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ABSTRACT

In this paper we address the problem of reconstructing the shape of a convex object from measurements of the areas

of its shadows in several directions. This type of very weak measurement is sometime referred to as the brightness

function of the object, and may be observed in an imaging scenario by recording the total number of pixels where

the object's image appears. Related measurements, collected as a function of viewing angle, are also referred to as

\lightcurves" in the astrophysics community, and are employed in estimating the shape of atmosphereless rotating

bodies (e.g. asteroids).

We address the problem of shape reconstruction from brightness functions by constructing a least-squares opti-

mization framework for approximating the underlying shapes with polygons in two dimensions, or polyhedra in three

dimensions, from noisy, and possibly sparse measurements of the brightness values.

Keywords: Inverse problem, shape, polygon, polyhedron, brightness, curvature, lightcurve.

1. INTRODUCTION

The problem addressed here is that of reconstruction of a planar or 3-dimensional shape from noisy, and possibly

sparse, measurements of its brightness function. In the planar case, the brightness function gives the lengths of the

orthogonal projections (i.e., shadows) of the shape onto lines; in three dimensions, it gives the areas of the projections

of the shape onto planes�. The shapes considered are bounded by a simple closed curve or surface. An approximation

to the shape is e�ected by reconstructing a polygon or polyhedron that best matches the measured brightness data

in a least-squares sense.

It is worth noting at the outset that data consisting of brightness measurements is quite weak. For example, such

data contains no information about the location of the shape, since any translate of it will have the same brightness

function. Also, it is not possible to detect holes or dents in a planar shape; indeed the shape's brightness function

will agree with that of its convex hull. For this reason, we shall restrict attention to convex bodies, that is, compact

convex sets with nonempty interiors.

One example of this problem in an imaging scenario is the case of a severely ill-resolved object in the far �eld

of a camera. More speci�cally, imagine an object with lambertian surface that is so poorly resolved as to have

its entire image fall on a single pixel at any given time. In this case, the available measurements simply consist

of the time history of the tracked pixel intensity. In particular, if the object is rotating, then this time history is

proportional at any given time to orthogonal projection of the object in the direction in which it is exposed to the

camera. The measurement of this time history for an atmosphereless body is e�ectively what astronomers refer to

as the \lightcurve" of the object. The question then is how to approximate the shape of the object from such weak

data.

Direct correspondence to milanfar@ee.ucsc.edu. This work was supported in part by National Science Foundation Grants

DMS-9802388 and CCR-9984246.
�For ease of presentation and due to limited space, the discussion of experimental results will be given only for the 2-

dimensional case.



The problem of reconstruction from brightness functions is quite an old one in the mathematical area of convex

geometry. It is also an important unsolved problem in geometric tomography (see3), the area of mathematics con-

cerning the retrieval of information about a geometric object from data concerning its sections or projections. (Here

again, and throughout the paper, the term projection will be used in the usual mathematical sense of orthogonal

projection or shadow, and not, as in the computer tomography literature, for what we would prefer to call an X-ray.)

It has long been known that the brightness function is even too weak to distinguish between convex bodies with

centroid at the origin. If a convex body is not symmetric, then its re
ection in the origin is a di�erent body with

the same brightness function. The lack of uniqueness is actually much more serious. The existence of nonspherical

convex bodies of constant brightness (i.e., whose brightness functions have the same value in every direction) shows

that even the unit ball is not determined among all convex bodies by its brightness function! We shall have more to

say about this nonuniqueness in Section 3.

