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Summary

In this paper we prove a set of results showing that
the vertices of any simply-connected planar polygonal
region can be reconstructed from a finite number of its
complex moments using array processing. In particu-
lar, we derive and illustrate several new algorithms for
the reconstruction of the vertices of simply-connected
polygons from moments. These resulis find applica-
tions in a variety of apparently disparate areas such as
computerised tomography and inverse potential the-
ory, where in the former it is of interest to estimate
the shape of an object from a finite number of its pro-
jections; while in the latter, the objective is to extract
the shape of a gravitating body from measurements of
its exterior logarithmic potentials at a finite number
of points. The applications of the algorithms we de-
velop to tomography hence expose a seemingly deep
connection between the fields of tomography and ar-
ray processing. This connection implies that a host of
numerical algorithms such as MUSIC, Min-norm, and
Prony [11] are now available for application to tomo-
graphic reconstruction problems.

Our algorithms are based on the idea that the ver-
tices of a simply-connected polygonal region in the plane
are determined by a finite number of its moments. Davis
[2] showed, using the Motskin-Schoenberg (MS) for-
mula [12], that a triangle in the plane is uniquely deter-
mined by its moments of up to order 3. In the process
of proving this result, Davis generalised the MS for-
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mula to arbitrary n-gons, and in this paper we make
use of this result to generalize Davis’ triangle result to
arbitzary simply-connected polygons. In particular, we
have generalised his result using Prony’s method [5] to
show that the vertices of a simply-connected, n-gon are
uniquely determined by its complex moments of up to
order 2n — 3. We show that in tomographic terms, this
implies that 2n — 2 projections from distinct angles suf-
fice to uniquely determine the vertices of any simply-
connected n-gon. This result is an improvement on
theoretical results dealing with reconstructability from
few projections such as in 3, 6].

Davis generalised the Motskin-Schoenberg formula,
proving the following result:

Theorem 1 (1] Let 2, z3, -+, 2, designate the ver-
tices of a polygon P. Then we can find constants a,,
+++, Gy depending upon 2y, z3, ---, 2z, (and the way
they are connected) but independent of h, such that for
all h analytic in the closure of P,

// h"(z) dedy = Zajh(Zj)- (1)
P frery

Ifr > n and 2441, - - -, 2, are additional points distinct
from 2, ---, 2, and if there are constants by, ---, b,
which depend only upon z;, - -+, 2z, such that

/ / k" (2)dzdy = bjh(z;) (2)
P ji=1

Jor all h analytic in the closure of P, then

bj = aj,
b; =0,

1<j<n, (3)
n+1<j<r (4)



Hence, the formula (1) is 8 minimal representation of
the integral of A" over P in terms of discrete values of
h. Specifically, the left-hand side of (1) depends only
on the values of h at the vertices of P and how they are
connected; what values A& takes at other points in the
complex plane are completely irrelevant in this regard.
Furthermore, since we can show that each of the a; is
nonsero for a non-degenerate P, the representation (1)
for arbitrary A(z)’s can not be reduced to one involving
h(z) at fewer points.

In the above theorem, by letting (I) h(z) = z* and
(II) f(=,y) be the indicator function over a simply-
connected polygonal region P of the plane, we get.

// (z")" dz dy Za,-z]’-‘ =n
i j=1

i

Hence the numbers 7, which we term weighted complez
moments (w-complex moments), with n = n, = 0,
give measurements of functions of the vertices z; for ev-
ery integer k > 0. We show that by applying Prony’s
method, the vertices of a simply-connected polygon P
are uniquely determined by its w-complex moments 7,
wp through order 2n — 1. (Or equivalently, the sim-
ple (harmonic) complez moments or s-complex mo-
ments ¢ defined by

= / /P f(2,y) 2* dz dy (6)

up through order 2n — 3.) In addition, we discuss the
remarkable fact that these moments (or in fact all w-
complex moments of a polygon) are in general not suf-
ficient to uniquely specify the interior of the polygon,
even though they do uniquely specify the vertices. See
Pigure 1.

