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ABSTRACT

Data-dependent filtering methods are powerful techniques for image denoising. Beginning with any base pro-
cedure (nonlinear filter), repeated applications of the same process can be interpreted as a discrete version of
anisotropic diffusion. As such, a natural question is “What is the best stopping time in iterative data-dependent
filtering?” This is the general question we address in this paper. To develop our new method, we estimate the
mean-squared-error (MSE) in each image patch. This estimate is used to characterize the effectiveness of the
iterative filtering process, and its minimization yields the ideal stopping time for the diffusion process.
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1. INTRODUCTION

In the past few years, non-parametric restoration methods have become extremely popular. These new algorithms
are mostly patch-wise, and also employ local and non-local similarities in the signals.' Perhaps the most well
known algorithm in this class is the bilateral filter,? which smooths images by means of a nonlinear combination
of nearby image values. The method combines pixel values based on both their geometric closeness and their
photometric similarity. The Non-Local Means (NLM)?3 is another very popular data-dependent filter which
closely resembles the bilateral filter except that the photometric similarity is captured in a patch-wise way. More
recently, the LARK kernel® exploits the geodesic distance based on estimated gradients. In general, all of these
restoration algorithms work based on the same framework in which some data-adaptive weights are assigned to
each pixel contributing to the filtering. The measurement model for the denoising problem is defined as:

y=z-+e (1)

where z, e and y are column vectors and respectively denote the underlying signal, noise and noisy signal. The
noise e is zero mean, white, and uncorrelated with the signal z. Eq. 2 shows the matrix-vector multiplication
form of the denoising filter where Z and W denote the filtered signal and the matrix of filter weights respectively.
The square matrix W is in general a function of the given data vector* y. This filter is given by the weights
defined by any one of the data-dependent methods discussed above

z =Wy. (2)

In general, W is a positive definite, row-stochastic matrix (each row sums to one.) Although this matrix
is not symmetric, it has been shown that it can be very closely approximated with a symmetric matrix.®> The
spectrum of W specifies the effect of the filter on the noisy signal. Considering the symmetric W matrix, its
eigen-decomposition is:

W =vVsv7T (3)

where S = diag[\1, ..., \,] contains the eigenvalues in decreasing order 0 < X\, < ... < Ay = 1, and V is an
orthogonal matrix containing the eigenvectors of W in its columns. It is possible to improve the performance of
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these filters by applying them multiple time. That is, z; = WFy. In this framework, each application of W can
be thought of as one step of anisotropic diffusion with the kernel*% defined by W. Diffusion filtering gradually
removes noise in each iteration, but also takes away latent details from the underlying signal. Choosing a small
iteration number k preserves the underlying structure, but also does little denoising. On the other hand, a large
k tends to over-smooth and remove noise and high frequency details at the same time. The question we address
here is when to stop the diffusion process so as to get the ideal denoising result. In other words, we look for the
optimal iteration number which keeps the balance between noise removal and detail preservation.

Two existing stopping time criteria are detailed in Refs. 5,8. Sporring and Weickert” showed that the
behavior of generalized entropies over time can provide a clue as to the optimal stopping. Monotonicity and
smoothness of the entropy indicates the earliest time when the iteration should be stopped because the output
signal entropy has reached its steady state. Mrdzek and Navara® developed a time-selection strategy for diffusion.
In their proposed method, the stopping time is chosen so that the correlation of the filtered signal and noise is
minimized. While these stopping criteria are applicable to anisotropic diffusion, there is a need to compute the
diffusion scale for patch-wise methods. In the next section we show that the second method does not work in
patch-based denoising, and propose an effective alternative.