In the planar case, the brightness function is just a phase-shifted version of the more familiar width function that

measures the distance between calipers holding the convex body (see Section 8 for more details); the reconstruction

problem from either type of measurement describes one and the same problem. (In the 3-dimensional case, however,

there is no such simple relationship between the two functions.) The width function is in turn closely related to

another well-known function, the support function, that measures the distance from a �xed point inside the convex

body to its tangent lines (or tangent planes, as appropriate). The remarks concerning nonuniqueness above apply

equally to the width function. (The �rst examples of the more familiar nonspherical convex bodies of constant

width were discovered by Euler!) However, it is known that any convex body is determined by its support function,

so support function measurements constitute much stronger data. In fact, reconstruction from (noisy) support

measurements has already been studied fairly extensively; see, for example,5 ,9 and.10

2. APPROACH TO SHAPE PARAMETERIZATION

There exist many ways to parameterize a shape, of which the Cartesian coordinate representation is only one. A

particularly convenient and useful representation is the so-called extended circular image (in the 3-dimensional case

called the extended Gaussian image in the computer vision literature). In this representation, the shape is encoded

in terms of its curvature as a function of the normal direction to the boundary. We seek to reconstruct a convex

body by �rst reconstructing its extended Gaussian image from the raw brightness data, and then obtaining from this

a more direct representation of the object such as its support function or Cartesian representation.

For planar bodies with twice continuously di�erentiable boundaries, the radius of curvature f(u) at the point on
the boundary with outer unit normal vector u is well de�ned. In higher dimensions, similar smoothness assumptions

guarantee the existence for all u of the Gauss curvature of the body at the point on the boundary with outer normal u,

and we may consistently de�ne f(u) to be the reciprocal of this Gauss curvature. Then there is a relationship between
f(u) (which is just the extended circular or Gaussian image mentioned above, and also called the curvature function

in convex geometry) and the brightness function b(v), where the unit vector v denotes the \viewing direction." This

is described by a well-known integral transformation, which we call the geometric cosine transform. Speci�cally, we

have

b(v) =
1

2

Z
juT vjf(u)du; (1)

where du, here and throughout the paper, denotes integration over the unit sphere with respect to its natural measure.

The formula (1) requires some further explanation. Note that the term juTvj is the absolute value of the cosine of
the angle between the unit normal u to the boundary and the viewing direction vector v, hence the term geometric

cosine transform. (Since the term \cosine transform" in signal and image processing has a di�erent meaning, we

use the adjective \geometric" to avoid confusion.) In general, the function f essentially de�nes the surface area (or

arclength) function for the body. In fact, by replacing f by a suitable measure called the surface area measure of

the body, (1) can be extended to any convex body, without any smoothness assumptions. If, for example, the body

is a polygon, the function f must be replaced by the measure in the unit circle that consists of a �nite sum of point

masses, each placed at the outer unit normal to an edge and with weight equal to the length of that edge. The

resulting formula ((29) below) is a sum whose geometric meaning is transparent, and was in fact known to Cauchy.

See3 for the general formula.

The inverse problem of interest is to solve a two-step problem:



� Solve the integral equation (1) to obtain values f(u) from the \measurements" b(v).

� From the computed values f(u), �nd an explicit representation of the planar or 3-dimensional convex body.

It is interesting that the �rst step has also been considered by Kiderlen6 in determining the directional distribution

of �ber processes.

3. UNIQUENESS ISSUES

We noted in the introduction that if K is a convex body, its re
ection �K in the origin has the same brightness

function. This geometrically obvious fact follows from (1), since with w = �u we have

b�K(v) =
1

2

Z
juT vjf�K(u)du

=
1

2

Z
juT vjfK(�u)du

=
1

2

Z
jwT vjfK(w)dw = bK(v); (2)

where bK , fK and b�K , f�K are the brightness functions and extended Gaussian images of K and �K, respectively.

To progress beyond this simple observation, the following theorem is helpful, and indeed plays a crucial role in our

problem.

Proposition 1. (Minkowski's existence theorem.) A function f on the unit sphere is the extended Gaussian image

of some convex body if and only if the support of f is not contained in a hyperplane andZ
uf(u)du = 0: (3)

See,3 and for a proof see.14 We stress that technically f should in general be a measure rather than a function,

speci�cally, a nonnegative �nite Borel measure in the unit sphere. The hypothesis in Proposition 1 that the support

of f is not contained in a hyperplane through the origin merely ensures that the corresponding convex body is not

degenerate (i.e., \
at").

