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ABSTRACT

We propose a new denoising algorithm for camera pipelines and
other photographic applications. We aim for a scheme that is (1) fast
enough to be practical even for mobile devices, and (2) handles
the realistic content dependent noise in real camera captures. Our
scheme consists of a simple two-stage non-linear processing. We
introduce a new form of boosting/blending which proves to be very
effective in restoring the details lost in the first denoising stage. We
also employ IIR filtering to significantly reduce the computation
time. Further, we incorporate a novel noise model to address the
content dependent noise. For realistic camera noise, our results are
competitive with BM3D, but with nearly 400 times speedup.

Index Terms— denoise, boosting, camera pipeline, noise model

1. INTRODUCTION

Denoising is a key step in an imaging pipeline for improving image
quality. Due to its importance, many works have addressed this prob-
lem in the past [1, 2, 3, 4, 5]. However, while these state-of-the-art
algorithms produce very high quality denoising results, they usually
suffer from high computational complexity and are unsuitable for
many applications. In this paper, we propose a fast denoising al-
gorithm which consists of a two-stage non-iterative, non-linear pro-
cessing. Experimental results show that the denoising performance
of our scheme is close in quality to one of the best quality denoising
algorithms, BM3D [1], but it executes significantly faster.

2. TURBO DENOISING

The basic structure of our scheme is illustrated in Fig. 1, which con-
sists of two processing stages. In the first smoothing stage, we ap-
ply a base denoising filter to suppress the noise. In the second stage
(boosting), we compute the residual of the first stage and detect from
it image details that are likely suppressed by the denoising filter. The
detected details will then be blended back to form the final result.

2.1. Denoising Filter

The primary objective of the first stage is to suppress the image
noise. While many image filters proposed in the past may fulfill
this objective, we make our choice based on a few criteria. First,
the selected filter must be effective in removing the noise. Second,
it has to be computationally efficient so that the overall scheme is
still practical. Third, a filter that is, to some extent, edge and detail
aware is more desirable in order to avoid the need of relying exces-
sively on the second stage to restore the lost details. The last two
criteria essentially eliminate many of the options from existing liter-
ature. For example, fast approximation of bilateral filter, including
bilateral grid [6] and permutohedral lattice [7], require more than a

Fig. 1: Turbo denoising

second to process a 1.5 megapixel (MP) color image on an 2.67 GHz
Intel Core i7 920 processor single-threaded [7], and their complexi-
ties are dependent on the filter kernel size. We adopt the IIR version
of Domain Transform filter [8] as our denoising filter, which is edge-
aware and computationally efficient. Its IIR structure also makes the
complexity independent of the effective kernel width of the filter,
which is important when the noise level is high.

Here we briefly summarize the operation of the IIR Domain
Transform (IIR-DT) filter. The scheme decomposes the spatial filter-
ing into alternating vertical (top-to-bottom, bottom-to-top) and hor-
izontal (left-to-right, right-to-left) 1D IIR filters. Each pass of the
IIR filter, left-to-right for example, is implemented according to the
difference equation

J [n] = (1− ad[n])I[n] + ad[n]J [n− 1], (1)

where I[n] and J [n] are the intensities of the n-th input pixel and
output pixel. The constant a is determined from the spatial scale pa-
rameter σs as a = exp

(
−
√

2/σs

)
. The quantity d[n] approximates

the local geodesic distance from the n-th pixel to its neighbors, and
is given by

d[n] = 1 +
σs

σr

C∑
j=1

∣∣I ′j [n]
∣∣ , (2)

where I ′j [n] is the derivative, along the horizontal or vertical direc-
tion (depending on the direction of the IIR filter), of the j-th channel
of the image; and σr is the photometric scale parameter.

To avoid stripe-like artifacts due to the 1D IIR filters [8], the IIR-
DT filter further decomposes the filter intoN = 3 or more iterations
using successively decreasing spatial parameter σs,i = σs

2N−i√3√
4N−1

, for i = 1, . . . , N , where their squared sum across all iterations
equals to σ2

s . We used σs = 2.5, σr = 6.5 in our experiments.