2. EXISTING STOPPING TIME STRATEGIES

Mrézek and Navara® developed a time-selection strategy for where the stopping time is chosen so that the
correlation of signal and noise in the filtered image is minimized. More specifically, they first define the residual
after k iterations as:

=y — 2 = (I Why. (4)

To find the optimal stopping time they propose to minimize the normalized correlation between rj and zj in
each iteration:

tr (cov(ry,zg))
Vtr (cov(ry)) tr (cov(zy))

where the covariance of two vectors ry and zj is given by

(5)

p(re,2r) =

COV(I‘k,/Z\k) = E[(I’k — fk)(ik — Zk)T] (6)

in which T, and Z; are expected values of r;, and Z;.? Without additional assumptions on the noise, the signal
and the filter, p(ry,Zx) is not guaranteed to be unimodal and possess a unique single minimum.® Let us go back
to (5) and rewrite the criterion. For a deterministic signal z we have:

= E[(I- Why] ~ (1-WF)z (7)
7, = E[W"y] ~ W¥y (8)

We also can rewrite E[r;z; | as signal and noise components
Eriz] = (I - W")(E[zz"] + c?2T)W* (9)
where o2 is the noise variance. Overall, considering (7),(8) and (9), and after some simplifications the covariance

is given:
Sy kyywrk 2
cov(r,zg) = (I - W )W" eI (10)
Doing the same for the other terms, we can express them in terms of W, z and o.

tr (cov(ry)) = tr ((I - Wk)QUQI) (11)



tr (cov(zy)) = tr(Wo2I) (12)

Overall, the correlation criterion can be written as:

3

— (1= A)AF
gy = SA-WHWH S a3)

Vi@ = Wh2W) g

where {)\;} denote the eigenvalues of the filter. Mrdzek and Navara® claim that minimizing (13) should give an
optimal k& for minimizing MSE in the diffusion process. This function generally does not have a well-defined
minimum in a patch-wise denoising approach, and we present an effective alternative. We can see that (13) does
not depend on the noise, so the criterion would not seem to work generally. In fact as k grows, the correlation
criterion always converges to zero. In section 3 , we give an alternative for the optimal stopping time.

3. PROPOSED METHOD

If we clairvoyantly had the mean-square error MSE function in each iteration, finding the optimal stopping time
would be trivial, as this would correspond to the minimum of the MSE. Otherwise, to find the minimum of the
MSE, an estimate in each iteration is needed. A close approximation of the MSE for the diffusion process has
been proposed.® Considering the eigen-decomposition of W = VSVT, the image z can be written in the column
space of V as z = Vbyg, where by = [bo1, b2, ..., bon] T, where {b2;} are the signal energy distribution over all
the modes. We start our discussion with a description of the predicted MSE for the diffusion process after k
iterations:

MSE; = 1= \)2p2 + o2 N2k 14
1 07 03

i=1

Our objective is to find % which is the optimal stopping time that minimizes MSE for the diffusion process.
Since in practical denoising problems there is no access to the clean image, the MSE needs to be estimated. In
evaluating (14), we need to have \; and bg;. In general, we have the eigenvalues ); in advance from the given
filter W. What is missing is an estimate of the coefficients bgy;, which we denote by 301- . With this notation, the
estimate of the MSE can be written as:

O, = MSEj, = > (1 - AF)2 B3, + 0222k (15)

i=1

Next, we propose a way to estimate the coefficients by = [bo1, bo2, ..., boi]*. We apply the given filter to the
data as a “pre-processor” as follows:

by =V'z=VIwnmy (16)

in which W™ = VS™V” 8™ = diag[\7", ..., A"] where m can be any positive real number. This means that
in our search for m we are not just limited to integer values. With this estimate of the vector bg, we can then
study the behavior of the estimated MSE, 0, ,, as a function of m as follows. The bias for this estimate can be
expressed as:



bias(Okm) = B(Okm)— Ok (17)

= ) (L= X)2(AI"bG; + Ao — b3,) (18)
=1

= 3 (1 - A)2bias(b,) (19)
=1

It is evident that bias(gkym) is a linear combination of the bias in each channel 7. As k grows, the bias tends
n ~,
to a constant value of > bias(b3;) in each patch*. Similarly, the variance of the estimator also can be written

i=2
as a linear combination of the variance in each channel i:

var(Opm) = 2023 ™1 - A28, + 0?) (20)
1=1

n

> (1= AH)var(Bg,) (21)

i=1

n .

