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ABSTRACT

In this paper, we discuss two interesting instantiations
of the moment problem in image processing. The first
involves the estimation of moments of an image indi-
rectly from projections, and the reconstruction of the
image from these moments. The second relates the re-
construction of binary polygons from moments to well-
known algorithms in array signal processing. Through
these examples, we place the moment problem into a
geometric perspective and illustrate how this perspec-
tive leads to a number of interesting practical applica-
tions in image processing and other fields.

1. INTRODUCTION

The reconstruction of images of objects from indirect
measurement has long been of interest in a diverse va-
riety of fields such as medical imaging, machine vision,
and oceanographic exploration. The information col-
lected from the particular indirect probe may be in
the form of Radon transform projections [2], as is the
case in some medical applications, or range (depth) in-
formation gathered from a radar return. In many of
these scenarios, the gathered data is often used to di-
rectly invert the imaging process hence resulting in a
rough reconstruction of the underlying object in two
or three dimensions. In cases where the available mea-
surements are either sparse or noisy, or often both, the
resulting reconstruction is of poor quality due to the
overparamelerization inherent in the direct solution of
unconstrained, ill-posed inverse problems such as im-
age reconstruction. To regularize the solution of such
ill-posed problems, a-priori information is typically in-
troduced into the reconstruction process in the form of
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various stochastic priors. These priors, however, sel-
dom contain any information about the geometry of
the object(s) being sought in the reconstruction. This
is in stark contrast to the ultimate goal of most of these
imaging tasks; namely, the extraction of geometric in-
formation about some object being indirectly probed.

In this paper we describe a set of algorithms that
use geometric information in the form of moments, and
statistical priors simultaneously to solve a class of im-
age reconstruction problems. In particular, we con-
centrate on two sets of algorithms which have been
introduced in [6], [5] and [7], respectively. The first
set of algorithms is based on an elementary, but very
useful, property of the Radon transform. According
to this property, moments of an image can be directly
estimated from moments of its projections. This re-
sult enables us to estimate the moments of an image
-which can be thought of as containing geometric in-
formation about the image- prior to reconstructing the
image and to then use these estimated moments, and
their associated error covariances, in conjunction with
divergence-based stochastic priors, to regularize the re-
construction process. The second set of algorithms is
based on a mathematical result stating that the vertices
of any simply-connected planar polygon can be deter-
mined from a finite number of its complex moments.
In particular, we show that the problem of recover-
ing the vertices of a simply connected polygon from its
complex moments can be posed and solved as an array
signal processing problem.

2. MOMENT-BASED TOMOGRAPHIC
RECONSTRUCTION

The basis of the algorithms discussed here (and intro-
duced in [6, 5, 7]) is the following elementary property
of the Radon transform:
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where f(z,y) denotes a square-integrable function (1‘1112
age) defined over the unit disk D, F(t) is a square in-
tegrable function defined over the interval [-1,1], and
g(t,0) is the Radon transform [2] of f defined as follows:

9(t,6) = ] /D £z, 9)8(t - w -2,y ) dedy,  (2)

where w = [cos(6), sin(f)] and &(-) denotes the Dirac
delta function.

Although the relationship (1) has been known for
quite a long time, little use has been made of it in to-
mographic reconstruction. In fact, it is well known that
by considering F(t) = e~**, the celebrated Projection
Slice Theorem [2] is obtained. What we wish to con-
sider is the case where F(?) is taken to range over a set
of orthonormal basis functions over {—1,1]. In particu-
lar, consider the case when F(t) = Pi(t), where Py(t)
is the k-th order normalized Legendre polynomial over
[~1,1]. In this basis, Equation (1) relates the moments
of the function f linearly to those of its Radon trans-
form. In fact, (1) shows that the k-th order moment of
9(t,0) is a linear combination of the moments of order
k of the function f(z,y). Exploiting this property, we
have proved the following result [5, 6]:

Proposition 1 Given line integral projections of f(z,y)

at m different angles 0; in [0, 7), one can uniquely de-
termine the first m moment sels (collection of all mo-
ments of order m.) This can be done using only the
first m orthogonal moments of the projections. Fur-
thermore, moments of f(z,y) of higher order cannot
be uniquely determined from m projections.

