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Abstract

In many restoration/superresolution applications, the
blurring process, i.e., point spread function (PSF) of the
imaging system, is not known. We estimate the PSF and
regularization parameters for this ill-posed inverse prob-
lem from raw data using the generalized cross-validation
method (GCV). To reduce the computational complexity of
GCV, we propose efficient approximation techniques based
on the Lanczos algorithm and Gauss quadrature theory.
Data-driven blind restoration/superresolution experiments
are presented to demonstrate the effectiveness and robust-
ness of our method.

1 Introduction

Given a sequence of aliased low resolution frames
b;,i = 1,..., k, superresolution reconstructs an enhanced,
high resolution image x by extracting subpixel information
from the given frames. We model the low resolution frames
as blurred and down-sampled, shifted version of the high
resolution image we wish to estimate. To simplify the prob-
lem, we model the point spread function (PSF) as a para-
metric blur with parameter set . Then with given o, the
forward model for superresolution is

b = A{o)x +¢, (1)

where 4(c) is a very large, sparse, ill-conditioned and typ-
ically underdetermined matrix generated from the blur pa-
rameter set o, and € is an additive noise vector [10]. In [9],
we showed that restoration is a special case of superresolu-
tion. Thus, (1) is applicable as a restoration model equation
as well. The regularized minimum norm least squares solu-
tion to (1) can be expressed as follows:

x(0,)) = A(0)T(A(0)A(0)T + AI)" b, )
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where X is the regularization parameter. In many applica-
tions, the camera’s characteristics may be unknown. Our
approach to the blind restoration/superresolution problem
first estimates the unknown PSF parameter set o and reg-
ularization parameter A from raw data. Once estimates
&, A are available, a computationally inexpensive precon-
ditioned conjugate gradient algorithm is used to solve the
non-blind problem (2), see [10]. In Section 2, we describe
our parametrized blur estimation technique using general-
ized cross-validation. In Section 3, we propose a method
based on quadrature rules and the Lanczos algorithm, which
bounds the GCV criterion value accurately and efficiently.
Blur estimation and blind restoration/superresolution re-
sults are shown in Section 4.

2 Cross-Validation

Generalized cross-validation is a popular method for
computing regularization parameters [4]. More recently,
Reeves and Mersereau have used GCV for blur identifi-
cation under an autoregressive moving average (ARMA)
model [11]. In a recent study by Chardon, Vozel, and
Chehdi [2], GCV has been shown to be an effective tool in
parametric blur estimation. Motivated by these successes,
we apply GCV to estimate both the PSF and regularization
parameters for blind superresolution:

2oL : I(A(0)A(0)T + AI)"'b]|;
{"’ A} = AN (A A(0)T + A1)

3)

Reeves and Mersereau simplified the objective function in
(3) by assuming the system matrix A(o) to be circulant. In
this paper, we neither assume ARMA model or circulant
structure for A(c). Reeves and Mersereau also simultane-
ously estimated the optimal blur and regularization param-
eters while keeping the image model parameters fixed. We
found, however, that by setting the regularization parame-
ter to some small number, the PSF parameters can be better
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estimated even in the presence of noise. We then use the
computed PSF to determine the appropriate regularization
parameter. Our intuition is that with under-regularization
(small X), the noise effect is exacerbated, moving the GCV
criterion away from possible local minima. Furthermore,
the estimated PSF is less biased away from the actual PSF
even though the variance of the estimates is larger. We used
Ao = 1073 in our experiments so that the estimated PSF
parameters can be found by

L A@A@)T + D) Mbls
7 A (A AT + AD) )

In the simplest case, the parameter set o consists of one pa-
rameter describing the smoothness of the blur, e.g. the stan-
dard deviation of a Gaussian hump or the radius of a pillbox
(out-of-focus) blur. Once a blur estimate & is available, we
compute the regularization parameter from

 — seemin, IAG)AG)T + Dbl
A= A (A AT+ AD )

CY)

(%)

3 Quadrature Rules with Lanczos Algorithm

For large‘ systems, the numerators and denominators of
(4) and (5) are very expensive to evaluate directly. We first
approximate the denominators using an unbiased trace esti-
mator by Hutchinson [8): Let U be a discrete random vari-
able which takes the values -1 and +1 each with probabil-
ity 1, and let u be a vector whose entries are independent
samples from U. Then the term u” (AAT + AI)~!uis an
unbiased estimator of tr((AAT + AI)~1).

