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Abstract

This paper presents an image local orientation es-
timation method, which is based on a combination of
two already well-known techniques: the principal com-
ponent analysis (PCA) and the multiscale pyramid de-
composition. The PCA analysis is applied to find the
Maximum Likelihood (ML) estimate of the local ori-
entation. The proposed technique is shown to enjoy
excellent robustness against noise. We present both
simulated and real image examples to demonstrate the
proposed technique.

1 Introduction

Image local orientation estimation plays an impor-
tant role in many computer vision and image process-
ing tasks such as edge detection, image segmentation,
and texture analysis. The 2-D local orientation esti-
mation is also directly related to optical flow estima-
tion, which is the generalization of orientation in a 3-D
space/time volume.

Several techniques for local orientation estimation
have been proposed in the past. Perona [2] extended
the idea of anisotropic diffusion to orientation maps.
Bigun et al. [3] posed the problem as the least-squares
fitting of a plane in the Fourier transform domain. An-
other set of techniques is based on steerable filters [6],
but they are often limited in precision and generaliza-
tion. Wilson et al. [8] developed a multiscale orienta-
tion estimation approach, which is closely related to
the one we propose here. But our method of combin-
ing the PCA and multiscale is novel, more efficient,
and will give more robust results.

Almost all the established local orientation estima-
tion techniques are based on the analysis of the local
gradient field of the image. But the local gradients are
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very sensitive to noise, making the estimate of local
orientation directly from these rather unreliable. So
there is often a need for some local or even global pro-
cess to ’smooth’ the estimate. However, by smoothing
one gives up localization. A mechanism with both
noise robustness and feature localization is needed.

The estimation method presented here is based on
the Principal Components Analysis (PCA) [4], which
at its core uses the Singular Value Decomposition
(SVD) of the ensemble of gradient vectors in a local
neighborhood to find the dominant orientation. We
develop this PCA-based method in a multiscale frame-
work, which effectively enforces smoothness. Another
benefit of the proposed method is the adaptive com-
promise between the resolution of the orientation field
and its relative accuracy.

In Section 2, the PCA analysis of local orientation
will be introduced. We will also show that this method
results in the ML estimate of the local orientation. In
Section 3, we will develop the multiscale implemen-
tation of the PCA-based method. Section 4 contains
the experimental results, in both simulated images and
real images. In Section 5 we present our conclusions.

2 PCA Analysis of local orientation

Principal Components Analysis is used for comput-
ing the dominant vectors representing a given data
set and also provides an optimal basis for minimum
mean-squared reconstruction of the given data. It
is also sometimes referred to as the Karhunen-Loeve
Transform [4]. The computational basis of PCA is
the calculation of the Singular Value Decomposition
(SVD) of the data matrix, or equivalently the eigen-
decomposition of the data covariance matrix. Here we
describe the method in terms of the SVD.

Let us assume that in the image of interest f(x,y),
the orientation field is piecewise constant. Under this



assumption, the gradient vectors in a block should on
average be orthogonal to the dominant orientation of
the image pattern. So orientation estimation can be
formulated as the task of finding a unit vector @, to
maximize the average of angles 6; between @ and gra-
dient vectors g; = Vf(x;,v:), @ = 1,...,n, (within a
local window) [1], equivalently to minimize:
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subject to ||a|| = 1, where g% and gg(f) are derivatives

in x and y direction, respectively.

This problem can be solved using Lagrange multi-
pliers and it can be shown that the unit vector @ min-
imizing @’ Ca is the eigenvector of C corresponding
to the smallest eigenvalue, or equivalently, the singu-
lar vector corresponding to the smallest singular value
of G, defined in (3). Note that the SVD method is
numerically more stable and efficient.

