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Abstract—In this paper, we study the bias characteristics
of image denoising algorithms. Recently introduced state-of-
the-art denoising methods produce biased estimates of pixel
intensities. The bias in each case is dependent on the underlying
image geometry. Hence, we cluster the image into groups of
patches that share a common underlying structure and study
the bias independently in each cluster. We show that the bias
in each cluster can be modeled effectively by an affine function,
where the parameters of the model differ between clusters and
algorithms. We validate our model through experimental results,
both visually and quantitatively.

I. INTRODUCTION

Image denoising is a well studied problem in image process-

ing. Recently published papers [1–5] have amply illustrated

the considerable progress that has been made in this field.

Interestingly, all these methods produce biased estimates. In

this work, we analyze these methods and their results as a

first step to understanding the problem of denoising through

the evaluation of the bias of the best current methods. The

problem of denoising can be defined as an estimation problem

where the actual pixel intensity (zi) is to be estimated at each

pixel location from its noisy observation

yi � zi � ηi (1)

where ηi is the corrupting noise. Most modern denoising

methods work on a group of contiguous image pixels (called

patches) to obtain better results. The patch-wise data model

can then be written as

yi � zi � ηi (2)

where yi is the (column stacked) vectorized version of the

patch with yi as its central pixel. The denoising problem can

then be formulated as that of estimating the zi vectors. In our

work, we assume that zi vectors are realizations of a vector

random variable z. Thus, the denoising bias for any given

patch can be defined as

bpziq � E rpzis � zi (3)

where pzi is an estimate of the vector zi.

In statistics, it is well known that the introduction of bias can

lead to a lower mean squared error (MSE) [6]. This is achieved

through lowering of the variance of the estimate. This is also
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(a) Box image (b) Noisy image

(c) BM3D bias (d) K-SVD bias

Fig. 1. Example of bias in denoising produced by some modern denoising
methods: (a) Box image, (b) noisy image of standard deviation 15, and bias
produced by (a) BM3D [2], and (d) K-SVD [3].

true for most denoising methods, where certain parameters can

be tuned to control the bias-variance tradeoff. For example,

the bandwidth of kernel based methods [1, 4, 5, 7] can be

adjusted to reduce the variance in the estimated denoised

image, leading to a more visually pleasant smooth output. That

modern denoising methods produce biased estimates can be

readily seen from Fig. 1 where we show the bias obtained in

denoising a very simple simulated box image from two of the

popular denoising methods (namely, BM3D [2] and K-SVD

[3]). In this paper, we analyze the bias characteristics of some

recently introduced denoising methods [1–4] and propose a

model for the bias. In the next section we show that the bias

can be modeled to be an affine function, where the parameters

of the model depend on the geometric structure of the patches.

In Sec. III the bias model is verified qualitatively as well as

quantitatively. We finally conclude in Sec. IV with a few words

on the usefulness of modeling the bias.

II. MODELING DENOISING BIAS

In this section we derive a model for the bias in image

denoising. In Fig. 1, we show the bias produced by BM3D

[2] and K-SVD [3] when denoising a simple simulated box
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image. Such bias is to be expected as the final denoised

estimate of a patch is derived as a weighted average of other

similar patches in the image. Mathematically, we can write the

denoised estimate of any given patch (say zi) to bepzi � Ņ

j�1

Wijyj , (4)

where, the (data-dependent) weight matrix1 Wij provides a

measure of similarity between patches yi and yj and N such

similar patches are considered in the denoising process. In

general, two noisy patches are deemed to be similar if they

can be expressed in the form

yj � yi � ǫij such that }ǫij}2 ¤ γ (5)

where γ is some small threshold value and ǫij is a vector.

Using the data model of Eq. 2, and Eq. 5 above, we can express

Eq. 4 as pzi �
j̧

Wijyj �
j̧

Wijpyi � ǫijq�
j̧

Wijpzi � ηi � ǫijq. (6)

The expected value of this estimate can then be written as

Erpzis � E

�
j̧

Wijpzi � ηi � ǫijq�� E

�
j̧

Wij

�
zi �

j̧

E rWij pǫij � ηiqs . (7)

