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Abstract

In this paper we describe the development and application of a novel approach to fast non-

destructive evaluation (NDE) via direct estimation of signi�cant features from tomographic

data without image reconstruction. Classically, the term tomographic has been used to refer

only to X-ray, and perhaps magnetic resonance techniques, but in our framework we point out

that it has been recently shown that synthetic aperture radar (SAR), ultrasound, and laser

radar measurements can all be interpreted in terms of tomographic projections. Hence, the

algorithms described in this paper will be widely applicable to a variety of modalities used for

the inspection of civil structures.

In numerous situations of practical interest, such as the inspection of large civil structures,

a full set of data with high signal-to-noise ratio is usually di�cult, if not impossible, to obtain

due to physical and sensor contraints. Therefore, the accurate reconstruction of an image of

the medium is often di�cult. Hence, much research work to date has been concentrated on

improving image reconstruction for NDE applications. Yet, in most NDE applications, the

reconstructed image is not the �nal product of interest. Instead, it is of interest to know

whether a particular geometric feature (be it an anomalous crack or other object of interest)

is present, and if so, to obtain a rough estimate of its shape and size. That is to say, a

pixel-by-pixel reconstruction of the image is often unneccesary.

Our proposed method, based on a fundamental property of the (projection) Radon trans-

form, is aimed at directly extracting geometric features from a set of given noisy, and possibly

sparse data, without pixel-by-pixel image reconstruction. The propose method eliminates the

need for full image reconstruction in arriving at the image features, hence resulting in sig-

ni�cantly fewer overall computations. In addition, this approach allows us to compute easily

the statistics for the estimated features, therefore resulting in easily quanti�able performance

characteristics of the approach.

Several important advantages inherent to our proposed approach include 1) real-time

processing, 2) process automation, and 3) improved performance. In this paper we will

present examples of these advantages and point out possible extensions and generalizations

of the proposed ideas.



1 Introduction

NDE is an important part of many industrial processes. NDE techniques and equipment have

been developed to facilitate the important requirements of quality control and product assur-

ance for a variety of purposes. In fact, the worldwide market for NDE equipment now exceeds

$700 million and the equipment �nds use in virtually all industries. In particular, with the ad-

vent of more sophisticated processors, measurement equipment, and displays, the value of 2-D

NDE techniques such as radiographic and ultrasonic methods to the industry is on the rise.

While much progress has recently been made in improving the overall speed and performance

of these techniques, most are still far from being readily applicable to practical problems in the

�eld. In particular, tomographic systems have their own speci�c shortcomings. The �rst of

these drawbacks is that in most NDE applications, due to various physical constraints, tomo-

graphic data can only be collected over a narrow range of angles and with fairly poor quality

(Tam, 1987). This sparse and noisy data are then typically used to reconstruct an image

of the underlying �eld of interest. This reconstructed image is subsequently used to detect

or estimate a 
aw. The image reconstruction step in the overall tomographic NDE process

is highly ill-posed even when complete data is available. This fact, combined with the poor

quality and limited quantity of the data, make this step a weak point of tomographic NDE.

We intend to mitigate this important di�culty by designing 
exible algorithms that directly

extract relevant features from the raw data set without image reconstruction. As a result of

bypassing the direct reconstruction step, our proposed algorithms will also be computationally

e�cient. The extracted features will serve as su�cient statistics for detection and, in many

instances, even su�ce for the reconstruction of a region of interest in the image without

pixel-by-pixel reconstruction of the entire �eld. The 
exibility to choose the particular type of

image features (e.g., a geometric moment) and the gross scale of the information they carry

(e.g., the order of the computed moment), from the raw data, makes our proposed approach

exceedingly useful. Most feature-extraction algorithms based on our approach will consist

of linear estimation problems. As a result, not only is the statistical analysis of the quality

of these estimated features rather simple, but the solution to the feature-extraction problem

itself will be fast.