2.2. Boosting

The idea of boosting or twicing [9, 10] makes use of the filtering
residual to improve the quality of image denoising or reconstruction.
In the basic formulation, the k-th iteration of boosting is obtained by
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Fig. 2: Frequency responses of Hk =
∑k

j=0 W (I−W)j , for a
linear Gaussian filter W with σ = 1.

adding the filtered residual to the result of the previous iteration.
More specifically, given a signal y, a filter operator W, and z0 =
Wy, boosting is defined by the following recursion:

zk = zk−1 + W (y − zk−1) . (3)

Here, the term rk = y − zk−1 is the residual from the previous
iteration. Applying Eq. (3) repeatedly, we can express zk in terms of
y directly:

zk =

k∑
j=0

W (I−W)j y. (4)

As an illustration, Fig. 2 shows the frequency responses of a linear
Gaussian filter W and after the first two boosting iterations. For
this simple linear example, boosting successively adds different sub-
bands back to the filter W.

If the boosting components are selectively recovered based on
the local signal and noise content, the boosting step would improve
the overall quality by restoring the image details detected from the
residual. Therefore, we apply a modified boosting step

zk = zk−1 + SkW (y − zk−1) , (5)

where Sk is a diagonal matrix representing an image mask. We com-
pute the matrix Sk separately from the filtered residual. Its diagonal
elements, in the range of [0, 1], will serve as a confidence score of
whether the local region in the filtered residual contains image struc-
ture or noise.

To limit the computation, we extend the highly efficient census
transform [11] to compute the structural mask Sk. The census trans-
form computes a 8-bit binary string at each pixel to summarize the
structure in a 3×3 local window. Each neighbor pixel qi is compared
to the center pixel p,

ci =

{
0 if qi ≤ p+ δ
1 if qi > p+ δ

, (6)

where δ is a small constant to improve the robustness of the trans-
form against noise. The binary values ci for the eight neighbors are
then concatenated and typically encoded as an integer. For each of
the 256 census transform values, we define a structural score based
on the structure in the 3×3 binary pattern and create a look-up table.

We compute the structural mask Sk as shown in Fig. 3. First, we
compute the census transform at each pixel of the filtered residual.
Next, the 8-bit census transform is used to look up a structural score,
between 0 and 1, for the pixel. Finally, we apply a Gaussian filter
to obtain the final structural mask. The Gaussian filter essentially
implements a version of local majority vote by the structural score.
Real structures in the residual image typically have size at least a

Fig. 3: Computation of the structural mask Sk.

(a) Noisy image (b) Structural mask of Y channel

(c) Denoising filter output (d) Boosting output

Fig. 4: (a) Noisy image (Nexus 6P, ISO-1203), (b) structural
mask Sk, (c) denoising filter output, and (d) boosting output.

few pixels so that neighboring pixels forming the structure are likely
correlated and have large structural scores. If a noisy pixel is ac-
cidentally scored high, it will be more likely to be an isolated high
score pixel, and will be blurred out by the Gaussian filter.

In addition to introducing the structural mask, our scheme also
deviates from basic boosting in that it uses the edge-aware, non-
linear IIR-DT filter (Section 2.1) for the filter W; that is, the residual
filter in Fig. 1. Further, for the residual filter, we use the denoising
filter output as the guiding image to compute d[n] of Eq. (2), which
improves the separation of structures from the noise.

Fig. 4 shows the effect of boosting visually. The noisy cropped
image (Fig. 4a) was captured by Nexus 6P at ISO-1203. The denois-
ing filter output (Fig. 4c) removes most of the noise but also causes
too much blur. The final boosting output (Fig. 4d) restores the sharp-
ness of the edges. Results in Table 1 also demonstrate the benefits
of boosting (see Section 3 for experimental details). Columns 2-
3 (PSNR) and columns 5-6 (SSIM) show the numerical results of
Turbo Denoising after smoothing (no boosting) and after boosting.
For all test images, boosting improves both PSNR and SSIM values.

2.3. Noise Model

We incorporate a noise model to accommodate the complex noise
characteristics of camera captured images. In our experiment, the
images are in the sRGB color space, having been processed by the
camera pipeline. We apply our scheme in the YUV space to decor-
relate the color channels. We employ a simple pipeline model and
a sensor noise model to construct a noise model for the YUV data.
Noise variance prediction consists of a table look up and scaling.

Our sensor model estimates the noise variance at a pixel as

σ2
n = g1I + g2, (7)



Fig. 5: A simplified camera pipeline model.

where I is the digital number, g1 and g2 are model parameters de-
termined from sensor specification or calibration [12]. The first term
g1I accounts for the shot noise. The second term g2 represents an
additive Gaussian noise component to approximate the aggregate ef-
fect of thermal noise and read-out noise.