By Proposition 1, for any 0 � t � 1 there is a convex body Kt whose extended Gaussian image fKt
is given by

fKt
(u) = (1� t)fK(u) + tf�K(u): (4)

The existence of Kt follows directly from the fact that since both fK and f�K satisfy the hypotheses of Proposition 1,

fKt
does also. Now Kt has the same brightness function as K, since by (1) and (2),

bKt
(v) =

1

2

Z
juT vjfKt

(u)du

=
1� t

2

Z
juT vjfK(u)du+

t

2

Z
juT vjf�K(u)du

= (1� t)bK(v) + tb�K(v) = bK(v):

An inequality called the Kneser-S�uss inequality (see14) implies that if �K is not a translate of K, then the volumes

of the convex bodies Kt are strictly increasing for 0 � t � 1=2 (and strictly decreasing for 1=2 � t � 1), and hence

there will be in�nitely many di�erent (noncongruent) convex bodies whose brightness function equals that of K.

Any body such that K is a translate of �K is called centrally symmetric.

To summarize, there is a serious lack of uniqueness in the inverse problem if the unknown convex body is not

centrally symmetric with center at the origin, that is, origin symmetric. Moreover, most origin-symmetric convex

bodies are also not determined, among all convex bodies, by their brightness function. We noted in the introduction

that even the unit ball is not so determined (see3 for a picture of a nonspherical convex body of constant brightness,

discovered by Blaschke). It can actually be shown that parallelotopes (in two and three dimensions, these are the

parallelograms and parallelepipeds) with their centers at the origin are the only convex bodies that are determined

in this sense; see3 and the references given there.



What is true is that any origin-symmetric convex body is determined among all origin-symmetric convex bodies

by its brightness function. This is a consequence of Aleksandrov's projection theorem (see3). More generally, one

can say that given any convex body K, there is a unique origin-symmetric convex body with the same brightness

function. It turns out that this origin-symmetric body, often called the Blaschke body and denoted by rK, is just

K1=2, the member of the family de�ned above corresponding to t = 1=2. By,3 the Blaschke body rK has another

special property: It has the maximum volume of all convex bodies with the same brightness function as K.

Thus uniqueness is restored in the inverse problem if it is known a priori that the shape is an origin-symmetric

convex body.

If we assume that the centroid of the convex body is �xed, at the origin, say, then all the nonuniqueness in

the two-step procedure outlined at the end of Section 2 resides in the �rst step. This is because Aleksandrov's

uniqueness theorem3 implies that any two convex bodies with the same extended Gaussian image must be identical,

up to translation. This also means that the convex body whose existence is guaranteed by Proposition 1 is unique,

up to translation.

4. POLYGONS AND POLYHEDRA

Henceforth we shall use the generic name polytope to mean a polygon or polyhedron as appropriate, and volume to

mean length, area, or volume according to the dimension of the object.

The basic approach taken here to the shape reconstruction problem is to approximate the underlying shape by a

polytope, which we can reconstruct using the measured brightness values. If we assume that the inverse problem will

be solved for a polytope, we can take f(u) to be a measure consisting of a �nite sum of point masses, or, equivalently,

to have the form of a distribution described in terms of Dirac delta functions. Speci�cally, for a convex polytope

with N facets, we have

f(u) =

NX
k=1

ak Æ(u� uk); (5)

where ak denotes the volume of the kth facet and uk denotes the outer unit normal to the kth facet. (The term facet

applies to an edge in two dimensions and a face in three dimensions.) Substituting the above expression into (1), we

get

b(v) =
1

2

NX
k=1

ak ju
T
k vj: (6)

We close this section with a result that will be important for one of our algorithms. Suppose that V is a �nite

set of unit vectors. The hyperplanes through the origin orthogonal to the vectors in V divide the space into a �nite

set of polyhedral cones, which intersect the unit sphere in a �nite set of regions. Let U = U(V ) be the �nite set

of vertices of these regions, and call these points the nodes corresponding to V . The following result was proved by

Campi, Colesanti, and Gronchi.2

Proposition 2. Let K be a convex body and let V be a �nite set of unit vectors. Among all convex bodies that have

the same brightness function as K at the directions in V , there is a unique convex body that has maximal volume.

