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ABSTRACT

We present a visual saliency detection method and its applica-

tions. The proposed method does not require prior knowledge

(learning) or any pre-processing step. Local visual descrip-

tors which measure the likeness of a pixel to its surroundings

are computed from an input image. Self-resemblance mea-

sured between local features results in a scalar map where

each pixel indicates the statistical likelihood of saliency. Promis-

ing experimental results are illustrated for three applications:

automatic target detection, boundary detection, and image

quality assessment.

Index Terms— Visual Saliency, Automatic Target Detec-

tion, Image Quality Assessment, Boundary Detection

1. INTRODUCTION

The human visual system has a remarkable ability to auto-

matically attend to only salient regions, known as focus of

attention (FOA) in complex scenes. This ability enables us to

allocate limited perceptual and cognitive resources on task-

relevant visual input. It is well known that FOA also plays

an important role when humans perceive visual quality of

images. The goal of machine vision systems is to predict

and mimic the human visual system. For this reason, visual

saliency detection has been of great research interest [1, 2, 3]

in recent years.

Analysis of visual attention has benefited a wide range

of applications such as object and action recognition, image

quality assessment and more. Gao et al. [4] used discrim-

inative saliency detection for visual recognition and showed

good performance on PASCAL 2006 dataset. Saliency-based

space-time feature points have been successfully employed

for action recognition by Rapantzikos et al. [5]. Ma and

Zhang [6] showed performance improvement by simply ap-

plying saliency based weights to local structural similarity

(SSIM) [4]. Most existing saliency detection methods are

based on parametric models [2, 3] which use Gabor or dif-

ference of Gaussian filter responses and fit a conditional PDF
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Fig. 1. Self-resemblance reveals a salient object or object’s

boundary according to the size of local analysis window.

of filter responses to a multivariate exponential distribution.

In our previous work [7], we proposed a bottom-up saliency

detection method based on a local self-resemblance measure.

A nonparametric kernel density estimation for local non-linear

features results in a scalar value at each pixel, indicating like-

lihood of saliency. As for local features, we employ local

steering kernels which, fundamentally differ from conven-

tional filter responses, but capture the underlying local ge-

ometric structure even in the presence of significant distor-

tions. Our computational saliency model exhibits state-of-the

art performance on the challenging set of data [1].

In this paper, we address three applications: 1) automatic

target detection, 2) boundary detection, and 3) no-reference

image quality metric, where our computational model for vi-

sual saliency can be applied to. In the following section, we

first review saliency detection by self-resemblance and reveal

the relation between boundary detection and saliency detec-

tion in the proposed framework.

2. SALIENCY BY SELF-RESEMBLANCE

Given an image I , we measure saliency at a pixel in terms of
how much it stands out from its surroundings [7]. To formal-
ize saliency at each pixel, we let the binary random variable
yi equal to 1 if a pixel position xi = [x1, x2]

T
i is salient or 0

where i = 1, · · · , M (where M is the total number of pixels
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in the image.) Saliency at pixel position xi is defined as a
posterior probability as follows:

Si = Pr(yi = 1|F), (1)

where the feature matrix, Fi = [f1

i , · · · , fL
i ] at a pixel of

interest xi (what we call a center feature) contains a set of

feature vectors (fi) in a local neighborhood where L is the

number of features in that neighborhood. In turn, the larger

collection of features F = [F1, · · · ,FN ] is a matrix contain-

ing features not only from the center, but also a surrounding

region (what we call a center+surround region; see Fig. 1.)

