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Abstract

One of the most fundamental properties of the
Radon (projection) transform is that shifting of the im-
age results in shifted projections. This useful property
relates translational motion in the image to simple dis-
placement in the projections. It is far from clear, how-
ever, how more general types of motion in the image
domain will be manifested in the projections. In this
paper, we will present a model for this phenomenon in
the general case; namely, we develop a generalization
of the shift property of the Radon transform. We study
various properties of the apparent projected motion im-
plied by the model, and study the case of affine motion
in particular. We also present illustrative examples,
and briefly discuss the inverse problem implied by the
forward model developed herein, along with some pos-
sible applications.

1 Motion in the Projection Domain

The shift property of the Radon transform has
found applications in many areas of image process-
ing. For instance, in translational motion estimation
from a video sequence [1]. More importantly, pro-
jections acquired while the subject undergoes linear
motion can be corrected using this property before a
reconstruction of the image is attempted.

The shift property of the Radon transform shows
that translational motion in the image domain re-
sults in translational motion in the projection domain.
More specifically, if g(p,0) = Rq [f] is the projection
of f(z,y) at angle § defined by

60,0)= [ [ £@,9)3(p =z cos) - ysin(@)dacy
1)
we have Rg [f(2 — voz,y — voy)] = g(p — vg w(6),9),
where vo = [voz, voy]T and w(8) = [cos, sind]” is a
unit direction vector.
To the extent that the underlying motion in the
image domain can be adequately modeled as transla-
tional, this shifting property of the Radon transform is
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exceedingly useful in application. But more generally,
one might naturally wonder what happens in the pro-
jection domain if the motion in the image domain is
not a simple displacement. As an example, respiratory
motion during CAT scans can be modeled as a combi-
nation of expansion (magnification) and displacement
[2]. The shifting property of the Radon transform is
no longer adequate in describing the effect of general
motion in the image on the projections. Hence a gen-
eralization is clearly needed. In this paper, we develop
such a generalization and study some of its fundamen-
tal implications and properties.

To begin our development of a model for projected
motion, we first state two useful differentiation prop-
erties of the Radon transform. The first is related
to the Radon transform of derivatives of a function.
Let L(8/0z,0/dy) denote a linear differential opera-
tor, and write the direction vector w(f) = [wy, wz]T.
We have

R [L f] = L(w,8/8p, wyd/0p) g(p,w).  (2)

In particular, if L is a homogeneous polynomial of
degree m with constant coefficients, then

_ o™ g(p, w)
Ro[L f] = Dw) =5 2. ®)
For instance, a useful corollary is
Ro [vs V] =vgw 99(p, w) (4)

Op

The second property relates to the derivatives of the
Radon transform. Specifically, for integer k and [,

- (__Q.
(-5

where it must be kept in mind that when derivatives
with respect to components of w are computed, the
vector w is initially not considered a unit vector. The

8* g(p,w)
owr ol

k+1
) R [24'F(zm)], ()



derivatives may later be evaluated for unit direction
vectors.

Now, let us consider an image sequence f(z,y,t),
which evolves in time according to the spatially vary-
ing motion vector field v(z,y) = [v1(z,y), valz,y)] -
Also, consider its corresponding Radon transform se-
quence g(p,0,t), obtained by computing the Radon
transform of f for every fixed ¢.

For a sufficiently small time increment ¢, a first
order Taylor series expansion of f is as follows:

af

— ot
ot 3

(6)
Next, we consider the Radon transform applied to
both sides of the above:

fz+uv,0t, y+uadt, t4+6t) = f(x,y,t)+vT Vf 6t+

af

e (7

dg(p,0,1)
ot

Now define the function u(p,6,t) (henceforth known
as the projected motion) by

Reo [’UTVf(III, Y, t)]
99(p,,t)/0p
Clearly, this function is well-defined only when
8g(p,0,t)/0p # 0, and when f(z,y,1t) is differentiable.
We will discuss these requirements in more depth a bit
later. For now, assuming that v is thus well-defined,

if we replace its definition into (7), we have
Ro [f(z + v10t,y + vadt, t + Gt)]

99(p,0,t) . Dg(p,0,t
90,0, + u(p,6,0) 2Ly 4 20700

~
~

Re [LHS] Ro | flz,y,t) + vTVf 6t + ==

9(p,0,t) + Ry [vTV ] 6t + 5t

u(p,9,t) =

®)

o~
~

5t + 5t (9)

The right-hand side of (9) now appears quite sim-
ilar to a Taylor series expansion of g(p,8,t). In fact,
if u(p,0,t) can be replaced by dp/dt, we will have ex-
actly the first-order Taylor series of g on the right-
hand side. We can make this substitution only when
the differential equation

dp
dt

has a solution, for any fixed 6, over the support of g.
The existence and uniqueness theorem for first-order
ordinary differential equations [3] states that a unique
solution to (10) will exist when u(p,0,t) is continu-
ously differentiable (or C1); that is, Su/dp must exist
and be continuous! on a compact subset of the p-axis.

