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Abstract

We present a statistical analysis of the problem
of shape reconstruction from measurements of the
brightness function (areas of shadows) by deriving the
Cramér-Rao lower bound (CRLB) on the estimated 2-
D boundary. Confidence region techniques are used
to analyze and visualize the performance of the 2-D
parametric shape estimation problem. The brightness
function data is very weak, so we have to use a con-
strained CRLB on the shape parameters to form the
confidence regions. Algorithms for reconstructing the
shape of a convex object from multiple measurements
of its brightness function were developed in [2] and
[3]. The Cramér-Rao bound analysis presented here
provides statistical estimates that can be used for per-
formance evaluation of these algorithms.

1 Introduction

The problem we consider is that of shape recon-
struction from noisy measurements of the bright-
ness function. The brightness function of an n-
dimensional body gives the volumes of its (n — 1)-
dimensional orthogonal projections (i.e., shadows) on
hyperplanes. The discussion in this paper is restricted
to 2-dimensional bodies, in which case the brightness
function gives the lengths of the orthogonal projec-
tions of the shape on lines. In this context it is nat-
ural to work with convex bodies, that is, convex sets
with non-empty interiors. The problem is an inverse
problem in the area of geometric tomography; see [1,
Problem 3.6]. Related problems in tomography that
have been studied in the past include reconstruction
using Radon transforms, or using support functions
(as in [6]). Brightness functions, however, constitute
a much weaker form of data. In this paper we provide
a statistical analysis of this estimation problem using
the Cramér-Rao lower bound.
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2 Background

The brightness function b(v) of a suitably smooth
convex body for a given viewing direction v (a unit
vector) is given by

o) = / T o) f o), (1)

where f(u) is the extended Gaussian image (EGI) of
the body. Integration is over the unit sphere (in two
dimensions, the unit circle). The function f is actually
just the reciprocal of the curvature at the point on
the boundary where u is the outer unit normal vector.
(For more details, see [2], [3], and [4].)

Whether the body is smooth or not, our approach
is to reconstruct an approximating polygon that best
matches the measured brightness data in the least-
squares sense. For a convex polygon with N edges we
have the following formula corresponding to (1):

N
b) = 5 3 arlufol, @)
k=1
where aj denotes the length of kth edge and uy de-
notes the outer unit normal to the kth edge. If
v = [cosa,sina]l and uj, = [cosOy,sind;]T, we can
rewrite (2) in the form

b(a) = % Z ak| cos(a — O)|. (3)
k=1

The problem is to estimate the shape parameters
ai,...,ay and 61,...,0x (i.e., the EGI of the poly-
gon) using corrupted brightness functions measured
from multiple viewing directions. The data obtained
is very weak, and there can be infinitely many con-
vex bodies having the same (exact) brightness func-
tion measurements in all viewing directions; see [3].
However, Aleksandrov’s projection theorem [1, The-
orem 3.3.6] says that any two origin-symmetric con-
vex bodies having same brightness functions must be



equal. Hence we seek to reconstruct origin-symmetric
bodies to overcome the non-uniqueness problem.

The corrupted brightness function measurements
are modeled by b(c,) + n(am,), m=1,..., M, where
the first term is given by (3) and the second term
is the noise. The problem of finding the parameters
ai,...,any and #1,...,0y from the measurements can
be solved using constrained non-linear optimization,
where the constraints are as follows:

ay, '7CLN20; (4)
ak:aN/2+k fOI‘k:L...,N/2; (5)
Gk:GN/2+k+7rfork:1,...,N/2. (6)

Constraints (5) and (6) ensure that the output poly-
gon will be origin symmetric (note that N is even in
this case). Details can be found in [3], where a linear
optimization approach due to Markus Kiderlen is also
described.

3 The Cramér-Rao lower bound

The Cramér-Rao lower bound (CRLB) is a statis-
tical tool often used in the performance evaluation of
estimation problems. It provides the theoretical lower
bound on the variance of any unbiased estimator; see,
for example, [5, pp. 27-35]. Since no unbiased estima-
tor can have lower variance than the CRLB, it provides
a benchmark for comparison in the performance of an
algorithm.

Consider an observation vector X given by

X=f)+W,

where ¢ = [11,...,9p|T is the vector of parameters
to be estimated and W is the noise. The CRLB (see
[5, pp. 30-44]) states that the covariance matrix is
bounded below as follows:

Cov () > J (1)) (7)
Here ) is the vector of estimated parameters and J (1)
is a P x P matrix called the Fisher information ma-
trix (FIM), whose entries are given by the following
expression involving the probability density function

(p.d.f.) p(X;1) of the observed data:
). ®
fori,j=1,...,P.

