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ABSTRACT

In the last two decades, many papers have been published, proposing a variety of methods for multi-frame
resolution enhancement. These methods, which have a wide range of complexity, memory and time requirements,
are usually very sensitive to their assumed model of data and noise, often limiting their utility. Different
implementations of the non-iterative Shift and Add concept have been proposed as very fast and effective super-
resolution algorithms. The paper of Elad & Hel-Or 2001 provided an adequate mathematical justification for
the Shift and Add method for the simple case of an additive Gaussian noise model. In this paper we prove that
additive Gaussian distribution is not a proper model for super-resolution noise. Specifically, we show that Lp

norm minimization (1 ≤ p ≤ 2) results in a pixelwise weighted mean algorithm which requires the least possible
amount of computation time and memory and produces a maximum likelihood solution. We also justify the use
of a robust prior information term based on bilateral filter idea. Finally, for the underdetermined case, where
the number of non-redundant low-resolution frames are less than square of the resolution enhancement factor,
we propose a method for detection and removal of outlier pixels. Our experiments using commercial digital
cameras show that our proposed super-resolution method provides significant improvements in both accuracy
and efficiency.
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1. INTRODUCTION

Theoretical and practical limitations usually constrain the achievable resolution of any imaging device. Super-
resolution is the process of combining a sequence of low-resolution noisy blurred images to produce a higher
resolution image or sequence.

Two common matrix notations are used to formulate the super-resolution problem in the pixel domain. The
more popular notation1–4 considers only camera lens/CCD blur and is defined as:

Y k = DkHcam
k FkX + V k k = 1, . . . , N (1)

where [r2M2 × r2M2] matrix Fk is the geometric motion operator between the high-resolution frame X (of
size [r2M2 × 1]) and the kth low-resolution frame Y k (of size [M2 × 1]) which are rearranged in lexicographic
order and r is the resolution enhancement factor. The camera’s point spread function (PSF) is modelled by the
[r2M2 × r2M2] blur matrix Hcam

k , and [M2 × r2M2] matrix Dk represents the decimation operator. [r2M2 × 1]
vector V k is the system noise and N is the number of available low-resolution frames.

Considering only atmosphere and motion blur an alternate matrix formulation of the super-resolution problem
is presented as5

Y k = DkFkHatm
k X + V k k = 1, . . . , N (2)

In conventional imaging systems (such as video cameras), camera lens/CCD blur has more important effect than
the atmospheric blur (which is very important for astronomical images). In this paper we use the model (1).
Note that, under some assumptions which will be discussed in Section 3, blur and motion matrices commute
and the general super-resolution formulation can be written as:

Y k = DkHcam
k FkHatm

k X + V k = DkHcam
k Hatm

k FkX + V k k = 1, . . . , N (3)
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Defining Hk = Hcam
k Hatm

k merges both models into a form similar to (1).
In the last two decades, many papers have been published, proposing a variety of methods for multi-frame

resolution enhancement. These methods are usually very sensitive to their assumed model of data and noise,
which limits their utility. The performance of frequency domain approaches to super-resolution problem6, 7

significantly degrades with small deviations from the assumed translational motion model8. The iterative spatial
domain super-resolution methods1, 3, 9–11 are usually time consuming and their mathematical justification is
only valid for the additive Gaussian noise model. Furthermore, regularization is either not implemented or it
is limited to Tikhonov regularization. Considering outliers, Ref.[4] describes a very successful iterative robust
super-resolution method, but lacks the proper mathematical justification. To reduce the computational cost,
some papers2, 5, 12, 13 have broken the super-resolution problem to three separate steps: non-iterative image
fusion (a.k.a. shift and add) step followed by interpolation and deblurring steps (usually iterative). The very
important step of image fusion is mathematically defined and justified only for additive Gaussian noise2.

In what follows in this paper, we first show the inadequacy of the Gaussian noise model for super-resolution
problem (Section 2). Then following Ref.[2], we mathematically justify a non-iterative image fusion method
for more general noise models (Section 3). In Section 4 we introduce a robust regularization term to help us
interpolate and deblur the shift and add result. A non-iterative outlier detection method is introduced in Section
5. Finally simulation results and conclusive remarks are given in Sections 7 and 8, respectively.