From the theory of Directional Statistics [5], for
a bivariate Gaussian distributed random vector field,
the direction of the vectors will have von Mises distri-
bution, with the probability density function (PDF):

1 kcos(0—p)
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where
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In the task of local orientation estimation, we are
concerned with the ’axes’ of orientation, which means
the vectors @ and —a define the same orientation. For
Gaussian distributed random vectors (in our case, the
gradient vectors), the axes of the vectors will have
Bingham distribution. In the 2-D case, this is just the
2-wrapped von Mises distribution, which means, given
the PDF of von Mises distribution f(6), the PDF of
Bingham distribution f*(0) = f(26) [5]. From [1], for
Bingham distributed unit vectors, the ML estimate of
the dominant direction equals to the first singular vec-
tor v1 from the SVD of the data vector matrix(defined
in equation 3). This shows that by assuming the gra-
dient vectors to have Gaussian distribution, the PCA
method will give the ML estimate.

The first step of the PCA-based method is the com-
putation of the gradient map for the whole image.
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This can be accomplished by a variety of differencing
operators, which ultimately can and should be opti-
mized. Denote the local estimate of the gradient of
image f(z,y) at point (zx,yx) by:

V (k) =V f(@r ye) = [0f (@r, yr) /0, Of (21, yr)/Oy]"

In order to estimate the local orientation, we divide
the gradient field into local blocks (overlapped or non-
overlapped). For each block, group the gradients into
an N X 2 matrix G as follows:

viT

vi@2)T
p . (3)

VH(N)T

G:

The last step is to compute the SVD of matrix G:

(4)

where U is orthogonal and N x N, representing each
vector’s 'contribution’ to the corresponding singular
vector; S is N X 2, representing the energy in the
dominant directions; and V is orthogonal and 2 x 2,
in which the first column v; represents the dominant
orientation of the gradient field. By rotating v; by
90 degrees, we have the dominant orientation in the
image block.

The difference between the singular value s; and s
can be used as a measure of accuracy or dominance of
the estimate. However, because s; — so is an energy
dependent measure, the quantity

G=USsvT

S1 — S2
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will be more suitable for this task [3].

Note that the above quantity is bounded between
0 and 1, and is related to the condition number k& of
matrix G by: By

—1
k41 (6)

The PDF of the condition number of an IV x 2 inde-
pendent and identically distributed (i.i.d) white Gaus-
sian matrix is derived in [7]. From this we can get the
PDF of R for an N x 2 i.i.d white Gaussian matrix
(shown in Figure 1):

_ p2\N-2
sm =y -0 @)

We can use this PDF in a significance test [11] to
distinguish between a pure noise image and an image
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Figure 1: PDF of R (N=16)

with orientation pattern. First we can set a signifi-
cance level threshold R*. For any given image block,
we can perform the PCA-based estimation, if the R is
less than R*, it is very likely that the corresponding
image block is only pure white noise and contains no
dominant orientation.

3 Multiscale Implementation

Multiscale signal and image analysis have been in-
vestigated for some time with applications in data
compression, edge detection, and segmentation, etc.
Wilson et al. [8] used a multiscale approach in ori-
entation estimation. The method we propose here
is similar to Wilson’s method, but our method com-
bines PCA and multiscale, using the dominance mea-
sure R as the propagation weight. The combination of
these techniques makes our method very efficient and
is shown to be more robust.

As introduced in [9], multiscale estimation can be
described within the framework of Kalman filtering
across scales:

Alnls[yn] + Bnjw[n] (®)

9)
where s[n| is the signal in the current layer; s[yn] is
the signal in the parent layer (coarser resolution); z[n]
is the measurement in the current layer; w[n] and v[n]
are the innovation signal and measurement noise in
current layer, respectively. The covariance matrix of
v[n] is denoted as C[n].

In the task of local orientation estimation, the sig-
nal s[n| is the local dominant orientation (or equiva-
lently, the local dominant gradients). The signal in the
current layer can be modeled as the corresponding sig-
nal from parent layer (up-sampled to fit the size) plus
an innovation vector. And the measurement is sim-
ply the signal vector plus a noise vector. So we can
simplify the Kalman filter equations as :

a[n] = Hinls[n] + v[n]

s[n] = s[yn] 4+ wn] (10)
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(11)
The MMSE estimate can be written in the form of
recursive linear combination:

z[n] = s[n] +v[n]

8[n] = 8[yn] + K[n](z[n] — 3[yn]) (12)
where K[n] is the Kalman gain matrix:
K[n] = M[n|yn)(Cln] + M(n|yn))~  (13)

Min|yn] is the covariance matrix of the estimation
error.