This allows us to calculate the bias of such non-linear weighted

averaging methods as

bpziq � Erpzis � zi� �
E

�
j̧

Wij

�� I

�
zi �

j̧

E rWij pǫij � ηiqs� Mizi � ui (8)

where Mi � �
E
�°

j Wij

�� I

	
and ui �°

j E
�
Wij

�
ǫij � ηj

��
. This provides us with an expression

for the bias for each patch as an approximately affine (since

M and u, strictly speaking, depend on the data) function

of zi. This is in keeping with the bias shown in Fig. 1

where it can be seen that the bias produced is a function of

the underlying image structure. For example, in the smooth

regions, the bias produced by either method is structurally

approximately smooth. Also note that transitions in the bias

occur along transitions in image structure, that is, at edges

and corners for the box image of Fig. 1. Moreover, the

parameters of the affine function, namely Mi and ui are also

dependent on the data. However, if we restrict ourselves to

consider only patches that have similar geometric structure,

these parameters can be effectively approximated by a single

set of parameters (a matrix M and a vector u). This leads

1For most methods [1, 3–5, 7] that perform denoising in the spatial domain,
a scalar measure of similarity between patches is used, which is a special case
of Eq. 4.

(a) Box image (b) Parrot image

(c) Clustering of box image

(d) Clustering of parrot image

Fig. 2. Clustering of a simple image based on geometric similarity. Note
how pixels in any particular cluster can have quite different intensities but
similar geometric structure.

us to model the bias along structurally similar regions of the

image as

bpziq � Mzi � u. (9)

It is important to note that this model holds only when the

patches considered are structurally similar, even though their

intensities may differ. Thus, given an image, we first attempt to

segment it into clusters such that each cluster contains patches

that are geometrically similar. To obtain such clustering, we

employ a geometric clustering technique that we proposed in

[4]. As an example, Fig. 2 shows the clustering of some images

into geometrically similar regions. Specifically, it can be seen

(Fig. 2(c)) that the box image of Fig. 2(a) is divided into

segments of horizontal and vertical edges, flat regions and

corners. The bias in each cluster is then modeled as affine

where the model parameters differ across clusters. In the next

section we demonstrate that such a cluster-wise affine model

is reflective of the bias produced by the current state-of-the-art

denoising methods.

III. MODEL VALIDATION

Until now, we have argued that current non-linear denoising

methods that perform denoising by a weighted averaging

scheme produce biased estimates of the patches to be denoised

and such bias is inherently an affine function of the underlying

patch. Moreover, under the constraint of only geometrically

similar patches being considered, a single set of parameters

of the bias model (namely, M and u) can be used to describe

the bias for the entire group of patches. In this section we

provide experimental validation for such an approximation. As

a first step, we consider an image that contains patches that

are roughly geometrically similar, although radiometrically the

patches may be quite varied. Such images do not require

any clustering to group together patches of similar geometry.

An example of such an image is the towel image of size

200 � 200 shown in Fig. 3(a). There it can be seen that
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(a) Original image (b) Noisy image (c) Denoised (BM3D) (d) Denoised (K-SVD)
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(e) BM3D (f) Histograms for (e) (g) K-SVD (h) Histograms for (g)

Fig. 3. Visual comparison of the actual bias obtained from BM3D [2] & K-SVD [3] and reconstructed bias using affine model fit for the 200� 200 towel
image. The patch size chosen was 11� 11. We can see that the histograms for the modeling errors in both the cases are centered around zero and have short
tails.

although fine texture exists, the image patches are roughly

similar in pattern across the entire image. In order to calculate

the bias produced by each denoising method, we corrupt the

towel image with 10 different realizations of additive white

Gaussian noise (AWGN) of standard deviation 25 to produce

10 noisy images, one of which is shown in Fig. 3(b). Each of

the noisy images are then denoised by each denoising method

and the mean denoised image is estimated from which we

calculate the bias for a particular method. The second row of

Fig. 3 shows the bias in denoising and their histograms for

two popular denoising methods, namely BM3D [2] and K-

SVD [3]. Bias patches of size 11 � 11 are then used (in a

vectorized form) to learn the affine model parameters (namely

M and u) of Eq. 9 in a least squares setting. Using the

estimated xM and pu, the bias vectors are predicted. These

predicted bias vectors are tiled and shown in an image form

along with their corresponding pixel-wise histograms in the

third row of Fig. 3. The modeling error is then calculated and

shown as the difference between the calculated method bias

and the predicted bias in each case. The tiled image form

of the patch-wise model errors for each method and their

corresponding pixel-wise histograms are shown in the last row

of Fig. 3. There it can be seen that the affine model produces a

reasonable approximation of the bias that is visually validated

by the error histograms that are centered around zero with

short tails.