2. ERROR MODELLING

The Maximum Likelihood (ML) estimators of the high-resolution image developed in many previous works1–3, 14

are valid when the noise distribution follows the Gaussian model. Unfortunately, Gaussian noise assumption is
not valid for many real world image sequences. To appreciate this claim we set up the following experiments.
In these experiments according to the model in (3) a high-resolution [256 × 256] image was shifted, blurred,
and downsampled to create 16 low-resolution images (of size [64 × 64]). The effect of readout noise of CCD
pixels, was simulated by adding Gaussian noise to these low-resolution frames achieving SNR † equal to 25dB.
We considered three common sources of error (outliers) in super-resolution system:

1. Error in motion estimation.

2. Inconsistent pixels: effect of an object which is only present in a few low-resolution frames (e.g. the effects
of a flying bird in a static scene).

3. Salt and Pepper noise.

In the first experiment, to simulate the effect of error in motion estimation, a bias equal to 1
4 of a pixel was

intentionally added to the known motion vector of only one of the low-resolution frames. In the second exper-
iment, a [10 × 10] block of only one of the images was replaced by a block from another data sequence. And
finally in the third experiment we added salt and pepper noise to approximately 1% of the pixels of only one of
the low-resolution frames. We used the GLRT test (Appendix A) to compare the goodness of fit of Laplacian
and Gaussian distributions for modelling the noise in these three sets of low-resolution images. The GLRT test
results for these three experiments were 0.6084, 0.6272 and 0.6081, respectively. The test result for the original
low-resolution images contaminated only with pure Gaussian noise was 0.7991. Based on the criterion in (27), the
distribution of the noise with a test result smaller than 0.7602 is better modelled by the Laplacian model rather
than the Gaussian model. Note that the outlier contamination in these tests was fairly small, and more outlier
contamination (larger error in motion estimation, larger blocks of inconsistence pixels, and higher percentage of
Salt and Pepper noise) results in even smaller GLRT test results.

3. DATA FUSION USING SHIFT AND ADD

In the previous section we showed that in many cases, Laplacian model is a better candidate for describing
the super-resolution noise than the Gaussian model. The high-resolution ML estimate of a set of low-resolution

†Signal to noise ratio (SNR) is defined as 10 log10
σ2

σ2
n
, where σ2, σ2

n are variance of a clean frame and noise, respectively.



images contaminated with additive generalized Gaussian distribution (GGD) noise model‡ can be calculated
from the following Lp norm minimization criterion:

X̂ = ArgMin
X

[
N∑

k=1

‖DkHkFkX − Y k‖p
p

]
1 ≤ p ≤ 2 (4)

Considering translational motion and with reasonable assumptions such as common space-invariant PSF, and
similar decimation factor for all low-resolution frames (i.e. ∀k Hk = H & Dk = D which is true when all
images are acquired with a unique camera), we calculate the gradient of the Lp cost. We will show that Lp norm
minimization is equivalent to pixelwise weighted averaging of the registered frames, when 1 ≤ p ≤ 2§.

Since H and Fk are block circulant matrices, they commute (FkH = HFk and FT
k HT = HT FT

k ). Therefore,
(4) may be rewritten as:

X̂ = ArgMin
X

[
N∑

k=1

‖DFkHX − Y k‖p
p

]
(5)

We define Z = HX. So Z is the blurred version of the ideal high-resolution image X. Thus, we break our
minimization problem in two separate steps:

1. Finding a blurred high-resolution image from the low-resolution measurements (we call this result Ẑ).

2. Estimating the deblurred image X̂ from Ẑ

Note that anything in the null space of H will not converge by the proposed scheme. However, if we choose an
initialization that has no gradient energy in the null space, this will not pose a problem (see Ref.[2] for more
details). As it turns out, the null space of H corresponds to very high frequencies, which are not part of our
desired solution. To find Ẑ, we substitute HX with Z:

Ẑ = ArgMin
Z

[
N∑

k=1

‖DFkZ − Y k‖p
p

]
(6)

The gradient of the cost in (6) is:

Gp =
∂

∂Z

[
N∑

k=1

‖DFkZ − Y k‖p
p

]
=

N∑

k=1

FT
k DT sign(DFkZ − Y k)¯ |DFkZ − Y k|p−1 (7)

where operator ¯ is the element-by-element product of two vectors.
The vector Ẑ which minimizes the criterion (6) will be the solution to Gp = 0. There is a simple interpretation

for the solution: The vector Ẑ is the weighted mean of all measurements at a given pixel, after proper zero filling
and motion compensation.