Fig. 5 shows a block diagram of our camera pipeline model. The
model represents the different steps as linear and affine operations,
where the parameters are obtained from the pipeline1. The matrices
DLS,DWB, and DTM defined in Fig. 5 are 3×3 diagonal matrices,
and TCC and TYUV are 3×3 color transform matrices. The 3-vector
b contains the black-level correction values for the raw RGB data.
We approximate lens shade correction by DLS = γI, where γ is the
average gain across the RGB channels at a given pixel and its value
is spatially varying. The tone mapping matrix2 DTM is also varying
depending on the channel inputs and the tone mapping function fTM.
Our model does not explicitly account for the demosaic step and
treats the raw data as if they were in full resolution. We add an
extra scaling step to the final YUV noise model to accommodate the
effects of demosaicking and other factors. Given this pipeline model,
the raw RGB values IRAW and the YUV values IYUV are related by

IRAW = (TYUVTCCDTMDWBDLS)
−1 IYUV + b. (8)

Directly applying Eqs. (7) and (8), we can compute the noise vari-
ances in the raw data and consequently the noise variances in the
YUV data , but the results would depend on IYUV and the spatial lo-
cation in a non-trivial manner. To avoid excessive storage and com-
putation, our final YUV noise model decouples the dependence on
IYUV and the spatial location, and approximates the noise standard
deviation (std) in the YUV domain as

σ̂YUV = γσ̃ (9)

where σ̃ = DNM

√
(K̃ ◦ K̃)

[
g1(K−1IYUV + b) + g2

]
, (10)

K = TYUVTCCDTMDWB, (11)

K̃ = TYUVTCCD̃TMDWB, (12)

K̃ ◦ K̃ is the element-wise square of K̃, the diagonal of D̃TM con-
tains the mapped values of the tone mapping inputs by the derivative
of the tone mapping function f ′TM, and DNM is a diagonal calibra-
tion matrix to account for demosaic and other factors. In Eq. (10),[
g1(K−1IYUV + b) + g2

]
computes the raw data noise variances as

if there were no lens shading. Multiplying by K̃ ◦ K̃ accounts for
the effect of propagating the noise through the pipeline.

We quantize each of the Y,U,V axes into 10 levels and apply
Eq. (10) to construct a look-up table to map IYUV to σ̃. When apply-
ing the look-up table, we perform Gaussian filtering to smooth out
the YUV data, use the look-up table to estimate σ̃, and scale σ̃ by the

1This is now possible with the Camera2 API on all devices running An-
droid 5.0 Lollipop or later. See devCam [13] for details

2The tone mapping function fTM is monotone increasing and non-linear.
We define gTM(x) = fTM(x)/x so that the diagonal of DTM contains the
mapped values of the tone mapping inputs by gTM. This setup is only for
simplifying the notation.

(a) Noisy image (b) Estimated noise map (Y)

Fig. 6: (a) Noisy image (Nexus 6P, 12 MP, ISO-1355). (b) Noise
map computed from the LUT approach of Eqs. (9)-(12) (darker re-
gions correspond to higher noise std.).

lens shading correction γ as in Eq. (9). To speed up computation fur-
ther, table look up and scaling are performed with the sub-sampled
(by 2) image. The noise map is then used in the denoising filter by
modifying the geodesic distance d[n] of Eq. (2) to the following:

d[n] = 1 +
σs

σr

C∑
j=1

max
(∣∣I ′j [n]

∣∣− λσ̂j [n], 0
)
, (13)

where σ̂j [n] is the noise std estimate for the j-th channel of the n-th
pixel, and λ is a tuning parameter which we typically set to 1. Fig. 6b
shows the Y channel noise map computed from our noise model, for
the noisy image shown in Fig. 6a.