N is the number of features in the center+surround region.
Using Bayes’ theorem with assumptions that 1) a-priori,

every pixel is considered to be equally likely to be salient; and
2) p(F) are uniform over features, the saliency we defined
boils down to the conditional probability density p(F|yi = 1)
which can be approximated by using nonparametric kernel
density estimation [8]. More specifically, we define the condi-
tional probability density p(F|yi = 1) at xi as a center value
of a normalized adaptive kernel (weight function) G(·) com-
puted in the center+surround region as follows:

Si = p̂(F|yi = 1) =
Gi(Fi,Fi)∑N

j=1 Gi(Fi, Fj)
, (2)

where the kernel function Gi(Fi,Fj) = exp
(
−1+ρ(Fi,Fj)

σ2

)

and σ is a parameter controlling the fall-off of weights. Here,
ρ(Fi,Fj) is called Matrix Cosine Similarity which is a gen-
eralized version of vector cosine similarity to the matrix case.
By inserting G into (2), Si can be rewritten as follows:

Si =
1

∑N

j=1 exp
(
−1+ρ(Fi,Fj)

σ2

) , (3)

where the denominator is called self-resemblance. Si reveals

how salient the center feature Fi is given all the features Fj ’s

in its neighborhood. We refer the reader to [7, 9] for more

detail.

As shown in Fig. 1, a size of local analysis window de-

termines an output of our saliency detection system. For in-

stance, if we keep the local window size relatively small,

saliency at fine scale (here, boundary and corner of objects)

will be captured. Conversely, a large size of the local window

allows us to generate salient object maps.

2.1. Local steering kernels as features

Local steering kernels (LSK) are employed as features, which
fundamentally differ from image patches or conventional fil-
ter responses. LSKs have successfully been used for image
restoration [10] and object and action detection [11, 12]. The
key idea behind LSKs is to robustly obtain the local struc-
ture of images by analyzing the radiometric (pixel value) dif-
ferences based on estimated gradients, and use this structure
information to determine the shape and size of a canonical
kernel. The local steering kernel is modeled as

K(Cl,xl,xi)=

√
det(Cl)

h2
exp

{
(xl− xi)

T
Cl(xl− xi)

−2h2

}
, (4)

Fig. 2. Top: Graphical description of how LSK values cen-

tered at pixel of interest x13 are computed in an edge region.

Bottom: Examples of LSKs: for graphical description, we

only computed LSKs at non-overlapping 3 × 3 patch, even

though we compute LSKs densely in practice.

where l ∈ {1, · · · , P}, P is the number of pixels in a lo-

cal window; h is a global smoothing parameter. The matrix

Cl ∈ R
2×2 is a covariance matrix estimated from a collection

of spatial gradient vectors within the local window around a

position xl. Fig. 2 (Top) illustrates that how covariance ma-

trices and LSK values are computed in an edge region.

In what follows, at a position xi, we will essentially be

using (a normalized version of) the function K . LSK features

are robust against signal uncertainty such as presence of noise

and the normalized version of LSKs provide certain invari-

ance to illumination changes [11]. Fig. 2 (Bottom) illustrates

normalized LSKs computed from two images.

As mentioned earlier, the feature matrix Fi and Fj are

constructed by using f ’s which are a normalized and vector-

ized version of K’s. In the following section, we introduce

three applications where our visual saliency is successfully

applied to.

3. APPLICATIONS

3.1. Automatic target detection

Automatic target detection systems [13] have been developed

mainly for military applications to assist or replace human

experts whose performance might be inevitably degraded by

fatigue following intensive and prolonged surveillance. In

some situations, it is even impossible for the human experts

to perform the task on site. The development of robust au-

tomatic target detection system is considered still challeng-

ing due to large variations in scale and rotation, occlusion,

cluttered backgrounds, and different geographic and weather

conditions. Conventional saliency approaches model a target



Fig. 3. Automatic target detection. Our saliency map con-

sistently outperforms other state-of-the art methods (SUN [3]

and AIM [1])

sought after and require a lot of training (both positive and

negative) examples. However, our saliency detection method

can automatically detect a salient target without any training.

In order to compute a salient object map, we need to use

a large analysis window size. However, for efficiency, we

downsample an image I to a coarse scale (i.e., 64 × 64). We

then compute LSK of size 3 × 3 as features and generate fea-

ture matrices Fi in a 5 × 5 local neighborhood. The number

of LSKs used in the feature matrix Fi is set to 9. The smooth-

ing parameter h for computing LSK was set to 1 and the fall-

off parameter σ for computing self-resemblance was set to

0.07 for all the experiments. We obtained an overall salient

object map by using CIE L*a*b* color space. Fig. 3 shows

a comparison between our method and other state-of-the art

methods. It is clear that our method consistently outperforms

SUN [3] and AIM [1]. We refer the reader to [7, 9] for a fur-

ther quantitative performance comparison on the challenging

set of data [1].