To appreciate this fact, let us consider two boundary values of p. If p = 2, then

G2 =
N∑

k=1

FT
k DT (DFkZn − Y k) (8)

which is proved in Ref.[2] to be the pixelwise average of measurements. If p = 1 then the gradient term will be:

G1 =
N∑

k=1

FT
k DT sign(DFkẐ − Y k) = 0 (9)

‡PGGD(v, p, α) = p

2αΓ( 1
p
)
exp−(

|v|
α

)p

, where Γ(.) is the gamma function. Note that with p = 1 and p = 2, Laplacian

and Gaussian noise models are the special cases of GGD, respectively.
§We did not consider the cases for which p < 1 as such assumption results in non-convex minimization, which is outside

the scope of this paper.



Figure 1. Effect of upsampling DT matrix on a 3 × 3 image and downsampling matrix D on the corresponding 9 × 9
upsampled image (resolution enhancement factor of three). In this figure, to give better intuition the image vectors are
reshaped as matrices.

We note that FT
k DT copies the values from the low-resolution grid to the high-resolution grid after proper shifting

and zero filling, and DFk copies a selected set of pixels in high-resolution grid back on the low-resolution grid
(Figure 1 illustrates the effect of upsampling and downsampling matrices DT , and D). Neither of these two
operations changes the pixel values. Therefore, each element of G1, which corresponds to one element in Ẑ, is
the aggregate of the effects of all low-resolution frames. The effect of each frame has one of the following three
forms:

1. Addition of zero, which results from zero filling.

2. Addition of +1, which means a pixel in Ẑ was larger than the corresponding contributing pixel from frame
Y k.

3. Addition of −1, which means a pixel in Ẑ was smaller than the corresponding contributing pixel from
frame Y k.

A zero gradient state (G1 = 0) will be the result of adding an equal number of −1 and +1, which means each
element of Ẑ should be the median value of corresponding elements in the low-resolution frames. X̂, the final
super-resolved picture, is calculated by deblurring Ẑ .

So far we have shown that p = 1 results in pixelwise median and p = 2 results in pixelwise mean of all
measurements after motion compensation. According to (7), if 1 < p < 2 then both sign(DFkZn − Y k) and
|DFkZn − Y k|p−1 terms appear in Gp. Therefore, when the value of p is near one, Ẑ is a weighted mean of
measurements, with much larger weights around the measurements near the median value, while when the value
of p is near two the weights will be distributed more uniformly. For the rest of this paper, we use the most robust
member of this family of estimators (L1 norm), and its median interpretation for estimating the high-resolution
image.

4. REGULARIZATION

Note that for the under-determined cases (N < r2) not all Ẑ pixel values can be defined in the data fusion step,
and their values should be defined in a separate interpolation step. In this paper unlike Ref.[5], interpolation and
deblurring are done simultaneously. As deblurring-interpolation is an ill-posed problem, it requires regularization
which compensates the missing measurement information with some general prior information about the desirable
high-resolution solution, and is usually implemented as a penalty factor. Based on the spirit of Total Variation
(TV) criterion15 and a related technique called the bilateral filter16, 17 , we introduce our robust regularizer called
Bilateral-TV, which is computationally cheap to implement, and preserves edges. The regularizing function looks
like,

ΥBTV (X) =
P∑

l=0

P∑
m=0

αm+l‖X − Sl
xSm

y X‖1 (10)



where matrices (operators) Sl
x, and Sk

y shift X by l, and k pixels in horizontal and vertical directions respectively,
presenting several scales of derivatives. The scalar weight α, 0 < α < 1, is applied to give a spatially decaying
effect to the summation of the regularization term.