As k grows , the variance tends to a constant value of Y var(b3;) in each patch. The overall error in estimating
i=2

01 across all iterations can be written as the mean integrated squared error defined as follows:

T

T
F(m) = MSE(fm) = Y [|bias(Ok.m)||* + var(B,m) (22)
k=1 k=1

where T is the total number of iterations which should be set as a sufficiently large integer (well beyond the
optimal stopping time). We employ a gradient descent method to find a local minimum to this function. Once
we have the estimate for m, the optimal “pre-processor” (16) gives us the estimate for the vector by. Now we
are ready to minimize @k with respect to k and estimate the ideal stopping time k. In the next section we
compare our estimate with the true stopping time, but first some notational matters: &k minimizes the actual
MSEy, k. is the minimum of the clairvoyant approximation MSEy, (given in (14)) and finally k. is our estimation
for the ideal stopping time which minimizes ék Hence, we can formulate these minimizations as:

k = arg nr}cin |z — WFy|? (True MSE) (23)

k. = arg mkin Z(l — 2202, + 02N (Clairvoyant MSE) (24)
i=1

k. = arg mkinZ(l — A2 4 02A2F  (Estimated MSE) (25)
=1

in which the clairvoyant MSE uses the clean bg. Starting from k& = 1 we check if the MSE in (14) and (15) are
decreasing. The iteration number k is increased over integer values as long as the MSE is descending.

*Since A1 = 1, the index 7 in the sum starts from 2.
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Figure 1. Monte-Carlo estimation of ideal stopping time for LARK filter in diffusion process. Different types
of patches:(a) flat,(b) edge, (c) corner,(d) texture.(¢? = 100).

4. SIMULATION RESULTS

Before discussing our simulation results, we should note that the non-parametric filters W are approximately
deterministic when the noise variance o2 is small relative to the clean data z. In the other words, when signal-
to-noise ratio is high, the matrix W = W (y) computed from noisy data is close to the matrix W (z).> In order
to get a closer approximation of W(z), in our simulations the filter W(z) is used which is computed from the
pre-filtered image z = Wy. To measure the effectiveness of our stopping criterion, we introduce a measure to
compare the relative size of the correct mean squared error at the true minimum versus its value at the estimated
minimum given by k.. Normalized-Squared Error (NSE) is defined as follows:

(MSE; — MSE; )2

NSE = 100 x >
MSE?

% (26)
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Figure 2. Monte-Carlo estimation of ideal stopping time for NLM filter in diffusion process. Different types
of patches:(a) flat,(b) edge, (c) corner,(d) texture.(¢? = 100).

In our simulations the patch size was 21 x 21 and additive white Gaussian noise with ¢ = 100 was added
to the image. The total number of iterations, 7" was set to 20. Fig. 1 illustrates actual, ideally predicted and
estimated MSE for different types of patches shown in Fig. 3(a)-(d). The Monte-Carlo estimation is done for
50 noise realizations and each time the filter W is computed from the pre-filtered image for the LARK kernel.!
It can be observed that the estimated MSEs are quite close to the true and predicted ones. The experiment
is repeated, this time using the NLM kernel® for the construction of W in Fig. 2. As can be seen, in all the
tested patches for NLM filter, the normalized error in locating the optimal MSE is close to zero. Experiments
for denoising different patches (see Fig. 3) are carried out, where the same LARK and NLM filters were used
for the diffusion process. As can be seen the proposed stopping time strategy shows a good performance in all
the patches for both LARK and NLM filters. The largest differences between the estimated and true MSE occur
in the case of the flat patch, as shown in figures 1(a) and 3(i). Even in this case, where the NSE is not quite
negligible, we observe that the visual quality of the results is essentially the same.
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Figure 3. Denoising example for different patches: (a) flat, (b) edge, (c) corner, (d) texture. (e)-(h) noisy patches
= 100. (i)-(1) denoised patches by LARK filter (MSEs are 9.71, 18.99, 15.88 and 51.19 respectively). (m)-(p)
denoised patches by NLM filter(MSEs are 5.48, 18.09, 17.44 and 40.19 respectively).




5. CONCLUSION AND FUTURE WORKS

To improve the effectiveness of data-dependent filtering, we introduced a new stopping criterion based on mini-
mization of MSE for each patch. Our estimation of MSE was biased and an essential study might be comparison
of the presented algorithm with other unbiased estimation methods such as SURE.!? The proposed method also
can easily be extended to the whole image with just an aggregation step for overlapping patches.
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