3.2. Boundary detection

Boundary detection [15] is one of the most studied problems

in computer vision, and serves as a basis for higher level

applications such as object recognition, segmentation, and

tracking. It is known that high-quality boundary detection

still remains challenging since low-level cues such as image

patch or gradient alone are generally not sufficient, but should

be engaged with higher level information or supervised learn-

ing. However, it turns out that our visual saliency model can

detect object boundary without any higher level information

or training.

In order to generate a boundary map, we compute LSK

of size 3 × 3 as features from an image I at its original scale

and generate feature matrices Fi in a 3 × 3 local neighbor-

Fig. 4. Boundary detection examples on the Berkeley seg-

mentation data set [14]

hood. The rest of parameter settings remains the same as the

case explained in the previous section. Fig. 4 shows bound-

ary maps computed from some images [14]. The proposed

boundary detection method tends to be sensitive to highly tex-

tured region, which is also the problem of current state-of-the

art boundary detection methods. While the method by Maire

et al. [16] detects contours first and tries to find junctions by

using contour information, our method can automatically find

junction and contour at the same time1.

3.3. No-reference image quality metric

The goal of object quality metric is to accurately predict the

perceived visual quality by human subjects. In general, ob-

jective quality metric [17] can be divided into two categories:

full-reference and no-reference. Full-reference metrics calcu-

late similarity between the target and reference images. Such

measures of similarity include the classical mean-squared er-

ror (MSE), peak signal to noise ratio (PSNR), and Structural

Similarity (SSIM) [17]. However, in most practical applica-

tions the reference image is not available. Therefore, in appli-

cations such as denoising, deblurring, and super-resolution,

the quality metrics MSE, PSNR, or SSIM can not be directly

used to assess the quality of output images or optimize the

parameters of algorithms. Recently, Zhu and Milanfar [18]

have proposed a no-reference quality metric Q which can au-

tomatically tune parameters of state of the art denoising al-

gorithms such as ISKR [10]. Q metric is computed from a

given noisy image by dividing it into non-overlapping patches

of size 8 × 8, and discovering anisotropic patches based on

so-called local coherence measure [18]. We provide a more

reliable anisotropic patch selection method based on bound-

ary detection explained in the earlier section. Since the fea-

tures (LSKs) are robust to the presence of noise, the resulting

1Boundary map values at junction is higher than those at contour.



Fig. 5. Top: plots of PSNR,SSIM, and Q metric versus it-

eration number in ISKR denoising, Middle: a noisy image

(std=20), boundary map, selected anisotropic patches (red

area), Bottom: optimally denoised images by PSNR and Q

boundary map is not sensitive to noise, and thus provides a

good way of finding anisotropic patches. To threshold the

boundary map, we use the idea of nonparametric significance

test. To be more specific, we compute empirical PDF of

boundary map values, and set a threshold so as to achieve

70% confidence level. From plots of PSNR, SSIM, Q metric

versus iteration number in ISKR [10] in Fig. 5, we can ob-

serve that the Q metric with our anisotropic patch selection

behave similarly to full-reference metrics PSNR and SSIM.

However, we claim that denoising results with optimal itera-

tion number given by the Q metric is more visually pleasing

than PSNR and SSIM. As shown in Fig. 5 (Bottom), a de-

noising result of ISKR selected by PSNR still contain noise

and artifact around the door and floor.

4. CONCLUSION

In this paper, we introduced a visual saliency detection for

three applications; 1) automatic target detection, 2) bound-

ary detection, and 3) image quality assessment. We presented

promising experimental results of each application. The pro-

posed saliency detection method based on self-resemblance is

practically appealing since no learning or pre-processing step

are required.
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