Moreover, this body is an origin-symmetric convex polytope with each of its facets orthogonal to a node in U .

5. THE ESTIMATION PROBLEM

With equation (1) in place, we are in a position to describe the computational inverse problem we are going to solve.

We begin by measuring the function b(v) at M locations vm in the unit sphere, where the measurements may be

corrupted by random error. By (1), we can describe the data by

~b(vm) =
1

2

Z
juT vjf(u)du + n(vm); (7)

where n(vm) denotes the random measurement error, m = 1; : : : ;M . If it is known that the object is a polytope

whose extended Gaussian image is given by (5), then we can replace (7) by

~b(vm) =
1

2

NX
k=1

ak ju
T
k vmj + n(vm); (8)



for m = 1; : : : ;M . The problem can now be viewed as an estimation problem where we seek best estimates of the

unknown parameters ak and uk from the measured data ~b(vm).

We shall consider two versions of this problem. The �rst is when we know that the convex body to be reconstructed

is a polytope with a prescribed number N of facets, and the second is when we know nothing a priori about the

convex body.

For the �rst version of the problem, we shall assume that M � N . Collecting the data samples into vector form,

we can write
~b = C(U) a + n; (9)

where

~b =
h
~b(v1); : : : ;~b(vM )

iT
; (10)

a = [a1; : : : ; aN ]
T
; (11)

U = [u1; : : : ; uN ]
T
; (12)

n = [n(v1); : : : ; n(vM )]
T
; and (13)

Cm;k = juTk vmj=2: (14)

With this notation, we seek the least squares estimate of the unknowns as

(ba; bU) = arg min
(a;U)

k~b � C(U)ak2: (15)

As an estimation or optimization problem, (15) is nonlinear in the unknown parameters uk. Without the absolute

value in (8), the problem would be quite similar to those encountered in the antenna array processing community,7

and well-known methods employing generalized eigenvalue techniques could be used to solve �rst for the uk, and
subsequently for the ak. As it is, however, the nonlinearity must be dealt with directly.

For the second version of our problem, where nothing is known a priori about the convex body K to be recon-

structed, we attempt to reconstruct the origin-symmetric polytope, whose existence is guaranteed by Proposition 2,

with the same brightness function as K in the directions vm, m = 1; : : : ;M . In this version of the problem, therefore,

we seek ba = argmin
a

k~b � C(U)ak2; (16)

where U = fuk : k = 1; : : : ; Ng is now the known set of nodes (de�ned before Proposition 2) corresponding to the

vectors vm, m = 1; : : : ;M . Notice that the nonlinear part of the least squares problem is no longer necessary.

6. GEOMETRIC CONSTRAINTS

Since we wish to output a convex polytope, we need to impose some geometric constraints on the minimization

problems (15) and (16). While such constraints tend to make the solution of the optimization problems more

complex, they are quite useful in limiting the e�ect of noise, essentially regularizing the problem.

Recall that a is a vector containing the volumes ak of the facets of a polytope with outer normals uk, k = 1; : : : ; N .

Since ak � 0, we obtain the linear inequality constraint

a � 0: (17)

A second linear constraint is obtained by observing that by Proposition 1, convex polytopes must satisfy (3). In

view of (5), this becomes the vector equation

aTU =

NX
k=1

akuk = 0: (18)

Thus in the n-dimensional case we have altogether N + n real linear constraints.



If a priori information is available that the unknown convex polytope is origin symmetric, then N is even and to

ensure an origin-symmetric output we can replace (18) by the stronger combination of the two constraints

aN=2+k = ak (19)

and

uN=2+k = �uk (20)

for k = 1; : : : ; N=2.

7. THE RECONSTRUCTION ALGORITHMS

Algorithm 1 (number of facets prescribed)

If a polytope P with a prescribed number N facets is to be reconstructed, we may as well also assume that

its centroid is at the origin. Our reconstruction algorithm takes as input a natural number N , unit vectors vm,
m = 1; : : : ;M , and noisy brightness measurements ~bm, m = 1; : : : ;M of P at these directions. It then proceeds as

follows:

Step 1. Choose an initial guess, a convex polytope P0 with N facets and centroid at the origin.