Now, 1n order to estimate numerators and denomina-
tors in (4) and (5), we need to estimate quadratic forms
vT f(M)v, where M is some symmetric positive definite
matrix and f(§) = €77, p = 1,2. There is extensive
literature on the application of Gauss quadrature rules to
bound bilinear forms; see papers by Golub and collabora-
tors [1, 3,.5, 6, 7). We will briefly summarize the details in
the following.

Let the eigendecomposition of M be given by M =
QTZ=Q, where Q is an orthogonal matrix and = is a diago-
nal matrix of eigenvalues in increasing order. Then

vif M)y = vIQTf(Z)Qv
= VTfE)WV
= Z?:l f(g‘l)ﬁ'?y
where v = (9;) = Qv. Suppose that we have bounds

on the spectrum of M, e.g. by Gershgorin circle theorem,
a < §& <... <&, <b. The last sum can be considered as a
Riemann-Stieltjes integral with piecewise constant measure

Zf(fi)

b
ﬁ=/fm@m, (©)

where p(€) is defined as

0, if§ <&
WO = Timi ¥, 6 <E<bin
Y, i <&
We can approximate the Riemann-Stieltjes integral (6) with

Gauss-type quadrature rules. The general form for quadra-
ture rules is

k 1
11 = S wif@)+ S ufm),
i=1 i=1
b
ffmm@)= If]+R(f], )

where the weights w;, v; and the nodes §; are unknown,
the nodes 7; are predetermined, and R [f] is the remainder
term. The Gauss-type quadrature rules differ from one an-
other by the number of prescribed nodes. If there are no pre-
scribed nodes, then we obtain the standard Gauss quadra-
ture.

Ic(f] =

k
> wif(6:)
i=1

If one node is prescribed, we get the Gauss-Radau quadra-
ture rule; with two nodes prescribed, the Gauss-Lobatto
rule,

k
IR[f] = D_wif(6:) +vf(7)
i=1
ILif) = §j%f ) + v f(1) + vaf(72)
Gauss-Radau rule is often applied with either 7 = a or
7 = b. Gauss-Lobatto has both endpoints prescribed,

1 =Q, T2 = b.
3.1 Quadrature Error

The quadrature error R {f] from (7) can be expressed as

(2k+1)
Lo H —GHF£9 2dulg

2k + 1)
for some 7 € (a, b) . We have the following theorem for the
Gauss quadrature rule [5].

R[f] =

Theorem 1 Suppose that f(2%)(€) > 0, Vk, V€, a < €<

b, then ,
ﬂS/fm@@
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Analogous theorems for Gauss-Radau and Gauss-Lobatto
rules are presented in the following.

Theorem 2 Suppose that fF+V(€) < 0, Vk, V€, a <
& < b, then

b
In(1< [ £(©due) < Inalf),

where Iro (Iry) corresponds Gauss-Radau rule with the
prescribed node ar T = a (b).

Theorem 3 Suppose that f2*)(€) > 0, Vk, V€, a < €<
b, then

b
/f@MMQSQUL

with prescribed nodes T = a, T2 = b.

Recall that the bilinear terms which we are interested in ap-
proximating have form v M ~Pv, p = 1,2. The function
f(&) = £7P satisfies the hypotheses of Theorems 1,2, and
3, for M positive definite (a > 0). Hence, we can bound

fab F(€)du(€) with Gauss-type quadrature rules. Define

L{f] max(Ie [f], Irs {f1),
Ulf] min(Iga (£}, 1L [f]),

Then we have the following bounds [5]

I

li

b
LMS/f@@@SUM-

To find quadrature bounds L [f] and U [f] above, we need
the unknown weights w;, v; and nodes ;. These quantities
can be computed from sequences of orthogonal polynomi-
als associated with the weight measure du(€). We can de-
fine a sequence of orthonormal polynomials {pi}?:_ol such
that R