The noise corrupting the brightness function mea-
surements is assumed to be N(0,0?). Therefore, the

9% Inp(X;1)

J(i,4) = T()i; = =B ( D004
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p.d.f. for the brightness function data is

H

m=1

exp {21 blam) — 13N ai] cos(am — 01) |)2} (9)

Vora2

where X b(a1),...,blay)]T and o
[ai,...,an,01,...,0Nn]T is the parameter vector of
length 2N. Therefore the FIM will be a 2N x 2N ma-

trix consisting of four N x N blocks Ji, Jo, J3, and

Jy. Specifically, for i,5 = 1,..., N, we have
o 9 Inp(X; )
Ji(i,g) = J(,j) = -F ((%ﬁ%—) , (10)
o B & Inp(X; )
Jo(i,j) = J(i,j+N) = —FE <8a@89]> , (11)
o N 0% Inp(X; 1)
J3(i,j) = J(i+ N,j) = —E (8@%) , (12)

and

9*Inp(X;1h)

Ilid) = i+ o+ N) = - (G

)-03)

Using (8), (9) and (10)—(13), we find (see [7]) that

10:4) = g Z emillemal,  (14)
M
Z |Cm.il sm.jsgn(em;),  (15)
M
Z .| Sm,i Sg0(Cm, 1), (16)
and
wa. M
Ja0:3) = 3 D Smi s sgn(em.) sgn(em):
m=1
(17)

where ¢, 1 = cos(m — O), Sm,k = sin(a, — 0;) and
sgn(f) returns +1 or -1 according to whether f takes
positive or negative values, respectively. Thus, J is a
function of v, the vector of shape parameters, and the
set of viewing directions used to measure the bright-
ness function.

The lower bound on the variance of the shape pa-
rameters for any input polygon can be obtained by
computing the FIM from (14)—(17), inverting this ma-
trix, and using the CRLB (7). However, we observed
that irrespective of the input polygon, the FIM turns



out to be singular, yielding an infinite lower bound.
The reason for this behavior is that the constraints
(4)—(6) for the estimation problem have not been
taken into account. The infinite CRLB reflects the
fact, mentioned above, that the solution is not unique
unless these constraints are imposed. In the next sec-
tion we describe how to deal with this issue.

4 The constrained Cramér-Rao lower
bound

The non-uniqueness issue was overcome in [3] by re-
constructing an origin-symmetric output body. Simi-
larly, we need to incorporate the constraints (5) and
(6) for origin symmetry in the CRLB analysis to get
sensible results. We use the method given in [8], a con-
strained Cramér-Rao lower bound (CCRLB) analysis,
which is appropriate for such problems.

Let g;(¥) = 0, i = 1,...,K, where v € RF
and K < P, be equality constraints defined by con-
tinuously differentiable functions, and let g(y) =
(g1(¥),...,9x(¥))T be the corresponding constraint
vector. The gradient matrix of g is a K x P matrix

defined by
dg
G(z/)) = éjﬁ),

where G should have full rank. Let U € RE*(P=K) he
an orthogonal matrix in the null space of G(¢). Then

G)U = 0.

The analysis in [8] shows that, under the given con-
straints, the covariance matrix of the estimated pa-
rameters should now satisfy

Cov(y) > UWTJu)~UT. (18)

For an N-sided polygon, we have N equality con-
straints given by (5) and (6), so the gradient matrix of
constraints is an N x 2N matrix. For example, when
N = 6, we have

=" 4 |

where Tg is the Toeplitz matrix

1 00 -1 0 0
=10 1 0 0 -1 0
0 0 1 0 0 -1

After carrying out the analysis discussed in this sec-
tion, we will be able to obtain the CCRLB for the
shape parameters. However, our final aim is to recon-
struct the 2-D shape using brightness function mea-
surements and not simply to find these parameters.
Therefore, after finding the CCRLB, we proceed to
find confidence regions of the estimated shape.
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5 Confidence regions

Asymptotic global confidence region techniques are
used to analyze and visualize the performance of 2-
dimensional parametric shape estimators. Assuming
a maximum likelihood estimator (MLE) operating in
the asymptotic regime, the CRLB for the shape pa-
rameters can be used to define a confidence region
around the true boundary of the shape, as in [9]. Note
that the MLE is asymptotically normal and asymptot-
ically attains the CRLB; see [5, pp. 164-167]. We fol-
low [9] below; in our analysis, however, we have used
instead the CCRLB for the shape parameters.

Consider a 2-D shape parametrization of the form

S(t; ¢) = [Sm(t§ ¢)7 Sy(t; "Z})]Tu

where s is the boundary parametrized by t € [0,T],
and s, and s, give the z and y coordinates. Here
Y € RP is the P-dimensional parameter vector. At
each point along the boundary (i.e., for all ¢ € [0,7T7)
we determine a local confidence region Ug(t) centered
at the true point s(¢;1) (see Fig. 1). The size of the
local confidence region depends on (3, which in turn
depends on the chosen local confidence level n € [0, 1];
if §(t) is estimated using an MLE operating in the
asymptotic regime, then

Pr{3(t) € Us(t)} = 1.

Figure 1: Local and global confidence regions (from

[9])-
The details of the procedure are as follows.

1. Find the CCRLB for the shape parameters. This
gives us the P x P covariance matrix Cly

Cov ().