Step 2. Solve the constrained optimization problem de�ned by (15), subject to constraints (17) and (18) (or

(17), (19), and (20) if an origin-symmetric output is desired). This yields an optimal ba and bU specifying facet areas

and outer normals of an optimal convex polytope bP with N facets and centroid at the origin; in short, the extended

Gaussian image of bP .
Step 3. Reconstruct bP from its extended Gaussian image.

Algorithm 2 (number of facets not prescribed)

If nothing is known a priori about the convex body to be reconstructed, our reconstruction algorithm takes as

input unit vectors vm, m = 1; : : : ;M and noisy brightness measurements ~bm, m = 1; : : : ;M of the body at these

directions. It then proceeds as follows:

Step 0. Calculate the nodes uk, k = 1; : : : ; N .

Step 1. Choose an initial guess, a convex polytope P0 with centroid at the origin and with N facets whose outer

unit normal vectors are the nodes.

Step 2. Solve the constrained optimization problem de�ned by (16), subject to constraints (17) and (18) (or

(17), (19), and (20) if an origin-symmetric output is desired). This yields an optimal ba specifying facet areas of an

optimal convex polytope bP with N facets and centroid at the origin. The extended Gaussian image of bP is (bak; uk),
k = 1; : : : ; N .

Step 3. Reconstruct bP from its extended Gaussian image.

In Step 1, one possible systematic method of selecting the initial guess can be based on Cauchy's surface area

formula, which states that

S =
1

�d�1

Z
b(v)dv; (21)

where S denotes the surface area of a d-dimensional convex body and �d is the the volume of the d-dimensional unit

ball; see, for example.3 Together with the isoperimetric inequality (see3)

V � �d

�
S

d�d

�d=(d�1)
; (22)

where V is the volume of the body, this gives an upper bound for the volume in terms of the brightness function.

The initial guess P0 can be chosen to satisfy this volume estimate or the surface area estimate (21).

Steps 2 and 3 will be discussed for the planar and 3-dimensional cases in the following sections.



8. RECONSTRUCTION OF PLANAR SHAPES

We begin by supplying further information concerning the brightness, width, and support functions of a planar convex

body. Suppose the body is bounded by a curve C parameterized as (x(�); y(�)), by the angle � which the normal

to the curve makes with the positive x-axis. Since the data we consider are una�ected by translating the shape, we

may for convenience choose the origin to be interior to C. The support function h(�) of C (or the body bounded by

it) is then the perpendicular distance from the origin to the tangent to C at (x(�); y(�)). The support function is a

periodic function with period 2�. Under suitable smoothness assumptions, we can write the parameterization of the

curve in terms of h(�) and its �rst derivative as

x(�) = h(�) cos�� h0(�) sin� (23)

y(�) = h(�) sin�+ h0(�) cos�: (24)

(See3 or.1 ) The width function w(�) of C (or the body bounded by it) is the distance between the two tangent lines

to C that are perpendicular to �. This can be written as

w(�) = h(�) + h(�+ �); (25)

which describes a periodic function with period �.

Since the brightness function b(�) is the length of the \shadow" of the body in the direction of the normal at �,
it is just a phase-shifted version of the width function:

b(�) = w(� + �=2); (26)

which again de�nes a periodic function with period �. It is known that any convex body is uniquely determined by

its support function (see,1 ,14 or16).

In the planar case, the expression (1) for the brightness function becomes

b(�) =
1

2

Z 2�

0

j cos(�� �)jf(�)d�; (27)

where f is the extended circular image of the convex body. For a convex polygon the latter takes the form

f(�) =

NX
k=1

ak Æ(�� �k); (28)

where �k denotes the angle of the normal to the kth edge. The brightness function of the same polygon is then

b(�) =
1

2

NX
k=1

ak j cos(�� �k)j: (29)

For example, the square with vertices at (�1;�1) has ak = 2 and �k = (k � 1)�=2 for k = 1; 2; 3; 4, so that

b(�) = 2 (j cos�j+ j sin�j) ;

which is easy to verify directly.

