and Fig. 2 illustrates the details of W} at the strong
edge: (a)-(b) the footprints of W; for zeroth and second order, respectively, (c) the horizontal slices pointed by
the arrows of W} of (a) and (b). The derivations for the bilateral filter (13) and the higher order bilateral filters
for N = 1,2 are fully explained in Ref. 12. We note that in general since the pixel value y at an arbitrary position
x might not be available from the given data (e.g. in an interpolation setting), the direct application of (6) is
limited to the denoising problem. This limitation, however, can be overcome by using an initial estimate of y by
an appropriate interpolation technique (e.g. KR (5)), subsequently followed by the application of data-adaptive
kernel regression as elucidated in Ref. 12.

The derivation of the zeroth order bilateral filter (13) above indicates that the bilateral filter only consists
of the constant term (fy), and the consideration of only f§y is the cause of filtered image signals being piecewise
constant. Such signals are often unsuitable for image processing because image signals of interest have compli-
cated contours which include texture and gradation. Higher order bilateral filters relax the piecewise constancy
by the choice of N > 0. For instance, images estimated by BKR with N = 1 and N = 2 become piecewise linear
and piecewise quadratic, respectively.

As a further extension of the standard bilateral filter, Elad suggested iterative filtering in order to intensify
the smoothing effect in Ref. 2. The iterative filtering process is as follows: (i) apply bilateral filter to given noisy
data, (ii) apply bilateral filter to the previous estimate, (iii) repeat the step (ii). For N = 0, such estimator can
be written as

Uil K, (% — %) Ko (2(x:) — #(x)) #(x:)
i Ku, (xi — x) K (2(x;) — #(x))
where 29(x;) = y; and /¢ is the index of iterations. This filtering algorithm is very similar to the Mean-Shift

algorithm.'®:17 In the next section, we show a simulation of higher order bilateral filter and its iterative filtering
application, and compare to the results of standard (zeroth-order) bilateral filtering,.

(%) ; (14)

3. SIMULATION

First, we did denoising simulations by standard and higher order bilateral filters for a variety of SNRs: namely,
10, 15, 20, 25, and 30[dB]. At each noise level, we created 50 noisy images by adding white Gaussian noise with
different realizations, and denoised by the standard bilateral filter (13) and the second order bilateral filter. The
spatial and radiometric smoothing parameters (hs and h,.) in each case were optimized by the cross validation
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Figure 3. Performance comparison between zeroth and second order bilateral filters by Monte Carlo simulations (50
times). The solid (blue) line and dashed (red) line are mean values and standard deviations of RMSE values in different
SNRs by bilateral filter (N = 0) and second order bilateral filter (N = 2), respectively. The spatial and radiometric
smoothing parameters are optimized by the cross validation method.

(CV) method’.'® The average root mean square errors (RMSE) are shown in Fig. 3. Numerically, the second
order bilateral filter is better than the bilateral filter at all noise levels for this example. Fig. 4 illustrates (a)
the original image, (b) a noisy image (SNR = 20[dB]), and (c)-(d) denoised images by the bilateral filter (13)
and the second order bilateral filter, respectively. Fig. 5(a) and Fig. 5(b) illustrate absolute residual images of
Fig. 4(a) and Fig. 4(b), respectively. It is worth noting that some textures of the original image are visible in
Fig. 5(a), and that the residual image in Fig. 5(b) is more noise-like than Fig. 5(a), indicating that the second
order bilateral filter was more effective. It is also worth mentioning that in general, the zeroth order bilateral
filter will perform better on average for denoising strictly piecewise constant images, but not so for any other
general class of images. A further question worth considering is whether a scheme that would change the order
N in a spatially varying way would lead to better results for a wider class of images.

Next, the graph illustrated in Fig. 6 shows the behavior of iterative filtering using 50 Monte Carlo simulations
in the case of SNR = 20[dB]. The solid (blue) line and the dashed (red) line are average RMSE values by the
standard bilateral filter (13) and the second order bilateral filter, respectively, versus the number of iterations. We
used the optimized spatial and radiometric smoothing parameters by the cross validation method in the previous
simulation. The first filtered images by the bilateral filter and the second order bilateral filter are shown in
Fig. 4(a) and Fig. 4(b), respectively, and Fig. 7 shows the filtered images after three and seven iterations. The
iterative zeroth order bilateral filter outputs piecewise constant images, and this property can be used for image
segmentation, similarly to the output produced by the Mean Shift algorithm. On the other hand, the iterative
second order bilateral filter outputs piecewise quadratic images, and the RMSE values for this example become
worse as a function of iterations much slower than the iterative zeroth order bilateral filter.

In order to use CV, initial estimates for eliminated pixels are necessary, and we filled up the eliminated pixels by the
second order classic kernel regression (5) with the global smoothing parameter h = 0.4.
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Figure 4. Denoising example of higher order bilateral filter (single application) in SNR = 20[dB]: (a) original image, (b)
noisy image (SNR = 20[dB]), and (c)-(d) denoised images by the standard bilateral filter and the second order bilateral
filter, respectively. The RMSE values for the denoised images are (c) 4.15 and (d) 3.84.

4. CONCLUSION AND FUTURE WORKS

We verified that the higher order bilateral filter, which was introduced in Ref. 12, is numerically better than
the standard bilateral filter for image denoising, and studied its behavior in an iterative setting. In Ref. 19, we
showed that the framework of general data-adaptive kernel regression methods, which includes the higher order
bilateral filters, can be extended to other image reconstruction problems such as deblurring, and also indicated
its applicability to the multi-frame scenario,'? namely super-resolution.
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Figure 5. Absolute residuals images of the standard bilateral filter and the second order bilateral filter: (a) the standard
bilateral filter, and (b) the second order bilateral filter.
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Figure 6. Behavior demonstration of iterative higher order bilateral filters by Monte Carlo simulations (50 times) in
SNR = 20[dB]. The solid (blue) line and the dashed (red) line are average RMSE values by bilateral filter (N = 0) and
second order bilateral filter (N = 2), respectively, versus the number of iterations. The spatial and radiometric smoothing
parameters are optimized by the cross validation method.



L

(a) Bilateral filter (3 iterations) (b) Second order bilateral filter (3 iterations)
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Figure 7. Behavior of iterative higher order bilateral filters: (a) and (c) are the images by applying bilateral filter 3 times
and 7 times, respectively, and (b) and (d) are the images by applying second order bilateral filter 3 times and 7 times,
respectively. The noise level SNR = 20[dB] was used.
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