3. EXPERIMENT RESULTS

Fig. 7 shows the results for a few regions from one of our test images
(Fig. 6a) captured by Nexus 6P at ISO-1355. The first column shows
the noisy regions. Our scheme (column 2) cleans up the noise, even
in the darker, more noisy regions, and the sharpness of the textures
and edges are preserved properly. For comparison, we show the re-
sults of BM3D [1] in column 3 and column 4. We use the BM3D
implementation provided by the authors [14], and set its parame-
ter σ to 1× (column 3) and 2× (column 4) the average noise std σ̄n

estimated from our noise map.
We also compare our scheme with BM3D numerically in a sim-

ulation experiment. Six test images, shown in Fig. 8 were captured
by a DSLR camera with a 24 MP full frame sensor at ISO 100-400,
and down sized to 1.5 MP to further suppress the noise. For each
image, we simulate the inverse of our pipeline model as in Eq. (8) to
obtain the sensor data and simulate the sensor noise by Eq. (7) using
Nexus 6P parameters at ISO-1355. We then simulate the pipeline
model on the sensor data to obtain the ground truth and noisy sRGB
images. We compute the PSNR and SSIM [15] values in Table 1, av-
eraged over five noise realizations. The results for Turbo Denoising
are shown in column 3 (PSNR) and column 6 (SSIM) in Table 1. For

Table 1: Numerical Comparison, Nexus 6P ISO-1355

PSNR (dB) SSIM
Turbo Denoising BM3D Turbo Denoising BM3D

Smoothing Boosting Smoothing Boosting

Img 1 26.27 27.16 27.10 0.73 0.78 0.76
Img 2 31.54 31.87 31.67 0.87 0.88 0.85
Img 3 29.39 30.33 31.98 0.89 0.90 0.92
Img 4 28.23 29.16 29.27 0.85 0.87 0.87
Img 5 30.70 31.25 31.25 0.89 0.90 0.89
Img 6 26.49 27.97 27.97 0.82 0.87 0.86



(a) Noisy (b) Turbo denoising (c) BM3D, σ = σ̄n (d) BM3D, σ = 2σ̄n

(e) Noisy (f) Turbo denoising (g) BM3D, σ = σ̄n (h) BM3D, σ = 2σ̄n

(i) Noisy (j) Turbo denoising (k) BM3D, σ = σ̄n (l) BM3D, σ = 2σ̄n

Fig. 7: (a),(e),(i) Noisy regions, Nexus 6P, ISO-1355; (b),(f),(j) Turbo denoising; (c),(g),(k) BM3D, σ = σ̄n; (d),(h),(l) BM3D, σ = 2σ̄n.

(a) Img 1 (b) Img 2 (c) Img 3

(d) Img 4 (e) Img 5 (f) Img 6

Fig. 8: Thumbnails of the test images of Table 1.

all images, we fix the parameters of both IIR-DT filters at σs = 2.5
and σr = 6.5 for simplicity. The results for BM3D are shown in
column 4 (PSNR) and column 7 (SSIM) of Table 1. For each image,
we compute the mean absolute error of the noisy image σ̄n and set
the parameter of BM3D to σ = τ σ̄n, with τ varying over the range
1 to 3 with step of 0.1, to give BM3D the best chance of success.
The best PSNR and SSIM values are then reported in column 4 and
column 7 of Tables 1. In terms of PSNR and SSIM, the results of
Turbo Denoising are close to those of BM3D. In a few occasions,

Turbo Denoising even achieves higher PSNR or SSIM values. We
believe one can further improve the BM3D results by incorporating
a noise map in its operation, but this will also add more computa-
tion to an already computationally intensive algorithm. Further, the
proper way to implement it is not immediately clear.

We implement our scheme in C++ with Halide [16]. We bench-
mark our scheme on a Intel Xeon E5 (6 cores, 3.5GHz) Linux
computer with 32GB of memory. The single-threaded run time
of Turbo Denoising on color images, excluding noise look up, is
133.64 msec/MP. The single-threaded run time for noise look up is
13.77 msec/MP. The multi-threaded run times of Turbo Denoising
and noise look up are 32.77 msec/MP and 5.68 msec/MP respec-
tively. The BM3D implementation [14] consists of compiled Matlab
code executed by a front-end Matlab function. The implementation
details and language used are unknown to us. Its run time is 15.23
sec/MP, which is about 103 times slower and 396 times slower than
our single-threaded and multi-threaded implementations, respec-
tively. All reported run times are averaged over 10 executions.

4. CONCLUSION

We presented a new denoising algorithm based on a simple two step
processing. We also proposed a novel YUV noise model to estimate
the complex intensity and location dependent image noise. Both
the denoising algorithm and the noise model can be implemented
very efficiently. Our scheme demonstrates denoising results match-
ing those of BM3D, but requires significantly less computation.
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