In the formulas above, 0 � � < 2�, but from the point of view of taking measurements, we can assume that

0 � � < �, since the brightness function is even.

We now discuss the reconstruction algorithms outlined in Section 7 as they are presently implemented.

We can write each input unit vector vm = (cos�m; sin�m)
T , where 0 � �m < �.

In Step 0 of Algorithm 2, the nodes are simply the 2M unit vectors in directions �m � �=2, m = 1; : : : ;M ; in

this case we set N = 2M and list the nodes as uk, k = 1; : : : ; N .

The initial guess in Step 1 does not make use of the surface area and volume estimates given in Section 7; apart

from having N edges and centroid at the origin, the initial convex polygon is chosen more or less arbitrarily. (It would



also be possible to re�ne this initial guess by looking at the largest and smallest measured values of the brightness

function to estimate the eccentricity and direction of elongation of the shape.)

In Step 2, we write each unit vector uk = (cos �k; sin �k)
T , where 0 � �k < 2�, k = 1; : : : ; N , and replace (12) by

� = [�1; : : : ; �N ]
T : (30)

With corresponding changes in notation, the basic constrained optimization problem in Algorithm 1 becomes

(ba; b�) = arg min
(a;�)

k~b � C(�)ak2; (31)

such that a � 0;

aT [cos �1; : : : ; cos �N ]
T = 0;

and aT [sin �1; : : : ; sin �N ]
T = 0:

The obvious modi�cation is made if Algorithm 2 is to be used. We use the function fmincon from MATLAB's

optimization toolbox to solve this problem. This function employs a variety of nonlinear optimization techniques

such as line search or Newton's method.

In Step 3 we reconstruct the output polygon bP from its extended circular image, a list of lengths bak and outer

normal angles b�k of its edges, ordered so that these angles increase with k. This is easily e�ected by �nding vertices

inductively, as follows. Let w0 be the origin and wk = wk�1 + a1(cos(�k + �=2); sin(�k + �=2)) for k = 1; : : : ; N . If

it is desired that the centroid of bP is at the origin, it is easy to compute the appropriate translation.

9. RECONSTRUCTION OF THREE-DIMENSIONAL SHAPES

Write the input unit vectors in spherical polar coordinates as

vm = (cos�m sin�m; sin�m sin�m; cos�m)
T ;

where 0 � �m < 2� and 0 � �m < �=2, m = 1; : : : ;M .

In Step 0 of Algorithm 2, the nodes are the M(M � 1) unit vectors at the intersections of the M great circles

in the unit sphere orthogonal to vm, m = 1; : : : ;M . In this case we set N = M(M � 1) and list the nodes as uk,
k = 1; : : : ; N .

For Step 1 of Algorithm 1, suppose �rst that N is odd. We generate a random set of unit vectors u
(0)

k , k = 1; : : : ; N

and random real numbers a
(0)

k , k = 1; : : : ; N � 3, between some preassigned " > 0 and 1. These vectors and numbers

are substituted for the corresponding uk's and ak's in the constraint (18), which represents three scalar equations,

and these are solved for the remaining three variables to yield a
(0)

N�2, a
(0)

N�1, and a
(0)

N . If all these three numbers are

between " and 1, the solution is accepted; otherwise, the process is repeated. The resulting vectors and numbers

represent the outer unit normals and facet areas of an initial guess convex polyhedron P0 with N facets. If N is

even, Step 1 is easier; we can either generate randomly or specify a set of unit vectors u
(0)

k , k = 1; : : : ; N=2, let

u
(0)

N=2+k
= �u

(0)

k for k = 1; : : : ; N=2, and let a
(0)

k = 1=N , k = 1; : : : ; N . For Step 1 of Algorithm 2, we can simply

de�ne a
(0)

k = 1=N , k = 1; : : : ; N , since N is even, and the known vectors uk satisfy (20).