' ‘ ' |1, ifi=j,

[ pem@ae ={ § 152

These polynomials satisfy a three-term recurrence relation

Epe(€) = Tapk (&) + Brpr(Eer, k=1,...n,
p-1(§) =0, po(§) =1

with
0
, po(§)
€r = 0 y Pk = >
N 1 pr-1(8)
o By
Tk - ﬂl’
oy Br-a
Br-1 g

It turns out that the nodes 6; of Gauss quadrature rule are
the eigenvalues of T%, which are also the zeros of the poly-
nomial p,. The weights w; are the square of the first com-
ponent of the normalized eigenvectors of 7. For Gauss-
Radau rule, we need to adjust the last entry ay of Ty so that
the adjusted tridiagonal matrix 7% has an eigenvalue at the
prescribed node. For the Gauss-Lobatto rule the last three
nonzeroentries B _1, a, Bx—1 will be adjusted to prescribe
eigenvalues at a and b. The orthogonal polynomials {p,(£)}
and coefficients of their three-term recurrence can be es-
timated via the Lanczos bidiagonalization algorithm. The
follow stopping criterion terminates the Lanczos algorithm

Ulf]- L]
Ul(f]

We use U [f] as the approximate value for f: f(&)du(g) ==
v f(M)v.

<0.01. (8)

4 Experiments and Conclusions

We estimate blur parameters using the GCV criterion
with quadrature rules bounds as described above. We use
Matlab’s CONSTR routine [12] to solve the GCV mini-
mization problem (4). For each function evaluation, we
iterate with the Lanczos algorithm until the stopping cri-
terion (8) is satisfied, usually within 70 Lanczos iterations,
equivalent to 140 matrix vector multiplies, for our test im-
age sequence. The iteration count is quite low compared
to the dimensions of the system matrix (usually in the tens
of thousands). In the first set of experiments, 16 low reso-
lution frames are generated by blurring a 172 x 172 pixels
high resolution image with a 4 x 4 Gaussian blur and down-
sampling by a factor of 4 in each dimension. We experiment
with blurs of standard deviations 0.75, 1.0, and 2.0. In ad-
dition, we consider blind superresolution with 60 dB, 30 dB
and without additive Gaussian noise added to the low res-
olution frames. We simulate blind superresolution for two
cases, with all frames given and with 10 randomly choosen
of the 16 available frames. When all frames are available,
superresolution is equivalent to a restoration problem. Ta-
bles 1 and 2 display the mean square error (MSE) (see [2]
for precise definition) (in percent) in the PSF estimates. Fig-
ure 1 shows the result of blind superresolution using com-
puted PSF and regularization parameters from (4) and (5).
The actual blur standard deviation is 0.75. We added white
noise to the low resolution frames to realize an SNR of 30
dB. The resulting high resolution estimate is computed from
10 randomly chosen low resolution frames. In the second
set of experiments, we ran tests for a pillbox (defocussed)
blur. The parameter to be estimated is the radius of the blur.
Our experiments tested for out-of-focus blurs with radii 2
and 5. We plotted GCV values for radius taking values from
1 to 10 at 0.2 intervals.
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Our experimental results demonstrate the effectiveness
of our techniques for identifying unknown blurs in restora-
tion/superresolution problems, even in the presence of
noise. Gauss-type quadrature rules bound GCV function
values for large systems efficiently. The proposed tech-
niques are a foundation for completely data-driven efficient
blind restoration/superresolution algorithms.
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SNR
o | oodB | 60dB | 30dB
075 | 0.00 0.00 293
1.0 | 0.04 0.04 0.17
20 | 0.00 0.00 | 0.09

Table 1. % MSE in PSF estimates for Gaussian
blur with all 16 frames available

SNR
o | oodB | 60dB | 30dB
0.75 | 343 3.27 4.79
1.0 | 0.02 0.02 0.53
20 | 0.01 0.01 0.11

Table 2. % MSE in PSF estimates for Gaussian
blur with 10 randomly chosen frames
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Figure 2. GCV plot for pillbox blur
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Figure 1. Blind superresolution with noisy LR frames (30 dB)
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