The explicit connection between the above and ar-
ey processing emerges when we consider the general
array processing problem of estimating the unknowns
¢; and z; from the measured signals y, given as follows

n
" =Zc,z}'+v;., k=0,---,N-1
i=1

™

where, z; denotes an unknown source, ¢; denotes an un-
known complex amplitude, and v; denotes (complex)
white noise. Now assume that noisy estimates & of
the w-complex moments of a simply-connected n-gon

are given:
n

= Eajz,'-‘ + wy.
=1

(8)

(5)

k(k—-1) /‘/; f(z,9) 2* 2 de dy
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By comparing this measurement equation to (7), we
can see that they have exactly the same form; whereby
a vertex of the polygon can be interpreted as a radi-
ating source whose corresponding (complex) amplitude
shows how it is connected to the other vertices of the
polygon. The general formulation of the array process-
ing problem is therefore nearly the same as the formula-
tion of the reconstruction problem of binary polygonal
objects from noisy measurements of their w-complex
moments. The main difference is that the coefficients
a; are not independent variables but are, in fact, deter-
ministic fanctions of z; and the order in which they are
connected. Nevertheless, if we treat the a; as indepen-
dent unknowns, we can directly apply array processing
methods and then check to see if the a; so-determined
are in fact consistent with one of the finite number of
polygons with vertices given by the extracted values z;.

A novel application of the concepts and algorithms
discussed above can be found in the field of tomo-
graphic reconstruction. It is easily shown that the mo-
ments 7 are complex linear combinations of moments
of the underlying image. In addition, the Radon trans-
form of the image f(z,y) defined by:

9(t,8) = / /; F(2 9)b(t — w - [2, g7 )dedy, (9)

satisfies an elementary but extremely useful property
that if F(t) is any square integrable function, then the
following relation holds true:

T
/_ 9(t,OF (it = / [o f(2 ) F(w - [2, 3] )dady.

(10)
where T denotes the maximal support value of the set
O in the direction 8 defined by T = maxe (= cos(8) +
ysin(6)). By considering F(t) = e~%, the celebrated
Projection Slice Theorem [4] is obtained. By letting
F(t) = t* and expanding the right-hand side of (10)
using the binomial theorem, we obtain

T
AW = / 9(¢,6) * dt (11)
-T
k
_ k e e
- f\;':( j )c“' 7(6) sin’ (6) pa-4,{12)
where

Hpg =/./Pf(=,y)z’y’ de dy.

which shows that the k** order moment of the projec-
tion at angle 6 is a linear combination of the k** ordet
moments of the image [8, 10, 9]. Furthermore, we have
proved the following [8, 10, 7):

(13)



Proposition 1 Given line integral projections of f(=, y)
at m different angles 6; in [0, x), one can uniguely de-
termine the first m moment vectors ulf) (set of all mo-
menis of order j=p+q), 0 < j < m of f(=,y). This
can be done using only the first m geometric moments
H®)6;), 0 < k < m of the projections. Furthermore,
moments of f(z,y) of higher order cannot be uniquely
determined from m projections.

Hence, invoking this “moment-property” of the Radon

transform, we compute Maximum Likelihood estimates
of the w-complex moments of the underlying polygon
from noisy projections, and having these, we directly
apply array processing algorithms to recover the ver-
tices of the. polygon. In particular, we concentrate on
some important differences between this tomographic
scenario and the standard array processing scenario.
We show that the tomographic polygonal reconstruc-
tion problem from moments requires the development
of specialised array processing algorithms which exploit
the particular structure of the noise statistics arising in
the estimation of the w-complex moments.
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Figure 1: Three distinct regions corresponding to the
same vertices
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Figure 2: Sample reconstructions at SNR=23.9 dB
solid: actual, circles: reconstructed. Estimated m, for

0 < k <9 used (i.e. overfit=4.)

Figure 3: Overlayed performance curves for Ordinary-
, Weighted-, and Total-least squares Prony techniques
using noisy projections at SNR=23.9 dB



