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ABSTRACT

Superresolution produces high quality, high resolution
images from a set of degraded, low resolution frames.
We present a new and eÆcient wavelet-based algorithm
for image superresolution. The algorithm is a combina-
tion of interpolation and restoration processes. Unlike
previous work, our method exploits the interlaced sam-
pling structure in the low resolution data. Numerical
experiments and analysis will demonstrate the e�ec-
tiveness of our approach and illustrate why computa-
tional complexity only doubles for 2-D superresolution
versus 1-D case.

1. INTRODUCTION

Figure 1 illustrates the superresolution setup. We are

given three 4� 4 pixels low resolution (LR) frames on
an 8� 8 high resolution (HR) grid, and we would like
to obtain estimates of the original image on the HR
grid. Each symbol (square, circle, triangle) indicates
the sampling points of a frame with respect to the HR
grid. We pick an arbitrary frame as a reference frame;
in this case, the frame marked by the circular sym-
bols. The sampling grid for the triangular frame is just
a simple translation of the reference frame grid. The
motion between the sampling grid for the square frame
and the reference frame grid include translational, ro-
tational, and magni�cation (zoom) components.

The forward relationship between a degraded, LR
frame and the ideal HR image can be described as fol-
lows [2]:

fk = DCEkx+ nk; 1 � k � p; (1)

where D is the down-sampling operator, C is the blur-
ring/averaging operator, Ek's are the aÆne transforms
which map the HR grid coordinate system to the LR
grid systems, x is the unknown ideal HR image, and
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Figure 1: Low-resolution data on a high-resolution
grid.

nk's are the additive noise vectors. The LR frames fk
are given, and the decimation operator D is known. In
this paper, we assume that C is spatially linear shift
invariant, frame to frame motion and blurring param-
eters are known a priori or have been estimated (cf.
[6]) from given data, and that frame to frame motion
is purely translational or has been corrected to be so.

The shift invariance property allows the operators
C and Ek to commute. Hence, (1) can be rewritten as

fk = DEkCx+ nk; 1 � k � p; (2)

Equation (2) motivates our two-step approach to su-
perresolution. First, using the LR data frame samples
fk; 1 � k � p, we interpolate for Cx, the blurred ver-
sion of the original HR image. Next, we deconvolve the
blur C to obtain an estimate for x. The rest of the pa-
per will mostly address the interpolation step of the
algorithm. Unlike previous interpolation-restoration
superresolution algorithms [8, 9, 7], our interpolation



technique takes advantage of the inherent structure and
regularity in the sampled data. Section 2 describes our
interpolation method for 2-D interlaced data. Our al-
gorithm is an extension of Ford and Etter [3] for inter-
laced sampling. Section 3 analyzes the computational
complexity for the method. Experimental results with
Forward Looking Infrared (FLIR) images are discussed
in Section 4.

2. WAVELET INTERPOLATION OF

INTERLACED 2-D DATA

Following work by Mallat [5], any image f(t; s) 2 L2(R2)
can be represented in terms of a separable, orthonor-
mal basis generated by special scaling and wavelet func-
tions �(t) and  (t). The basis functions are products
of dilations and translations of �(t) and  (t), �j;k(t) �
2j=2�(2jt � k),  j;k(t) � 2j=2 (2jt � k). We have the
following decomposition at scale J

f(t; s) =
X
k;l2Z

aJ;k;l�J;k(t)�J;l(s) +

X
j�J

X
k;l2Z

bhj;k;l j;k(t)�j;l(s) +

X
j�J

X
k;l2Z

bvj;k;l�j;k(t) j;l(s) +

X
j�J

X
k;l2Z

bdj;k;l j;k(t) j;l(s); (3)

with

aJ;k;l =

Z Z
f(t; s)�J;k(t)�J;l(s)dtds

bhJ;k;l =

Z Z
f(t; s) j;k(t)�j;l(s)dtds

bvJ;k;l =

Z Z
f(t; s)�j;k(t) j;l(s)dtds

bdJ;k;l =

Z Z
f(t; s) j;k(t) j;l(s)dtds:

In image superresolution, the data frames are given
low resolution rectangular grids of sample points. Let
h;w denote the height and width (in units of pixels) of a
low resolution frame and r the resolution enhancement
factor. The set of available data is then

ff(pr + �it ; qr + �is)g ;
0 � �it ; �is < r; p = 0; :::; h� 1;
q = 0; :::; w � 1; i = 1; :::; n:

From these nhw sample points on low resolution grids,
we would like to reconstruct values of f(t; s) on high
resolution grid points f(t; s)j t = 0; :::; hr � 1; s =
0; :::; wr� 1g. We substitute in sample values of f(t; s)

to obtain a set of linear equations. Ignoring the sec-
ond, third, and fourth terms in the right hand side of
(3) and solving for least squares estimate for the coarse
scale coeÆcients

f(pr + �it ; qr + �is) �X
k;l

aJ;k;l�J;k(pr + �it)�J;l(qr + �is): (4)

In matrix form, the sum above can be written as a
kronecker product of 1-D wavelet transform matrices

f (i) � (G
(i)
Jt

G

(i)
Js
)aJ ; i = 1; :::; n; (5)

where f (i) is the vector with the pixel values of the ith
frame reordered rowwise, aJ is the vector of unknown

coarse scale coeÆcients, and the entries G
(i)
Jt
; G

(i)
Js

are
basis function values at sampling points of frame i

along the horizontal and vertical direction, respectively.
We solve (5) for a regularized least squares estimate âJ
of aJ . The di�erence between f

(i) and its coarse-scale
estimate (G

(i)
Jt

G

(i)
Js
)âJ can next be used to estimate

the horizontal detail coeÆcients bhJ

g
(i)
J = f (i) � (G

(i)
Jt

G

(i)
Js
)âJ (6)

� (G
(i)
Jt

H

(i)
Js
)bhJ : (7)

The residual is then used to calculate bvJ and bdJ . We
pick the �nest scale J so that the number of sample
values is more than the number of unknown coeÆcients
in (5) and (7).

Once the coeÆcient estimates âJ ; b̂
h
J ; b̂

v
J ; b̂

d
J at level

J have been determined, we can approximate f(t; s) on
the HR grid

f̂J(t; s) =
X
k;l

âJ;k;l�J;k(t)�J;l(s) +

X
k;l

b̂hJ;k;l J;k(t)�J;l(s) +

X
k;l

b̂vJ;k;l�J;k(t) J;l(s) +

X
k;l

b̂dJ;k;l J;k(t) J;l(s); (8)

for f(t; s)j t = 0; :::; hr � 1; s = 0; :::; wr � 1g.

3. COMPUTATIONAL COMPLEXITY

We use the conjugate gradient (CG) iterative method
to solve for regularized estimates of the wavelet coeÆ-
cients. The main computational burden for CG is two
matrix-vector products involving the system matrix (cf.



[1]). The system matrix for our 2-D interpolation prob-
lem comes from (5) and is a series of kronecker prod-
ucts of 1-D wavelet transform matrices. We recall the
following property of the kronecker product

(A
B)reshape(V ) = reshape(AV BT ) (9)

where reshape(�) reorders the entries of a matrix in
rowwise order into vector format. The di�erence in
the main computational cost between the 2-D and 1-
D interpolation problems is two matrix multiplications
instead of one. So by taking advantage of the interlac-
ing structure and the kronecker product representation,
the computational cost for our interpolation approach
only doubles for the 2-D case as compared to the 1-D
case.

4. WAVELET SUPERRESOLUTION

EXPERIMENTS FOR 2-D IMAGES

The low resolution Forward Looking Infrared (FLIR)
images in our superresolution experiment are provided
courtesy of Brian Yasuda and the FLIR research group
in the Sensors Technology Branch, Wright Laboratory,
WPAFB, OH. Each image is 64� 64 pixels and a res-
olution enhancement factor of 5 is sought after. The
objects in the scene are stationary, and 16 frames are
acquired by controlled movements of a FLIR imager
described in [4]. Figure 1 contains the results of our
wavelet-based superresolution algorithm for the FLIR
test sequence using Daubechies DB4 �lter interpola-
tion, along with Tikhonov regularized deblurring using
an identity regularization matrix.

5. SUMMARY

In this paper, we present a new interpolation-restoration
method for image superresolution. In contrast to pre-
vious interpolation-restoration approaches, our method
exploits the interlacing structure of the sampling grid in
superresolution. Using a separable orthonormal wavelet
basis for 2-D images, we derive a wavelet decomposi-
tion using kronecker products. As a results, the com-
putational properties of the kronecker products allow
eÆcient calculation of the wavelet coe�cients. Compu-
tational complexity of our method applied to 2-D in-
terlaced data increases only by a factor of 2 compared
to that in 1-D.
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Figure 2: The �rst (upper left) display is a sample FLIR LR frame. The subsequent images are the coarse scale
approximation plus various incremental levels of detail re�nements.