= u(p,6,1), (10)

1This will imply that v and du/8p are also bounded on the
same interval.
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Referring to the definition of u in (8), we can see that
if we require that the vector field v be C* and that
f be C?, then Ou/dp exists, it is continuous, and is
given by

?fﬁ (0Re[vTV £1/8p) (8g/Op) —
9p (8g/0p)”

(11)
Note that, as before, we have assumed that 8g/0p # 0.
The following proposition, which is the main result of

this paper, follows directly from the above definitions
and arguments.

(629/ ap®) RV f] .

Proposition 1 (Projected Motion) Consider the
image sequence f(x,y,t), assumed to be twice contin-
uously differentiable (or C?), which evolves according
to the C* wvector field v(z,y). Then, for any 8, there
exists a C' function u(p,0,t) such that, to first order,

R [f(@ + v16t,y + vedt, t + 6t)] =~ g(p+udt, 0, t+ 6t),

(12)
for sufficiently small 8t. Furthermore, the function u
is given by the identity

w(p, 6, t)ag p,0,t)

=Ry [vTV f(z,y,1)]
(13)
whenever 8g/0p # 0. We term this relationship the
differential Projected Motion Identity (PMI).

A straightforward corollary of the above result is
that under the same assumptions, we have

dg df ]

dt dt

That is, locally, the projection of the total derivative
of f is the total derivative of the projection of f (Rq
and the total derivative operation commute). An im-
mediate consequence is that if the optical flow bright-
ness constraint df /dt = 0 is assumed to hold in the
image domain, then (14) implies that this constraint
also holds in the projection domain: dg/dt = 0, with
motion in this domain given by (13).

The PMI is a natural generalization of the shift
property of the Radon transform and implies the stan-
dard shift property if the motion vector is spatially in-
variant. Furthermore, it is worth noting that as with
the classical shift property, the PMI holds in any di-
mension. That is, if the Radon transform of a scalar
function of n real variables is defined as its integrals
over hyperplanes of dimension n — 1, the arguments
presented above would yield the same result except
that v would be an n-dimensional vector field.

=R [ (14)



2 Properties of the Projected Motion

Several interesting properties and implication of the
projected motion, and the model in (13) are worth
considering. First, we note that u is time-varying even
though the vector field v may not be so. This is due
to the dependence of u on the gradient of the image,
which varies with time. Another observation worth
making is that by invoking the directional derivative
property (2), we can rewrite 8g/8p in the image do-
main and express the PMI as follows:

u(p,0,t)Rg [w' V] =Ry [vTVF].

The insight we gain here is that u is expressible as the
ratio of two projections; namely, the projection of the
directional derivative of the image parallel to v (some-
times called the advective derivative of f), and the
directional derivative of the image parallel to the unit
vector w(#), when the latter projection is not zero. In-
tuitively, at points where Ry [w?'V f] vanishes, there
is no perceived motion in the projection taken at angle
8, and hence, as expected, u is not well defined. It is
also interesting to note that in each direction of pro-
jection, the correspondence between the vector field v
and the function u is not unique. Namely, for a given
0, both v and v + v, yield the same u if v, is such
that Ry[vTVf] =0.

A number of interesting properties of projected mo-
tion can be derived directly from the properties of
the Radon transform stated earlier and in [4]. For
instance, it follows from the linearity of the Radon
transform that for a given image f, if u and ' are
the projected motions resulting from the vector fields
v and v’ respectively, then the projected motion field
resulting from av + bv' is simply au + bu', where a
and b are arbitrary scalars. This, in turn, implies
that if a given vector field v is decomposed accord-
ing to Helmholtz’s theorem [5] into its irrotational
and solenoidal components as v = vy + vg, the pro-
jected motion field v has a decomposition of the same
kind: w = u; + us. Other useful properties of u in-
clude periodicity: u(p,8+2kn,t) = u(p,0,t), and anti-
symmetry: u(p,0,t) = —u(—p,6 + m,t). Finally, it is
well-known ([4, 6]) that the moments of the projec-
tions are linearly related to the moments of the image.
Of particular interest is the case of zero-th order mo-
ments of a function and its Radon transform, which
are in fact equal. Applying this result to the PMI, we
obtain

// vIVf(z,y,t) de dy = /u(p,@,t) g—zdp, (16)

which states the intuitively pleasing result that pro-
jection conserves the average advective derivative of

(15)
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f.

3 Analysis of Affine Motion in the Pro-
jection Domain

Any motion field can be locally approximated (to
first order) by affine motion. Hence, it is important to
consider this class of motions given by

where vy is a fixed vector denoting translational mo-
tion.

To see specifically how affine transformation be-
haves in the projection domain, we can consider warp-
ing an image f(z,y) by such a transformation. Omit-
ting the details of the derivation (See [7] for details),

jw|=1

we obtain
(18)

Much can be learned about the general structure of
affine motion in the projection domain by considering
the representation of images using Hermite polynomi-
als. In particular, consider

a b

c d (17)

v=vo+M{;], MZ[

dg/dw,
69/6’11)2

u—vlw ?—g+tr(M)g+wTM 0.
(v —vow)

Op

f(2,9,0) =Y fuHu(@)Hiy)e™ v, (19)

k,l

where {Hy(z)H(y); k,1 = 0,1,2, - -} is the (weighted)
orthogonal basis? of Hermite polynomials.