Although the histograms act as fair qualitative indicators

of the goodness of fit, we provide further quantitative eval-
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(a) Grass image (b) House image (c) Parrot image

Fig. 4. Some examples of images that we will use to model the denoising
bias of various methods.

uation for the effectiveness of the affine bias model. To this

end, we make use of the coefficient of determination as the

quantitative measure of the goodness of fit. The coefficient of

determination [8] is mathematically defined as

R2 � 1� °
i

���bpziq � pbpziq���2
2°

i

��bpziq � bpzq��2
2

(10)

where i indexes all the patches in the image, bpziq is the

actual bias of the estimated intensity of the i-th patch, bpzq
is the mean bias obtained by the denoising method across all

patches in the image and pbpziq � xMzi�pu is the predicted bias

obtained from the estimated parameters xM and pu of the affine

model. Conceptually, the R2 value provides a measure of the

amount of variability in the bias vectors that is effectively

explained by the affine model. The values of R2 range from

0 to 1, where a higher value indicates a better model. For the

bias modeling of the towel image of Fig. 3(a) and the much

textured grass image ( Fig. 4(a)), we obtained high R2 values

for some of the recently proposed denoising methods [1–4].

These values are tabulated in Table I.

Until now, we have shown experiments only on images

where the patches are roughly geometrically homogeneous.

However, this is not necessarily true for most general images

(see Figures 4(b) & (c)). As mentioned in Sec. II, we deal with

such images by performing a geometric clustering proposed in

[4] to group together patches of similar geometry, irrespective

of their radiometric intensities. For the house and parrot

images of Fig. 4, the patches were grouped into 5 clusters.

In each cluster of structurally similar patches, the bias is

calculated and modeled and the coefficient of determination is

calculated. In Table I, the average R2 values across different

clusters for these images are tabulated. There it can be seen

that a high R2 value is obtained for all the methods considered.

To further justify the necessity of restricting the bias model

to patches displaying structural similarity, we devised another

experiment with general images where patches were randomly

sampled from an image and a single M and u were estimated

from the sampled patches, irrespective of their structural

dissimilarities. That is to say that we enforced an affine model

for the bias over geometrically inhomogeneous patches. For

all the images, we consistently obtained R2 values that were

substantially lower (R2   0.6) than those reported in Table I.

This supports our claim that such an affine model is a good

approximation of the denoising bias only when patches of

similar geometric structure are considered.

TABLE I
R

2 VALUES FOR THE AFFINE MODEL FIT OF THE BIAS PRODUCED BY

DIFFERENT METHODS FOR DIFFERENT IMAGES CONSIDERING ADDITIVE

WHITE GAUSSIAN NOISE OF STANDARD DEVIATION 25.

Image BM3D [2] K-SVD [3] SKR [1] K-LLD [4]

Towel 0.913 0.928 0.864 0.880
Grass 0.863 0.801 0.833 0.810
House 0.916 0.955 0.959 0.963
Parrot 0.957 0.963 0.946 0.954

IV. CONCLUSIONS

In this paper, we studied the bias produced by some of

the recently published works on image denoising. This was

done by formulating the image denoising problem in a patch-

wise intensity estimation framework. Our experiments show

that irrespective of the domain in which such estimation is

performed, the denoising estimate can be modeled effectively

to be affine. However, such a model holds only when the

patches involved are geometrically similar. To validate the

model, we performed various experiments that show, quali-

tatively and quantitatively, that such an affine model is a good

approximation of the cluster-wise bias in denoising that is

produced by recent state-of-the-art denoising methods.

Our motivation for modeling the bias stems from the fact

that introduction of bias can offset the variance of an estimator

resulting in decreased MSE of the denoised output. An inter-

esting application of formulating an effective model for the

bias is the ability to study the theoretical performance limits

of denoising any given image. Such a study has enabled us

to understand how the current state-of-the-art compares to the

limits of denoising performance [9]. Moreover, given a model

for the bias, one can also attempt to design a denoising method

that optimizes the bias and hence improves on the MSE

obtained by the current most popular denoising methods. The

latter is a useful applications that we consider as a direction

for our future research.
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