Given this result, it is straightforward to show that
Maximum Likelihood (ML) estimates of the moments
of f can be obtained directly from noisy measurements
of g(t,8). In fact, this turns out to be a linear esti-
mation problem. Having obtained these ML moment
estimates up thorough order N, along with their as-
sociated covariance matrices, we set out to reconstruct
the underlying image by defining the I-Divergence Reg-
ularization cost functional as

Tioa(f fo) = YDU, fo)+5(En()~Ew) En(En(N)=En),

functional, which we are able to efficiently compute, is
in fact the statistically optimal Maximum-A-Posteriori
(MAP) estimate of f based on the estimated moments
and a stochastic prior density

1
P(f) = < exp(=1D(f, o)) @
The minimizer of the above cost functional will turn
out to have the following form:

fipr(z,9) = fo(z,y) exp (¥4 (2,5)CN),  (5)
where ®% (z,y) denotes a vector containing the basis
functions (products of Legendre polynomials) used in
defining the moments of f. The unknown parameter
vector Cn can be obtained efficiently by iteratively
solving a set of nonlinear algebraic equations [5].

The solution obtained in (5) can be replaced back
into the IDR cost functional (3) as the “new” prior.
Repeating this process successively yields an iterative
refinement of the IDR algorithm. Formally, beginning
with fo = fo, we iteratively define

fe1 = argmin J(f, fx)- (6)

If (6) is carried to convergence!, fi converges to the
solution of the following equality constrained problem

min D(f, fo), subject to v =LY @

where ﬁ;) denotes the projection, defined with respect
to the inner product < I, >p,= T Tyl on':N onto
the range of the operator 2, which denotes the oper-
ator mapping a square-integrable function f € L?(D),
to its Legendre moments up to order N.

The constrained optimization problem (7) is a com-
plex problem to solve directly. In our approach, we
have derived an efficient iterative procedure for its so-
lution. In fact, this iterative approach does not require
an explicit description of the constraint set Range(Q N)-
This is fortunate since no explicit description of this set
is known to exist!

Although similar iterative methods for tomographic
reconstruction have been proposed in the past, the dis-
tinctive features of our approach are the applications
to tomography using the estimated moments and the
explicit use of the error covariances for these estimates
in forming the penalty function to be minimized. Fur-
thermore, to our knowledge, our specific algebraic solu-
tion to the minimization of the IDR functional is also
new. In addition, our algorithm provides an explicit
mechanism for controlling the degrees of freedom and

where v € (0, 00) is the regularization parameter, D(ff.:')fo) incorporation of prior geometric information in the re-

denotes the divergence between f and a prior estimate
fo,and Ty = Q,'{,l is the inverse of the error covariance
matrix for the estimate of the moments up to order N,
L. It can be shown {5] that the minimizer of this cost

constructions and hence results in better reconstruc-
tions as shown in Figure 1.

1}ocal convergence can be guaranteed through appropriate
choice of regularization parameters vx



3. MOMENT-BASED POLYGON
RECONSTRUCTION

Next we present novel algorithms for the reconstruc-
tion of binary polygons from their estimated complez
moments. We show, in fact, that this problem can
be formulated as an array processing problem. The
applications of the algorithms we develop to tomogra-
phy hence expose a seemingly deep connection between
the fields of tomography and array signal processing.
This connection implies that a host of numerical algo-
rithms such as MUSIC [11], Min-norm [4], and Prony
[8] are now available for application to tomographic re-
construction problems.

Our algorithms are based on the idea that the ver-
tices of a simply-connected polygonal region in the plane
are determined by a finite number of its complex mo-
ments. This result, in turn is based on a little known
theorem called the Motzkin-Schoenberg formula, a gen-
eralization of which is due to Davis [1}:

Theorem 1 [1] Let zy, z3, -+, z, designale the ver-
tices of a polygon P. Then we can find constanis a,,
-+, @, depending upon zy, zy, -+, z,, (and the way
they are connected) but independent of h, such that for
all h analytic in the closure of P,

/ / W) dedy =Y ajh(z;). ®)
P =

Ifr>nand 2,4y, ---, 2, are additional points distinct

from 21, -+, z,, and if there are constants by, --., b,
which depend only upon z,, ---, z, such that
r
/ /P K ()dzdy = 3 b;h(z5) 9)
i=1
for all h analytic in the closure of P, then
bj=a;, 1<j<n, (10)
b=0, n+1<j<r. (11)

The above result gives a minimal representation of the
integral of A" over P in terms of discrete values of A.
Furthermore, since we can show that each of the a;j is
non-zero for a nondegenerate P, the above represen-
tation for arbitrary h(z)’s can not be reduced to one
involving h(z) at fewer points.