In Step 2, we write

uk = (cos �k sin'k; sin �k sin'k; cos'k)
T ;

where 0 � �k < 2� and 0 � 'k � �, k = 1; : : : ; N . Then the data (8) becomes

b(�m; �m) =
1

2

NX
k=1

akj sin�m sin'k cos(�m � �k) + cos�m cos'kj+ n(�m; �m); (32)

for m = 1; : : : ;M . The least-squares problem is adapted accordingly, with constraint (17) as before and constraint

(18) becoming
NX
k=1

ak cos �k sin'k = 0;



NX
k=1

ak sin �k sin'k = 0;

and
NX
k=1

ak cos'k = 0:

In the symmetric case, constraints (19) and (20) are used instead.

The main extra diÆculty encountered in the 3-dimensional situation lies in Step 3, namely, to reconstruct the

output convex polyhedron bP from its extended Gaussian image, the areas bak and outer normals buk of its faces.

Luckily, this is a problem of interest in its own right, and as such has been addressed by several authors.

In principle, the problem appears to have been solved �rst by Little.12 Little's algorithm was modi�ed and re�ned

by Lemordant, Tao, and Zouaki11 and by Kaasalainen, Lamberg, Lumme, and Boswell (see8 and the references given

there). The �rst group of authors were motivated by computer vision and the second group by astrophysics. A

quite di�erent solution was o�ered by Sumbatyan and Troyan15 for the purposes of reconstruction of a cavity from

ultrasound; the algorithm presented is based on solving nonlinear P.D.E.'s and is not of interest to us here. None of

these three groups appear to have been aware of the work of the other two. More recent work includes that of Xu

and Suk,17 who embellish Little's algorithm in order to handle nonconvex polygons and polyhedra.

We brie
y describe Little's algorithm, which is based on Minkowski's original proof of Proposition 1 (for convex

polytopes). The algorithm takes as input pairs (ak; uk), k = 1; : : : ; N , and attempts to reconstruct a convex

polyhedron P with centroid at the origin whose faces have areas ak and outer normals uk. By Proposition 1, it is

only necessary that the vectors uk span 3-dimensional space and that

nX
k=1

akuk = 0: (33)

If l = [l1; : : : ; lN ]
T is a vector of nonnegative real numbers, let V (l) denote the volume of the polyhedron P (l) whose

faces have outer normals uk and are contained in planes at distances lk from the origin, k = 1; : : : ; N . (We have

lk = h(uk), where h is the support function of P (l).) Minkowski's proof shows that the vector of distances from the

origin to the planes containing the faces of P is the solution of the optimization problem

minimize aT l =

NX
k=1

aklk; (34)

such that V (l) = 1 (35)

and l � 0: (36)

The algorithm begins with l = [1; : : : ; 1]T and a reduced gradient method is used in the above optimization problem

to improve on this initial guess. If l is the current estimate, the convex polyhedron P (l) is only known by its H-

representation, that is, the equations of the planes containing its faces. The V-representation of P (l), a list of its

vertices, can then be computed by a clever use of polar duality. After this, the centroid of P (l) is computed and P (l)
is translated so that its centroid is at the origin. In view of the constraint (35), the volume V (l) is also computed,

and P (l) is scaled by a factor V (l)�1=3 so that its volume becomes one. The objective function aT l is then evaluated

and the process stops if the improvement is less than a prescribed value. Finally, the output polyhedron must be

reconstructed from the optimal vector bl.
We employ the modi�ed version of Little's algorithm due to Lemordant, Tao, and Zouaki.11 The crucial im-

provement uses duality in programming theory to replace the above optimization problem by an equivalent one:

maximize V (l)1=3; (37)

such that aT l = 1 (38)

and l � 0: (39)

The exponent 1=3 has been inserted (it does not alter the solution, of course) because using the well-known Brunn-

Minkowski inequality from convex geometry (see, for example,3 ,14 or16), one can show that V (l)1=3 is a concave



function. Thus the new optimization problem involves a concave objective function and linear constraints. The

basic modi�ed algorithm solves this problem by the reduced gradient or Newton's method to produce an optimal

vector bl. As in Little's algorithm, this involves the computation of V (l) at each stage, but not the computation of

the centroid of P (l). Also, the volume computation is done by Laguerre's algorithm (see11), which requires only the