It is easy to show that this regularization method is a generalization of other popular regularization methods.
If we limit m, l to the two cases of m = 1, l = 0 and m = 0, l = 1 with α = 1, and define operators Qx and Qy

as representatives of the first derivative (Qx = I − Sx and Qy = I − Sy) then (10) results in:

ΥBTV (X) = ‖QxX‖1 + ‖QyX‖1 (11)

which is suggested in Ref.[18] as a reliable and computationally efficient approximation to the Total-Variation
prior.

To compare the performance of Bilateral-TV (P ≥ 1) to common TV prior (P = 1) and Tikhonov prior19

we set up the following denoising experiment. We added Gaussian white noise of mean zero and variance 0.045
to the image in Figure 2(a) resulting in the noisy image of Figure 2(b). If X and Y represent the original and
corrupted images then we minimized:

X̂ = ArgMin
X

[‖Y −X‖22 + λΥ(X)
]

(12)

to reconstruct the noisy image, where λ, the regularization parameter, is a scalar for properly weighting the
first term (similarity cost) against the second term (regularization cost). Tikhonov denoising resulted in Figure
2(c) ¶ The result of using TV prior (P = 1) for denoising is shown in Figure 2(d). Figure 2(e) shows the
result of applying Bilateral-TV prior (P = 3). Notice the effect of each reconstruction method on the pixel
indicated by an arrow in Figure 2(a). As this pixel is surrounded by non-similar pixels, TV prior considers it
as a heavily noisy pixel, and uses the value of immediate neighboring pixels to estimate its original value. On
the other hand, Bilateral-TV considers a larger neighborhood. By bridging over immediate neighboring pixels,
the value of similar pixels are also considered in graylevel estimation of this pixel, therefore the smoothing effect
in Figure 2(e) is much less than Figure 2(d). Figure 2(f) compares the performance of TV and Bilateral-TV
denosing methods in estimating graylevel value of the arrow indicated pixel. Unlike Bilateral-TV regularization,
increasing the number of iterations in Tikhonov and TV regularization will result in more undesired smoothing.

5. DEBLURRING-INTERPOLATION

Based on the material that was developed in Sections 3 and 4, the following expression formulates our mini-
mization criterion for obtaining X̂ from Ẑ.

X̂ = ArgMin
X

[
‖A(HX − Ẑ)‖1 + λ

P∑

l=0

P∑
m=0

αm+l‖X − Sl
xSm

y X‖1
]

(14)

where matrix A is a diagonal matrix with diagonal values equal to the square root of the number of measurements
that contributed to make each element of Ẑ (in the square case (N = r2), A is the identity matrix). So, the
undefined pixels of Ẑ have no effect on the high-resolution estimate X̂. On the other hand, those pixels of Ẑ
which have been produced from numerous measurements, have a stronger effect in the estimation of the high-
resolution frame X̂.

¶ΥT (X) = ‖ΓX‖22 where where Γ is usually a high-pass operator such as derivative, Laplacian, or even identity matrix.
For this example Γ was replaced by the Laplacian kernel:

Γ =
1

8

[
1 1 1
1 −8 1
1 1 1

]
(13)



a: Original b: Noisy c:Reconstruction using Tikhonov
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Figure 2. a-e: Simulation results of denoising using different regularization methods. f: Error in gray-level value
estimation of the pixel indicated by arrow in (a) versus the iterations number in Tikhonov (solid line), TV (dotted line),
and Bilateral TV (broken line) denoising.

As A is a diagonal matrix, AT = A, and the corresponding steepest descent solution of minimization problem
(14) can be expressed as:

X̂n+1=X̂n− β

{
HT AT sign(AHX̂n−AẐ)

+λ

P∑

l=0

P∑
m=0

αm+l[I − S−m
y S−l

x ]sign(X̂n − Sl
xSm

y X̂n)

}
(15)

where β is a scalar defining the step size in the direction of the gradient. Physical construction of matrices A,
H, and S is not necessary as they can be implemented as direct image operators such as masking, blurring,
and shifting operators, respectively. Note that decimation and warping matrices (D and F ) and summation of
measurements are not present in (15), which makes the implementation of our method much faster than the
iterative methods suggested in Ref. [1, 3, 4].