. For all ¢ € [0, T], compute the 2 x 2 matrix

Cs(t) = [Vys(t; 0)] Cy Vys(t; ).

(19)

. Choose a local confidence level n € [0, 1].



4. The local confidence region is the ellipse

Us(t) = {z € R : (2—5(t)T Cs(t) " (2—5(t)) < 7},

(20)
where ( is estimated by assuming that the left-
hand side of (20) is a Chi-square random variable
of degree 2 such that the probability that it is less
than or equal to 32 is 1.

Since each region is an ellipse, the Ug(t)’s are also
referred to as local confidence ellipses. A global confi-
dence region

Us= |J Us®)

te[0,T]

can now be determined by moving these ellipses along
the boundary, as in Fig. 1.

We have parameterized the shape using its EGI;
see Section 2. Therefore the function s(¢) brings us
back from the EGI domain to the cartesian coordinate
system by

s(t;9) = LZ; a; Cos (9i + g) ,;ai sin (91- + g)
(1)

where ¢ takes the discrete values t = 1,..., N. Each
value of ¢ indexes a vertex of the polygon and thus
we can find the local confidence ellipses centered at
all the vertices. Note that we used the CCRLB eval-
uated in Section 4 to form the confidence regions; the
covariance matrix Cy in (19) is obtained from (18)
and is a 2N x 2N matrix for an N-sided polygon.
The constraints (5) and (6) imply that when ¢t = N,
(21) gives s(N;1) = [0,0]7, so that the convex poly-
gon produced, while symmetric, actually has its Nth
vertex at the origin. Since this point is technically de-
termined, there is no uncertainty associated with it;
rather there is an induced uncertainty about the cen-
troid of the polygon. However, we chose to plot the
final region with the polygon centered at the origin.
Then the symmetry of the polygon implies that the
local confidence ellipse for the last vertex (t = N), is
the reflection in the origin of that for its corresponding
vertex (t = N/2).

6 Results

Fig. 2 shows the local confidence ellipses for an
origin-symmetric, regular polygon with N = 12 sides.
The brightness function was measured from M = 36
equally spaced viewing angles in the range [0,7].
The noise corrupting the brightness function mea-
surements is assumed to be N(0,0?) with o = 0.05,
and the local confidence level n=0.73. Due to the
parametrization in (21), if the starting vertex of the

T
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Figure 2: Local confidence regions for a polygon.

polygon is shifted, the local confidence regions also
shift accordingly. We observe in Fig. 2 that the ellipses
are not all the same; this is due to error propagation
along the vertices (see [7]).

The very small circles in Fig. 2 indicate the vertices
of the output polygon from our shape reconstruction
algorithm (see [2], [3], and [7]) from these noisy mea-
surements. We have found that the ellipses seen in
Fig. 2 increase in size as the noise increases and also
as 7 increases, as one would expect.

Figure 3: Confidence regions with fewer observations.

Fig. 3 shows the local confidence regions for the
same polygon, but when the brightness function is
measured from only M = 18 equally spaced viewing
angles in the range [0,7]. The ellipses are larger, as
expected since there is less information. There are
methods to obtain the confidence region of a line seg-
ment using the confidence regions of its end points
(see [7]) and we have used them in Fig. 3 to obtain a
confidence region for the entire boundary.

The input polygon for Figs. 4 and 5 is an origin-
symmetric, affinely regular polygon with N = 12 sides.
The eccentricity p of the polygon, that of the ellipse
in which it is inscribed, is p = 1.54. Again, M = 36,
o = 0.05, and n = 0.73. For Fig. 4, observations



were from angles equally spaced in the range [0, 7].
The local confidence ellipses are larger than those in
Fig. 2, indicating that its more difficult to estimate
shapes with higher eccentricities. For Fig. 5, we took
more observations from angles near the direction of
eccentricity (elongation), thus obtaining more infor-
mation near that direction. Though the total number
of observations is the same, this choice of viewing di-
rections resulted in smaller local confidence regions for
the same polygon compared to those in Fig. 4.

Figure 4: Confidence regions for a polygon with higher
eccentricity.

Figure 5: Confidence regions with a better set of view-
ing directions.

7 Conclusion

Unconstrained CRLB analysis for the problem of
shape reconstruction from brightness functions con-
firmed the fact that the solution is not unique. Con-
straints for origin symmetry were incorporated in the
analysis to obtain the CCRLB. Using this, the asymp-
totic local and global confidence regions for the esti-
mated parametric 2-D shape boundary were obtained.
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The behavior of the confidence regions is intuitive.
The size of the local confidence regions gives the
amount of uncertainty, which increases as the noise
corrupting the brightness function measurements in-
creases. As the number of observations increases, the
uncertainty decreases. The size of the confidence re-
gions also increases with the local confidence level.
Finally, for eccentric bodies the uncertainty is much
higher near the direction of eccentricity, but this can
be reduced by choosing a better set of viewing direc-
tions.
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