It can be shown (see [7] for details) that for this
choice of f, and for sufficiently large p,

[ 55 |

~ 2 O e
Bg/Ows ~2p°gw, and, Og/0p=~ —2pg.

|w|=1

Substituting these approximations into (18) and
solving for u we obtain the following neat asymptotic
expression for u:

o~
~

wfw + (wTMuw)p, (20)

u

which, incidentally, is an affine function of the variable
p.

2While a shortcoming of this representation is that the basis
functions Hy(x)H;(y) are not compactly supported when real
images are, the inclusion of the exponential factor makes this
representation somewhat more realistic for image processing.



4 Some Examples of Projected Motion

In this section we present two examples. In the first,
analytical expressions for u(p,0,t) for a given image
sequence and vector field are derived. In the second
example, we apply the motion model developed here
to a test image sequence and verify that the resulting
estimates of the motion in the projection domain are
consistent with our proposed model and our intuitive
expectations.

4.1 Example 1

Let f(z,y,t) = exp (——(m —ut): —(y - 'Uzt)z), and
v(z,y) = [z, y]7. Skipping the detailed calculations,
we obtain

1

u(p,6,t) =p+ PA=D

(21)

which has (removable) singularitiesat p=0and ¢t =1
where Og/0p vanishes. Intuitively, the singularity at
t = 1 is a result of the fact that f(z,y,1) has null
gradient. The singularity at p = O arises because for
this value (and for any angle) the images are moving
in a perpendicular direction to w(#), and hence no
motion can be measured in the projections.
4.2 Example 2

In this example, the diverging trees image sequence,
described in [8], is used to show that the PMI model
for motion agrees with actual measurements of motion
in the projections. The said image sequence consists
of 40 frames, each having 150 x 150 pixels, obtained
as the camera moves along its line of sight toward the
scene, resulting in the (known) divergent motion field
v(z,y) ~ 1.1z, y]T. The 20-th frame, along with
some sample motion vectors are shown in Figure 1.
Projections of the frames were computed in the row
and column directions, and from these, using a Fourier
transform-based technique® described in [9], the mo-
tion in the projections was measured. These estimated
values are shown as the solid and dashed curves in Fig-
ure 2. The asymptotic model in (20), with vo = [0, 0]
and M = 1.11, then implies that the predicted motion
in the projections at any angle should be u(p) ~ 1.1p.
These values are displayed in Figure 2 as circles. It
is evident that they generally agree quite well with
the directly estimated values while, not surprisingly,
the largest errors occur at the center of the plots near
the projection of the focus of expansion. Note that
the model exhibits a certain degree of robustness to
the extent that it is accurate (at least for this simple
motion field) even though the images are neither C?,

Sany other motion estimation algorithm restricted to 1-D can
also be used
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nor necessarily well-represented by the model (19) in
terms of Hermite polynomials.

5 Conclusions and Future Directions

We considered the question of modeling the map-
ping between motion in an image (or image sequence)
and its projections. To this end, we developed a lo-
cal first order model (the differential Projected Motion
Identity) and showed that it produces results that are
reasonable and intuitive. We derived some basic prop-
erties of projected motion, and studied the effect of
affine motion in the projection domain. This analysis
revealed that, at least asymptotically, the projected
affine motion is itself affine in nature, and that the
effect of rotation tends to dissipate as the inverse dis-
tance from the vortex in the projection domain, and
is hence difficult to measure.

Generally, the PMI can be considered as an indirect
measurement equation (or forward model) for motion
flow in the image domain. This implies an inverse
problem. Namely, given measurements of the projec-
tions g and their respective motion field u, how do
we reconstruct v? Existing reconstruction algorithms
{10, 11] can be applied to recover at least the irrota-
tional part of v from uw. However, these measurements
u contain information about both solenoidal and ir-
rotational components of the motion field v. Ques-
tions of existence and uniqueness of solutions, along
with numerically well-behaved algorithms for perform-
ing the inversion are the subject of current research by
the author. This inverse problem has a number of in-
teresting applications. For instance, in motion estima-
tion from video [1], the natural next step would be to
ask whether computationally efficient algorithms us-
ing projections can be obtained for more general types
of motion. As we can see in Section 3 (Equation 20),
this appears to be possible in at least the affine case.

A solution to the inverse problem implied by the
PMI is useful in any application where it may be
difficult or impossible to collect inner-product mea-
surements {10] of a vector field. In these cases, it
may be possible instead to measure ordinary line inte-
gral projections of the density field, compute motion
in these projections using existing motion estimation
techniques (applied in one dimension), and attempt to
invert for the desired higher-dimensional vector field.
This appears to be a promising direction of research
that we are currently pursuing. A forthcoming paper
will present some of the results of this effort.
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