In the above theorem, by letting (I) h(z) = z* and
(I1) f(z,y) be the indicator function over a simply-
connected polygonal region P of the plane, we get

n

f/ (z")" dzdy = Za,-zf =Crp_2 (12)

P 4
i=1

Defining the numbers 7 = k(k—1)c_3, which we term

weighied complez moments (w-complex moments),

with 9 = 71 = 0, we have 7, = E;'zla,'z}‘, which
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is, for every k, a direct relationship between the w-
complex moments and the vertices of P. Next we show
that by applying Prony’s method, the vertices of P are
uniquely determined by its w-complex moments . up
through order 2n—1. It is interesting to note that these
moments (or in fact all w-complex moments of a poly-
gon) are in general not sufficient to uniquely specify the
interior of the polygon, even though they do uniquely
specify the vertices.

The explicit connection between the above and ar-
ray processing emerges when we consider the general
array processing problem of estimating the unknowns
¢; and z; from the measured signals y; given as follows

n
w=Y czf+w, k=0,--,N-1 (13)
i=1
where, z; denotes an unknown source, ¢; denotes an un-
known complex amplitude, and v; denotes (complex)
white noise. Now assume that noisy estimates 7 of
the w-complex moments of a simply-connected n-gon

are given:
(14)
i=1

By comparing this measurement equation to (13), we
can see that they have exactly the same form; whereby
a vertex of the polygon can be interpreted as a radi-
ating source whose corresponding (complex) amplitude
shows how it is connected to the other vertices of the
polygon. The general formulation of the array process-
ing problem is therefore nearly the same as the formula-
tion of the reconstruction problem of binary polygonal
objects from noisy measurements of their w-complex
moments. The main difference is that the coefficients
a; are not independent variables but are, in fact, deter-
ministic functions of z; and the order in which they are
connected. Nevertheless, if we treat the a; as indepen-
dent unknowns, we can directly apply array processing
methods and then check to see if the a; so-determined
are in fact consistent with one of the finite number of
polygons with vertices given by the extracted values zj.

A novel application of the concepts and algorithms
discussed above can be found in the field of tomo-
graphic reconstruction. It is easily shown that the mo-
ments 7; are complex linear combinations of Legendre
moments of the underlying image, which as we saw in
the previous section, can be estimated directly from the
projections. Hence, invoking the “moment-property”
of the Radon transform discussed in the previous sec-
tion, we compute estimates of the w-complex moments
of the underlying polygon, and having these, we di-
rectly apply array processing algorithms to recover the
vertices of the polygon. See Figure 2.



Although the similarity between our formulation of
the polygon reconstruction problem and array signal
processing is striking, it is equally important to point
out that there are distinctive features of the tomogra-
phy problem that may lead to interesting adaptations
and modifications of standard array processing tech-
niques. In particular, there are at least three significant
differences between tomography and the array process-
ing problem which we do not take advantage of here
but which may lead to variations on array processing
algorithms with enhanced performance for polygonal
reconstruction.

The first we have already mentioned, namely the
fact that the coefficients a; in (14) are deterministic
functions of the vertices 21, z2, - - -, zn, and the order in
which they are connected. Making optimal use of this
information would involve solving a highly nonlinear
estimation problem. Secondly, as we have discussed,
in the tomographic problem, if we have m projections,
we can directly produce estimates of the full set of k*»
order geometric moments p(¥) for each k < m and not
just the complex moment 7¢, which is a (complex) lin-
ear combination of the elements of u(*¥). Thus, in using
only the 73 in our reconstruction, we are not using all
of the information extracted from the projections. Fi-
nally, as we have noted and as is shown in [5, 6], the
error variances in the ML estimates of the moments 7
are a strong function of k, and in fact increase without
bound as a function of the order of these moments [6].
This is in stark contrast to the constant variance as-
sumption typically made for the sensor measurements
in standard array processing problems [4, 3, 10, 9].
This, in fact, suggests a line of further investigation
in order to adapt standard array processing methods
to account for the variation in noise power found in
moments estimated from tomographic data.
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Figure 1: Counter-clockwise from upper left: Phantom,
fo based on Filtered Back-Projection (% MSE=69.1),
It-IDR solution after 3 iter. (% MSE=38.1), It-IDR
solution after 10 iter. (% MSE=11.1). Data: 64 proj.
w/ 64 samples per proj. SNR = 4.35 dB; moments up
to order 8 used.
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Figure 2: Sample reconstruction at SNR=23.9 dB.
Solid: actual, circles: reconstruction. Estimated 7
used for 0 < k<9
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