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Abstract

I will described a nonparametric framework for locally adaptive signal processing and analysis. This framework is
based upon the notion of Kernel Regression which we generalize to adapt to local characteristics of the given data,
resulting in descriptors which take into account both the spatial density of the samples (”the geometry”), and the actual
values of those samples (”the radiometry”). These descriptors are exceedingly robust in capturing the underlying struc-
ture of the signals even in the presence of significant noise,missing data, and other disturbances. As the framework
does not rely upon strong assumptions about noise or signal models, it is applicable to a wide variety of problems.
On the processing side, I will illustrate examples in two andthree dimensions including state of the art denoising,
upscaling, and deblurring. On the analysis side, I will describe the application of the framework to training-free object
detection in images, and action detection in video, from a single example.
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1 Steering Kernel Regression (SKR)

We first review the fundamental framework ofkernel regression [3] and then describe its novel extension, the steering
kernel regression (SKR), in 2-D. The extension to 3-D is straightforward. The KR framework defines its data model
as

yi = z(xi) + εi, i = 1, · · · , P, xi = [x1i, x2i]
T , (1)

whereyi is a noisy sample atxi (Note:x1i andx2i are spatial coordinates),z(·) is the (hitherto unspecified)regression
function to be estimated,εi is an i.i.d. zero mean noise, andP is the total number of samples in an arbitrary ”window”
around a positionx of interest. As such, the kernel regression framework provides a rich mechanism for computing
point-wise estimates of the regression function with minimal assumptions about global signal or noise models.

While the particular form ofz(·) may remain unspecified, we can develop a generic local expansion of the function
about a sampling pointxi. Specifically, ifx is near the sample atxi, we have theN -th order Taylor series

z(xi) = z(x) + {∇z(x)}
T
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where∇ andH are the gradient (2×1) and Hessian (2×2) operators, respectively, andvech(·) is the half-vectorization
operator that lexicographically orders the lower triangular portion of a symmetric matrix into a column-stack vector.
Furthermore,β0 is z(x), which is the signal (or pixel) value of interest, and the vectorsβ

1
andβ

2
are

β
1
=

[
∂z(x)

∂x1

,
∂z(x)

∂x2

]T

, β
2
=

1

2

[
∂2z(x)

∂x2

1

, 2
∂2z(x)

∂x1∂x2

,
∂2z(x)

∂x2

2

]T

. (3)

Since this approach is based onlocal signal representations, a logical step to take is to estimate the parameters
{βn}

N
n=0

from all the neighboring samples{yi}
P
i=1

while giving the nearby samples higher weights than samples
farther away. A (weighted) least-square formulation of thefitting problem capturing this idea is to solve the following
optimization problem,

min
{β

n
}N
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KHi
(xi − x) (4)
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Figure 1: (a) Faces in various colors, lighting condition, occlusion, in-plane and out-of-plane rotation, and scale (b)
Steering kernel weights at several locations in an image. The SKR weights can be used not only to process and enhance
an image, but also as visual descriptors (features) to enable very effective recognition.

with

KHi
(xi − x) =

1

det(Hi)
K

(
H

−1

i (xi − x)
)
, (5)

whereN is the regression order,K(·) is the kernel function (radially symmetric function such asa Gaussian), and
Hi is the smoothing (2 × 2) matrix which dictates overall shape of the resulting weight function. The shape of the
final weight kernels is perhaps the most important factor in determining the quality of estimated signals. Namely, it is
desirable to have kernels that adapt themselves to the localstructure of the measured signal, providing, for instance,
strong filtering along an edge rather than across it. This last point is indeed the motivation behind thesteering KR
framework which we will describe in this paper.

Returning to the optimization problem (4), regardless of the regression order and the dimensionality of the regres-
sion function, the estimate of the signal (i.e. pixel) valueof interestβ0 is given by a weightedlinear combination of
the nearby samples:

ẑ(x) = β̂0 =

P∑

i=1

Wi(K,Hi, N,xi−x) yi,

P∑

i=1

Wi(·) = 1, (6)

where we callWi theequivalent kernel function foryi (q.v. [3] for the derivation).
What we described above is the ”classic” kernel regression framework, which yields a point-wise estimator that

is always a locallinear (though not necessarily space-variant) combination of theneighboring samples. As such,
it suffers from an inherent limitation. In the next section,we describe the framework ofsteering KR, in which the
kernel weights themselves are computed from the local window, and therefore we arrive at filters with more complex
(nonlinear and space-variant) action on the data.

The steering kernel framework is based on the idea of robustly obtaining local signal structures (e.g. edges in 2-D
and planes in 3-D) by analyzing the radiometric (pixel value) differences locally, and feeding this structure information
to the kernel function in order to affect its shape and size.

Consider the (2 × 2) smoothing matrixHi in (5). In the generic ”classical” case, this matrix is a scalar multiple of
the identity. This results in kernel weights which have equal effect along all thex1- andx2-directions. However, if we
properly choose this matrix, the kernel function can capture local structures. More precisely, we define the smoothing
matrix as a symmetric matrix

Hi = C
− 1

2

i , (7)

which is called thesteering matrix, and where the matrixCi is estimated as the local covariance matrix of the neigh-
borhood spatial gradient vectors as follows:

Ji =





...
...

zx1(xj) zx2(xj)
...

...



 , xj ∈ wi −→ Ĉi = J
T
i Ji. (8)

wherezx1
(·) andzx2

(·) are the first derivatives alongx1- andx2-axes, andwi is a local analysis window around a
sample position atxi. As illustrated in Fig. 1b, it is important to note that sinceHi is different for each pixeli, the
shape of the resulting weight function will not be a simple Gaussian with with elliptical contours.
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With the above choice of the smoothing matrix and, for example, a Gaussian kernel, we now have the steering
kernel function as

KHi
(xi − x) =

√
det(Ci) exp

{
−

∥∥∥C
1

2

i (xi − x)
∥∥∥

2

2

}
. (9)

2 Applications to Restoration and Recognition

Restoration [2]: This is an example of simultaneous denoising and upscaling with the Foreman sequence. We
enhanced and upscaled this sequence beyond its native spatial resolution by a factor of 2 (from QCIF (144 × 176) to
CIF (288 × 352)). Two sample frames of the video are shown in Figure 2. As seen in the input frames, the video is
compressed and carries some noise. We note that both the typeof compression and the noise statistics are unknown
to our method. The upscaled video by factor of 2 using Lanczosinterpolation and (3-D) SKR methods are shown in
Figures 2 in the next two columns.

Recognition [1]: The generic problem of interest here is this: We are given a single ”query” or ”example” image of
an object of interest (for instance a picture of a face), and we are interested in detecting similar objects within other
”target” images with which we are presented. The target images may contain such similar objects (say other faces)
but these will generally appear in completely different context and under different imaging conditions. Examples of
such differences can range from rather simple optical or geometric differences (such as occlusion, differing view-
points, lighting, and scale changes); to more complex inherent structural differences such as for instance a hand-drawn
picture of a face rather than a real face. (See Figure 1a.) We can essentially use (a normalized version of) the function
KHi

(xi − x) to represent an image’s inherent local geometry; and from this function we extract features which will
be used to compare the given patch against patches from another image. This approach has been successfully applied
to detection of varied objects in both images and video.

Figure 2: Left: Restoration example. A video upscale example using a real video sequence: Column 1 shows 2 frames
from the original video; next column shows the upscaled frames by Lanczos interpolation, and the third column shows
the upscaled frames by 3-D SKR. Right: Recognition example.Note that the template example does not actually
appear in any of the target images. Colored contours show thecenter of the detected matching regions.
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