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Abstract

| will described a nonparametric framework for locally atheg signal processing and analysis. This framework is
based upon the notion of Kernel Regression which we gerertdi adapt to local characteristics of the given data,
resulting in descriptors which take into account both tredigpdensity of the samples ("the geometry”), and the dctua
values of those samples ("the radiometry”). These desmsatre exceedingly robust in capturing the underlyingestru
ture of the signals even in the presence of significant naiggsing data, and other disturbances. As the framework
does not rely upon strong assumptions about noise or sigodéls, it is applicable to a wide variety of problems.
On the processing side, | will illustrate examples in two dmee dimensions including state of the art denoising,
upscaling, and deblurring. On the analysis side, | will dibgcthe application of the framework to training-free attje
detection in images, and action detection in video, fronnglsiexample.
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1 Steering Kernel Regression (SKR)

We first review the fundamental frameworklaf nel regression [3] and then describe its novel extension, the steering
kernel regression (SKR), in 2-D. The extension to 3-D isightfiorward. The KR framework defines its data model
as
%:Z(Xz)—i-fz, ’L:la 7P7 X; = [xliaIQi]Ta (1)

wherey; is a noisy sample at; (Note: z1, andzs; are spatial coordinates)(-) is the (hitherto unspecifiedggression
function to be estimated;; is an i.i.d. zero mean noise, aftiis the total number of samples in an arbitrary "window”
around a positiox of interest. As such, the kernel regression framework plesia rich mechanism for computing
point-wise estimates of the regression function with maliassumptions about global signal or noise models.

While the particular form of(-) may remain unspecified, we can develop a generic local eigraakthe function
about a sampling point;. Specifically, ifx is near the sample af;, we have theV-th order Taylor series

2(xi) = 2(x) + {Vz(x)}" (x; —x) + %(Xi = %) {He(x)} (xi — %) + -+

= o+ B1 (xi — x) + B3 vech { (x; — x)(x; — %)} + - (2)

whereV andH are the gradien®(x 1) and HessianXx 2) operators, respectively, andch(-) is the half-vectorization
operator that lexicographically orders the lower triamgydortion of a symmetric matrix into a column-stack vector.
Furthermoref, is z(x), which is the signal (or pixel) value of interest, and thetoes3, andg3, are

9z(x) az(x)r 1[822(x) ,0%2(%) 5)22(x)]T
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Since this approach is based total signal representations, a logical step to take is to estirtted parameters
{8, }_, from all the neighboring sampleg;}%_, while giving the nearby samples higher weights than samples
farther away. A (weighted) least-square formulation offttieng problem capturing this idea is to solve the following
optimization problem,

®)
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Figure 1: (a) Faces in various colors, lighting conditiooglasion, in-plane and out-of-plane rotation, and sca)e (b
Steering kernel weights at several locations in an image.SKR weights can be used not only to process and enhance
an image, but also as visual descriptors (features) to enaloy effective recognition.

with )
= det(Hi)K (Hi_l(xi -x)), (5)

where N is the regression ordek () is the kernel function (radially symmetric function suchaa&aussian), and
H; is the smoothingZ x 2) matrix which dictates overall shape of the resulting weigimction. The shape of the
final weight kernels is perhaps the most important factoetednining the quality of estimated signals. Namely, it is
desirable to have kernels that adapt themselves to thedbcature of the measured signal, providing, for instance,
strong filtering along an edge rather than across it. Thisgast is indeed the motivation behind thiering KR
framework which we will describe in this paper.

Returning to the optimization problem (4), regardless efrigression order and the dimensionality of the regres-
sion function, the estimate of the signal (i.e. pixel) vadfienterests, is given by a weightetinear combination of
the nearby samples:

KH- (Xi — X)

i

VVz() =1, (6)
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where we call¥; the equivalent kernel function fory; (g.v. [3] for the derivation).

What we described above is the "classic” kernel regressimaméwork, which yields a point-wise estimator that
is always a localinear (though not necessarily space-variant) combination ofriighboring samples. As such,
it suffers from an inherent limitation. In the next sectiove describe the framework afeering KR, in which the
kernel weights themselves are computed from the local windad therefore we arrive at filters with more complex
(nonlinear and space-variant) action on the data.

The steering kernel framework is based on the idea of ropabthining local signal structures (e.g. edges in 2-D
and planes in 3-D) by analyzing the radiometric (pixel vatliferences locally, and feeding this structure inforimat
to the kernel function in order to affect its shape and size.

Consider theZ x 2) smoothing matriX; in (5). In the generic "classical” case, this matrix is a acahultiple of
the identity. This results in kernel weights which have d@ffect along all ther; - andxo-directions. However, if we
properly choose this matrix, the kernel function can captocal structures. More precisely, we define the smoothing
matrix as a symmetric matrix

[N

which is called thesteering matrix, and where the matri; is estimated as the local covariance matrix of the neigh-
borhood spatial gradient vectors as follows:

= wx) wx) |, xyewi — C=JIJ. (8)

wherez,,(-) and z,,(-) are the first derivatives along,- andz,-axes, andv; is a local analysis window around a
sample position ax;. As illustrated in Fig. 1b, it is important to note that sifide is different for each pixel, the
shape of the resulting weight function will not be a simplau€aan with with elliptical contours.
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With the above choice of the smoothing matrix and, for example, a Gaussian kernel, we now have the steering
kernel function as

Kp, (x; — x) = 1/det(C;) exp {— HC? (xi — x)Hz} . 9)

2 Applications to Restoration and Recognition

Restoration [2]: This is an example of simultaneous denoising and upscalitig tve Foreman sequence. We
enhanced and upscaled this sequence beyond its nativel spatlution by a factor of 2 (from QCIR 44 x 176) to

CIF (288 x 352)). Two sample frames of the video are shown in Figure 2. As &réhe input frames, the video is
compressed and carries some noise. We note that both theftgpenpression and the noise statistics are unknown
to our method. The upscaled video by factor of 2 using Lanaztespolation and (3-D) SKR methods are shown in
Figures 2 in the next two columns.

Recognition [1]: The generic problem of interest here is this: We are givenglai’'query” or "example” image of

an object of interest (for instance a picture of a face), andve interested in detecting similar objects within other
"target” images with which we are presented. The target Bsagay contain such similar objects (say other faces)
but these will generally appear in completely differenttesihand under different imaging conditions. Examples of
such differences can range from rather simple optical onggc differences (such as occlusion, differing view-
points, lighting, and scale changes); to more complex mestructural differences such as for instance a handrdraw
picture of a face rather than a real face. (See Figure la.)aWessentially use (a normalized version of) the function
Ky, (x; — x) to represent an image’s inherent local geometry; and frasnftimction we extract features which will

be used to compare the given patch against patches fromeaariothge. This approach has been successfully applied
to detection of varied objects in both images and video.

N\

Figure 2: Left: Restoration example. A video upscale examping a real video sequence: Column 1 shows 2 frames
from the original video; next column shows the upscaled &sivy Lanczos interpolation, and the third column shows
the upscaled frames by 3-D SKR. Right: Recognition examplete that the template example does not actually
appear in any of the target images. Colored contours shoeethter of the detected matching regions.
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