2 Overview

The objectives of NDE can, in many cases, be summarized as the solution to a combination

of several problems. These problems are: 1) object detection, 2) object localization, 3)

object characterization, and 4) object identi�cation. As di�erent as these problems may be

for any particular application, they share a common denominator. In particular, in all four

cases, a query is being made about the geometry of a medium. In those applications where

the sensing modality allows for the reconstruction of an image of the medium (or a cross-

section thereof), the reconstructed image has been typically used as the means of arriving at

geometric information (Tam, 1987). In particular, the applications of tomographic techniques

to problems in NDE have so far largely paralleled the approach taken in medical imaging. That

is to say, to study a a non-biological sample, �rst the collected data are used to reconstruct

an image of the sample. Next, an algorithm, or more typically a human expert, looks for

signi�cant features in the reconstructed image to detect, localize, or characterize a possible

anomaly within the sample. In numerous situations of practical interest, however, a full set

of data with high signal-to-noise ratio is di�cult, if not impossible, to obtain. Therefore,



the accurate reconstruction of the image is often di�cult. Hence, much research work has

been concentrated to date on improving image reconstruction from limited data. Yet, in most

NDE applications, the reconstructed image is not the �nal product of interest. Instead, it is

of interest to know whether a particular geometric feature (be it an anomaly or other object

of interest) is present, and if so, to obtain a rough estimate of its shape and size. That is

to say, a pixel-by-pixel reconstruction of the image is often unnecessary, if not ine�cient and

nonrobust.

Our proposed method is aimed at directly extracting features from a set of given noisy,

and possibly sparse data, without pixel-by-pixel reconstruction. The proposed method is

based on an interesting property of the Radon transform that relates speci�c features of the

object being imaged directly to corresponding features of its projections. In particular, this

property includes the celebrated Fourier Slice Theorem (Herman, 1980) as a special case.

In fact, according to the basis functions chosen to extract these features from the data,

these features may be a variety of di�erent quantities such as geometric moments, Fourier

coe�cients, or wavelet scaling coe�cients. When the moments of the image are sought

after, a consequence of the aforementioned property is that \the k-th order moment of a

projection of an image is equal to a linear combination of the k-th order moments of the

image" (Milanfar, 1993).

3 Feature Extraction

Referring to Figure 1, the (projection) Radon transform g(t; �) of a function f(x; y), with
support in the unit disk D, is de�ned for each pair (t; �) as the integral of f over a line at

angle � + �

2
with the x-axis and at radial distance t away from the origin. An elementary

result (Helgason, 1980), which readily follows from the de�nition of the Radon transform,

states that if F (t) is any square integrable function on [�1; 1], then the following relation

holds true: Z
1

�1

g(t; �)F (t)dt =
Z Z

D

f(x; y)F (x cos(�) + y sin(�)) dx dy: (1)

In plain terms, the above property states that the inner-product of g(t; �) with F (t) is exactly
equal to the inner-product of the image f(x; y) with F evaluated along the line t = x cos(�)+
y sin(�). Note that in the special case where F (t) is a complex exponential, the celebrated

Fourier Slice Theorem (Herman, 1980) is obtained that relates the Fourier transform of f to

the Fourier transform of its projections. In keeping with the spirit of this well-known result,

we shall henceforth refer to the more general result (1) as the Inner-Product Slice Theorem

(IPST).

While the IPST has been well-known for at least three decades in the mathematics com-

munity, except for the special case of the Fourier Slice Theorem, little use of it has been

made to date in the engineering community. Recent work (Milanfar et al., 1992; Milanfar,

1993; Milanfar et al., 1994; Milanfar et al., 1995; Milanfar et al., 1996) has concentrated on

the direct extraction of geometric information from tomographic data via the estimation of

moments. This can be accomplished by replacing F (t) with the functions tk for various k.