H-representation and not the V-representation. In fact it is only necessary to calculate a V-representation once, for

the reconstruction of the output polyhedron from bl.
To summarize, the algorithm from11 has three basic ingredients: (1) maximizing a concave function subject to

linear constraints, (2) calculating the volume of a convex polyhedron from itsH-representation, and (3) reconstructing

a convex polyhedron from its H-representation. The latter can be broken into two parts: (3a) converting the H-

representation of a convex polyhedron to its V-representation and (3b) computing the convex hull of a set of points

in three dimensions.

10. NUMERICAL EXPERIMENTS

In this section we present some numerical examples of the performance of the 2-dimensional algorithm described in

Section 8. We stress that although in this case measurements of an origin-symmetric body are equivalent to support

measurements, our algorithms are equally applicable in the 3-dimensional situation.

10.1. Example 1

We display the reconstruction of the aÆnely regular 14-gon shown in the lower part of Figure 1. We simulated 100

measurements of b(�) at equally-spaced values in the range [0; �]. These values were then corrupted with Gaussian

white noise of variance 0:2 before being fed to the algorithm.

The input aÆnely regular 14-gon is shown in the botton picture, along with the initial guess, and the output

polygon produced by Algorithm 1 (with the symmetry constraints). The reconstruction and true polygons are nearly

indistinguishable. The upper plot of Figure 1 shows the brightness functions for these polygons as well as the

noisy measured brightness function. Also recorded is the Hausdor� error, that is, the Hausdor� distance (see, for

example,3) between the input and output polygons.

10.2. Example 2

In this example, we reconstruct an aÆnely regular octagon from noisy measurements of its brightness function. We

input 20 measurements of the brightness function, considerably fewer than in the previous example, corrupted with

Gaussian white noise of a greater variance, 0:5. Again, Algorithm 1 with symmetry constraints was used, with the

result is depicted in Figure 2. The output polygon matches the input polygon quite closely, but it is a hexagon; this

illustrates the possibility of degenerate edges in the output.

11. CONCLUSIONS AND PROGRAM OF FUTURE WORK

It would appear that the Algorithm 1 does a reasonable job of reconstructing planar convex bodies from quite noisy

brightness data. Algorithm 2 has yet to be implemented, but this is straightforward and will be done very soon.

Even in the planar case, several issues remain.

1. It may be possible to �nd conditions under which the algorithms are provably convergent.

2. In the origin-symmetric case, the results should be compared with earlier work on reconstruction from noisy

support line measurements.

3. The least squares problem (15) is of a special type known as separable. In view of this, there is the possibility

of improving performance by a variant of the Newton method, where each of the unknowns a and U is treated

separately in each iteration. See for example, the article by Golub and Pereyra.4

4. We could study the role of convexity in our problem. What can be done when it is removed?

5. In Algorithm 1, we can study the \underdetermined" problem when M < N .

Turning to the 3-dimensional case, we have begun improving our implementation of the reconstruction from the

extended Gaussian image, described in the previous section, so that it compares the extended Gaussian image of

the output polyhedron with that of the input. This facility should be available shortly. The 3-dimensional versions
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Figure 1. Reconstruction of the 14-gon of Example 1

of Algorithms 1 and 2 need to be implemented and hooked up. We anticipate doing this in the very near future;

all the ingredients are in place and described in detail above. It is important to note here that in Step 3 we shall

be dealing with the reconstruction of a convex polyhedron from noisy values of the Gaussian image, a feature that

seem to have been ignored or only lightly touched upon by previous authors. Thus we hope to establish, perhaps

for the �rst time, a practical methodology for the treatment of a problem that is bound to be plagued by numerical

and measurement inaccuracies in practice. Also, it is worth mentioning that the problem of shape reconstruction

from local curvature measurements is of interest in the robotics community where recently developed tactile sensors

(e.g.13) enable a robotic hand to \grasp" or \touch" an object and make local measurements of shape.
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