6. BILATERAL NON ITERATIVE ARTIFACT REMOVAL

The non-iterative data fusion step presented in Section 3 works well for over-determined cases (where N À r2).
In the square or underdetermined cases, there is only one measurement available for each high-resolution pixel and
as median and mean operators for one or two measurements give the same result, L1 and L2 norm minimization
will result in identical answers and fail to remove outliers. The outliers may be removed by the regularization
term in the deblurring-interpolation step, but this needs a relatively large regularization factor λ, which may
result in blurring of the final answer. In this section, we add a non-iterative outlier removal step, after data
fusion and, before deblurring-interpolation step using the bilateral filter.

Our proposed method essentially calculates the correlation of different measurements (pixels from different
frames) with each other and removes the inconsistent data. The computed correlation is based on the bilateral
idea, so the high-frequency (edge-information) data will be differentiated from outliers. We assign a weight to
each pixel in the measurements based on its bilateral correlation with corresponding pixels in the data-fused
image. After computing these weights, pixels with very small weights will be removed from the data set. As
pixels containing high-frequency information receive higher weights than the ones located in the low-frequency
areas, it is reasonable to compute and compare the penalty weights for blocks of pixels rather than for single
pixels.



The penalty weight for pixel (i, j) in kth low-resolution frame is calculated as:

wk(i, j) =
q∑

m=−q

q∑
n=−q

e−
1
2 (
|Yk(i,j)−Ẑ(i′+m,j′+n)|

σr
) × e

− 1
2

m2+n2

σ2
d (16)

where Yk(i, j) is the gray level value of pixel (i, j) in the kth low-resolution frame, (i′, j′) is the coordinates of
pixel (i, j) mapped to the high-resolution grid, Ẑ(i′, j′) is the gray level value of pixel (i′, j′) in the data fused
image discussed in Section 5, q controls the bilateral kernel size, σr and σd control corresponding photometric
and distance spread. Note that the values of Ẑ(i′ + m, j′ + n) which are not defined in the shift and add step
should not be considered in (16).

If each low-resolution frame is divided into R blocks then the overall weight of block r of the kth frame is:

Wk,r =
∑

i,j∈Ωk,r

wk(i, j) (17)

where Ωk,r defines the pixels in the rth block of the kth low-resolution frame.
In the next step, the median and variance of all corresponding blocks are computed and the blocks with

weights smaller than MEDIAN(Wk,r)− τ ×VAR(Wk,r) will be removed from the input data set (constant τ will
control the number of rejected blocks). Finally, the value of Ẑ for the blocks which were labelled as outliers will
be recalculated. Then (15) may be used to iteratively calculate X̂.

7. EXPERIMENTS

In this section we compare the performance of the resolution enhancement algorithm proposed in this paper to
the robust resolution enhancement method proposed in Ref.[4]. We used an Olympus C-4000 digital camera to
capture 26 low-resolution images from a scene. One of these low-resolution images is shown in Figure 3. Figure
3(b) shows the cubic spline interpolation of Figure 3(a) by factor of four in each axis. The (unknown) camera
PSF was assumed to be a 6 × 6 Gaussian kernel with standard deviation equal to two. We used the method
described in Ref. [20] to compute the motion vectors. The robust super-resolution method which was proposed
in Ref.[4] resulted in Figure 3(c)‖. The proposed method of this paper resulted in Figure 3(d)∗∗. The run time of
our method on a Pentium-III desktop computer is 18 seconds versus 48 seconds for the method of Ref.[4]. Note
that increment of the number of low-resolution images has no significant effect on the runtime of our method
as the time consuming deblurring-interpolation step is independent of the number of input images, but the run
time of Ref.[4] has a direct relation with the number of input images ††.

8. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an algorithm to enhance the quality of a set of noisy blurred images and produce a
high-resolution image with less noise and blur effects. We presented a robust super-resolution method based on
the use of L1 norm both in the regularization and the measurement terms of our penalty function. The proposed
method is fast and easy to implement as we have mathematically justified a very fast method based on pixelwise
shift and add method and related it to L1 norm minimization when relative motion is pure translational, and PSF
and decimation factor is common and space-invariant in all low-resolution images. Note that the mathematical
derivation of the proposed shift and add method was independent of the constraint over decimation factor,
but we included it as this constraint distinguishes super-resolution problem from the more general problem of
multi-scale image fusion. We showed that our method removes outliers efficiently, resulting in images with sharp

‖To get the best results from this method we added a Tikhonov regularization term to the original method described
in Ref.[4]. For this experiment the best result was attained in 10 iterations of steepest descent, using a step size equal to
20. The regularization factor (λ) was equal to 0.1.
∗∗For this experiment the best result was attained in 30 iterations of steepest descent with the following parameters:

λ = .1, P = 2, α = 0.7, q = 2, σr = σd = 2, and τ = 1. Ω was chosen to be the size of each low-resolution frame.
††Limitations of the method proposed in Ref.[4] plus more detailed experiments are presented in Ref.[21] available in:

“http://www.soe.ucsc.edu/ milanfar/publications.htm”.



a: Original Low-Resolution b:Cubic Spline Interpolation

c:Robust Ref.[4] d:Proposed Method

Figure 3. Experiment results for a set of real world images. Reconstruction of (c)4 took about 48 seconds versus the
proposed method which took about 18 seconds.

edges. The proposed method is suitable for real time super-resolution implementation as it is computationally
inexpensive and memory efficient. The time consuming deblurring-interpolation step can be computed with
parallel processors, which significantly increases the overall speed of implementation.

APPENDIX A. NOISE MODELLING BASED ON GLRT TEST

In this appendix we explain our approach of deciding which statistical model better describes the probabil-
ity density function (PDF) of the noise. Gaussian and Laplacian distributions, the two major candidates for
modelling the noise PDF, are defined as:

PG(V ) =
1

(2πσ2
G)N/2

exp(−
∑N

i=1(V (i)−mG)2

2σ2
G

) (18)

PL(V ) =
1

(2σL)N
exp(−

∑N
i=1 |V (i)−mL|

σL
) (19)

where V (i) is the ith element of the noise vector V (of size [1×N ]) and σG, mG are the unknown parameters of
the Gaussian PDF (PG) and σL, mL are the unknown parameters of the of the Laplacian PDF (PL) which are



estimated from data. Noting logarithm is a monotonic function and

ln PL(V ) = −N ln 2−N ln σL −
∑N

i=1 |V (i)−mL|
σL

(20)

then the ML estimates of σL and mL are calculated as

σ̂L, m̂L = ArgMax
σL,mL

(PL(V )) = ArgMax
σL,mL

(lnPL(V )) (21)

so
∂ ln PL(V )

∂mL
=

N∑

i=1

|V (i)−mL| = 0 =⇒ m̂L = MEDIAN(V ) (22)

and
∂ ln PL(V )

∂σL
= − N

σL
+

∑N
i=1 |V (i)−mL|

σ2
L

= 0 =⇒ σ̂L =
∑N

i=1 |V (i)− m̂L|
N

(23)

The same scheme can be used to estimate the Gaussian model parameters as:

m̂G = MEAN(V ) and δ̂G =

√∑N
i=1(V (i)− m̂G)2

N
(24)

We use the generalized likelihood ratio test (GLRT)22 to decide between the two hypothesis about the noise
model:

PG(V ; σ̂G, m̂G)
PL(V ; σ̂L, m̂)L

> γ (25)

where γ is the decision threshold, that is if the ratio in (25) is larger than γ then PG is a more accurate PDF
model for V than PL and vice versa (γ was chosen equal to 1 as it mimicks a test which minimizes the probability
of error and does not a priori favor either hypothesis). So:

1

(2πσ̂2
G

)N/2
exp(−

∑N

i=1
(V (i)−m̂G)2

2σ̂2
G

)

1

(2σ̂L)N
exp(−

∑N

i=1
|V (i)−m̂L|
σ̂L

)
> 1 (26)

Substituting m̂G, σ̂L, σ̂G, and σ̂L with their corresponding estimates from (22), (23), and (24) and simplifying
results in:

σ̂L

σ̂G
> (

π

2e
)

1
2 ' 0.7602 (27)

So if (27) is valid for a certain vector V then Gaussian model is a better estimate of PDF than Laplacian model
and vice versa.
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