There are three major steps in our multiscale PCA-
based method:

1. From the computed gradient field of the given im-
age, build up a gradient pyramid (Gaussian pyra-
mid).

. On each layer of the gradient pyramid, divide the
gradient field into local blocks (overlapped or non-
overlapped), and on each block, use the PCA-
based method to estimate the local orientation.

Propagate the estimates from coarser layer to
finer layer (as described in Equation 12), all the
way to the finest resolution.

In step 3, the optimal propagation weight is given
by (13) in terms of the covariance of estimation error
and the covariance of noise. But these quantities are
unknown or hard to determine. Wilson et al. [8] used
the ’average energy’ as propagation weights, which is
not directly related to the variance of orientation. In
our approach, we assume the innovation vector w[n]
and the measurement noise v[n| are both zero-mean
white Gaussian. Then both M[n|yn] and C[n] will be
diagonal matrices and the Kalman gain matrix K|n|
can be simplified as a scalar quantity k[n] times the
identity matrix, where k[n] can be approximated as:

2

13
k[n] ~ "= (14)
U'yn + on
where 02 and o2 are variances of orientation on par-
yn n p

ent layer and current layer, respectively. Note that
in the PCA-based method, the dominance measure
R can be viewed to be inverse proportional to the
variance 2. Thus we elect to define the propaga-
tion weight in terms of R, which is easy to compute
as a byproduct of the SVD. Our experiments show
that this weight will give more robust estimates than

Wilson’s approach. We have:

Bl (aln] = s{m)

R + Riyn (15)

8[n] = §[yn] +



4 Experimental Results

In order to test our method’s stability in the
presence of noise, we generate a test image with
single known sinusoidal orientation pattern and ap-
ply zero mean Gaussian white noise to it (Figure
2). Observe the change of the average estimation
error with increasing noise variance. We compare
the multiscale method with the single-scale method,
both using PCA-based method to estimate the lo-
cal orientation. For both methods, we compare
the results of overlapped-neighbor-block and non-
overlapped-neighbor-block. We also compare the re-
sult with Wilson’s multiscale method. The results are
shown in Figure 3.

Figure 2: Left:clean test image(value range: 0-

1).Right:noisy test image(noise variance: 0.6)
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Figure 3: Multiscale VS. Single scale (1: PCA/Single
scale, mnon-overlap; 2:PCA/Single scale, overlap;
3:Wilson’s multiscale method; 4:PCA/Multiscale,
non-overlap; 5:PCA /Multiscale, overlap;)

From Figure 3 we can see that the multiscale meth-
ods work much better than single scale methods; the
methods with overlapped local blocks are more robust
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than methods with non-overlapped blocks; and Wil-
son’s multiscale method is not as robust as the method
proposed here.

The multiscale method’s robustness to noise can be
shown in another experiment. The test image in Fig-
ure 4 has diverse orientations with different contrast.
Gaussian white noise is applied in the right half. From
the estimated orientation map we can see (Figure 5
and Figure 6), the single scale method is quite messy
in the noisy half, while the multiscale method works
well on both sides.

Figure 4: Test image
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Figure 5: Orientation Single scale

method

Figure 6: Orientation map of Figure 4, Multiscale
method



Finally, as an example of the performance of the
proposed method on a real image, the orientation es-
timation result for a real fingerprint image is shown in
Figure 8.

Figure 8: Orientation map of Figure 7

5 Conclusion

The proposed orientation estimation method works
well in terms of both robustness and accuracy. The
PCA-based estimation gives the optimal (Maximum
Likelihood) estimation of the local dominant orienta-
tion. The multiscale framework helps in noise rejec-
tion and balancing localization and accuracy.

We point out that this multiscale PCA-based
method can also be developed for other applications,
e.g. corner detector. The PCA method is used in
the Harris corner detector [10]. The multiscale PCA
scheme presented here can be used to detect corners
at different scales.
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