For instance, letting F (t) = t0 = 1, we see that

m0 =
Z

1

�1

g(t; �)dt =
Z Z

D

f(x; y)dxdy = M0;0: (2)



Similarly, letting F (t) = t, we obtain

m1(�) =
Z

1

�1

g(t; �)tdt (3)

=
Z Z

D

f(x; y)xdxdy cos(�) +
Z Z

D

f(x; y)ydxdy sin(�) (4)

= M1;0 cos(�) +M0;1 sin(�) (5)

Normalizing both sides by (2), we get

m1(�)

m0

=
M1;0

M0;0

cos(�) +
M0;1

M0;0

sin(�); (6)

which demonstrates that the center of mass of a projection at angle � is a linear combination

of the coordinates of the center of mass of the original object f with the coe�cients being

sinusoidal functions of the projection angle. Hence, given two projections at distinct angles,

we can compute m1(�) at both angles and a linear system of two equations is obtained in

the two unknowns M1;0 and M0;1, which can be readily solved. That is to say, the center of

mass of f is obtained directly from two projections without image reconstruction.

More generally, we have shown that \m projections of an image from distinct viewing

angles uniquely determine the �rst m moments of the image." In particular, this means

that given m noisy projections of an image, estimates of the �rst m moments of the image

can be uniquely obtained by solving a linear least-squares problem (Milanfar et al., 1992;

Milanfar, 1993; Milanfar et al., 1994; Milanfar et al., 1995; Milanfar et al., 1996). More

generally, F (t) can be replaced by any member of a family of polynomials which span square

integrable functions over the interval [�1; 1] to yield the moments of the image with respect

to that family. In particular, this includes the orthogonal families of Legendre and Tchebyshev

polynomials.

4 Anomaly Detection

The detection or classi�cation performance of a feature-based NDE algorithm will depend on

the order and type of features used. An appropriate performance criterion can be de�ned and

optimized to yield the best results. The de�nition and optimization of such a criterion can be

based on either stochastic principles, such as the minimum description length (MDL) criterion

(Rissanen, 1989) for determining the optimal number of features to use, or deterministic

requirements such as computational e�ciency, well-posedness and numerical conditioning

of the feature extraction problem. To be concrete, consider the following simple scenario.

Assume that given noisy projection data, an estimate of a vector of n geometric moments Mn

of the underlying image is obtained. Under Gaussian white noise assumptions, the maximum

likelihood (ML) estimate of this vector cMn will be a Gaussian random vector with mean Mn

and covariance Qn. To use this feature vector to perform a test of two hypotheses H0 and

H1, corresponding to the absence or presence of a 
aw, respectively, the ML decision rule

simpli�es to the following:

(cMn �M1

n
)TQ�1

n
(cMn �M1

n
)� (cMn �M0

n
)TQ�1

n
(cMn �M0

n
)

(
> 
 choose H1;

< 
 choose H0

)
; (7)



where 
 is the detection threshold, and M1

n
and M0

n
are the hypothesized moments of the

object with and without a 
aw, respectively.

In the above framework, the number of estimated moments n was held �xed. However, to

adapt the number of moments for best performance, we can envision optimizing the detection

probability as a function of the number of estimated moments for a �xed false-alarm rate.

5 Computational Complexity

As the proposed algorithm bypasses the image reconstruction step, we can expect signi�cant

computational savings as compared to existing techniques that rely on pixel-by-pixel recon-

struction followed by feature extraction. As an example of what we might expect, assume

that we wish to compute the geometric moments of a 256�256 image given 20 projections at

uniformly spaced angles in the range [0; �]. Figure 2 shows two curves. In one, the number

of 
oating point operations (FLOPs) performed is shown for the case where the image is

�rst reconstructed using �ltered-backprojection (Herman, 1980) and the moments are then

computed from this reconstructed image. The second curve shows the number of FLOPs

performed when the moments are estimated directly from the projection data. These curves

were generated by explicitly carrying out the reconstruction and moment estimation steps for

both approaches and counting the number of FLOPs. For this example, the computational

savings are seen to be signi�cant. We expect this to be the case in general.

6 Applications

In addition to the standard radiographic probes such as X-ray, the proposed approach is broadly

applicable to a rich class of other sensor outputs. In particular, spotlight-mode SAR has an

exact interpretation as a tomographic probe (Desai and Jenkins, 1992). Electro-optical sensors

such as laser radar also have tomographic interpretations (Knight et al., 1989). Under suitable

conditions, ultrasonic probes can be treated as tomographic probes as well (Kak, 1979). In

fact, for the case of di�racting sources such as ultrasound and electromagnetic radiation,

if the incident wave has wavelength that is su�ciently small compared to the size of the

anomaly being sought, the Fourier Di�raction Theorem (Kak and Slaney, 1988) for weakly

scattering objects is a very close approximation of the Fourier Slice Theorem hence allowing

us to model the forward- or back-scatter measurements as transmission measurements along

approximately straight lines. While this approximation may not be adequate for the purpose

of direct imaging, in many scenarios it may well be suitable for feature extraction. For

instance (Kak and Slaney, 1988), a hypothetical ultrasound experiment conducted at 10 MHz

corresponds to a wavelength (in water) of 0.15 mm (Kak and Slaney, 1988). Measurements

of any feature with size on the order of 15 mm or larger could be modeled as a straight line

integral. Hence, IPST would apply and features could be directly extracted from raw data.

7 Summary/Conclusions

We have presented a general framework for the detection/extraction of object features/anomalies

directly from tomographic probes without image reconstruction. We provided a brief descrip-

tion of a statistically based anomaly detection scheme based on the extracted features and



also provided an example of how our proposed technique can o�er signi�cant computational

savings over existing techniques. We described the wide array of applications that our pro-

posed technique might have and indicated that the utility of the proposed technique reaches

beyond that of transmission tomographic probes such as X-rays.

References

Desai, M. and W. K. Jenkins. Convolution backprojection image reconstruction for spot-

light mode synthetic aperture radar. IEEE Trans. on Image Processing, 1(4):505{

517, October 1992.

Helgason, Sigurdur. Radon Transform. Birkhauser, Boston, 1980.

Herman, G. T. Image Reconstruction From Projections. Academic Press, New York,

1980.

Kak, Avinash. Computerized tomography with x-ray, emission, and ultrasound sources.

Proceedings of the IEEE, 67(9):1245{1271, September 1979.

Knight, F. K., S. R. Kulkarni, R. M. Marino, and J. K. Parker. Tomographic techniques

applied to laser radar re
ective measurements. The Lincoln Laboratory Journal,

2(2):143{160, Summer 1989.

Kak, Avinash and Malcolm Slaney. Principles of Computerized Tomographic Imaging.

IEEE Press, 1988.

Milanfar, Peyman. Geometric Estimation and Reconstruction From Tomographic

Data. PhD thesis, M.I.T., Department of Electrical Engineering, June 1993.

Milanfar, Peyman , William C. Karl, and Alan S. Willsky. Recovering the moments of

a function from its radon-transform projections: Necessary and su�cient conditions.

LIDS Technical Report LIDS-P-2113, MIT, Laboratory for Information and Decision

Systems, June 1992.

Milanfar, Peyman, William C. Karl, and Alan S. Willsky. Reconstructing binary polygonal

objects from projections: A statistical view. CVGIP: Graphical Models and Image

Processing, 56(5):371{391, September 1994.

Milanfar, Peyman, William C. Karl, and Alan S. Willsky. A moment-based variational ap-

proach to tomographic reconstruction. IEEE Trans. on Image Processing, January

1996. In print.

Milanfar, Peyman, George C. Verghese, William C. Karl, and Alan S. Willsky. Recon-

structing polygons from moments with connections to array processing. IEEE Trans.

on Signal Processing, 43(2), February 1995.

Rissanen, Jorma. Stochastic Complexity in Statistical Inquiry, volume 15 of Series in

Computer Science. World Scienti�c, 1989.

Tam, K. C. Limited-angle image reconstruction in non-destructive evaluation. C. H. Chen,

editor, in Signal processing and pattern recognition in nondestructive evaluation

of materials, volume 44 of NATO ASI Series F: Computer and Systems Sciences.

Springer-Verlag, August 1987.



f(x,y)

X

t

θ

g(  ,   )t θ

Figure 1: The Radon (projection) transform
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Figure 2: Example of computational savings with projection-based approach
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