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ABSTRACT

In our previous work [1], we formulated the fundamental lim-
its of image denoising. In this paper, we propose a practical
algorithm where the motivation is to realize a locally optimal
denoising filter that achieves the lower bound. The proposed
method is a patch-based Wiener filter that takes advantage of
both geometrically and photometrically similar patches. The
resultant approach has a nice statistical foundation while pro-
ducing denoising results that are comparable to or exceeding
the current state-of-the-art, both visually and quantitatively.

Index Terms— Image denoising, image clustering,
Wiener filter, LMMSE estimator, denoising bounds.

1. INTRODUCTION

The field of image denoising has seen a flurry of activity in re-
cent years (see [1] and references therein) that have advanced
the state-of-the-art considerably. Approaches proposed range
from locally adaptive kernel-based methods [2], to non-local
methods first introduced in [3]. Other methods perform de-
noising by modeling natural images, implicitly [4] or explic-
itly [5, 6]. One of the best performing methods, BM3D [7],
uses a hybrid approach of combining spatial and transform
(say, DCT) domain information to achieve state-of-the-art re-
sults. Although quite diverse in their approaches to denois-
ing, the performances of many recent methods are surpris-
ingly comparable. This motivated us to seek the fundamental
limits of image denoising in [1]. Our findings there are used
here to develop a practical algorithm that achieves essentially
state-of-the-art denoising, while providing a solid statistical
framework that justifies its performance.

In [1], we studied the problem of denoising from an esti-
mation theoretic point of view. The problem was posed as that
of estimating a patch z; from its noise-corrupted observation

yi=2z;+mn;,, i=1,...,M, 1)
where 1), is assumed to be noise patches that are pixel-wise
independent and identically distributed, and M is the number
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Fig. 1. Outline of our proposed patch-based locally optimal Wiener
(PLOW) filtering method.

of such patches in the image. A Bayesian Cramér-Rao bounds
framework [8] was used to derive a lower bound on the mean
squared error (MSE) as

-1
where Zz; is any estimate of z;. The expression above takes
this specific form when the noise is assumed to be additive
white Gaussian (AWGN) with covariance 21, but our analy-
sis in [1] is more general.

Note that the formulation of (2) takes into account the ge-
ometric complexity of the patch as captured by the patch co-
variance C,, where such complexity is independent of the
actual patch intensity. The formulation also takes into ac-
count the level of redundancy N, observed for each patch z;.
Using such repeating patterns to improve performance forms
the core of most popular denoising algorithms [3, 7]. This
framework is in keeping with the intuition that the expected
MSE increases with increasing patch complexity and noise
variance. Bounds computed on various images in [1] indicate
that modern denoising methods achieve near-optimal perfor-
mance for images with high “semi-stochastic” content (that
is, complicated image), whereas those with higher levels of
redundancy, as observed typically in smoother images, could
still be better denoised.

Apart from providing a formulation for bounding denois-
ing performance, our analysis in [1] also provides a direction
for realizing the optimal denoiser (in terms of MSE). Interest-
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ingly, for the case of AWGN, the bounds formulation in (2) is
exactly the estimation error that can be expected from a linear
minimum mean square error (LMMSE) estimator [8]. For the
data model of Eq. 1 the LMMSE estimator is:

-1 _
n (Czl +(;[2> M7 3)

g

A~

Z7;=2

where z and C,, are the mean and covariance of z. This is es-
sentially the Wiener filter, popularly used in a transform do-
main [7]. However, the LMMSE estimator above does not
take advantage of multiple photometrically similar patches
that exist in most natural images. In this paper, we extend
this patch-based spatial domain Wiener filter to exploit such
patch redundancies to improve performance. Our method, de-
scribed next, makes use of both geometrically, and photomet-
rically, similar patches to determine the filter parameters.
The outline of our algorithm is illustrated in Fig. 1. First,
we need to identify geometrically and photometrically similar
patches. We cluster the image into regions of similar geomet-
ric structure, as shown in Fig. 1. From patches within each
cluster, we estimate the moments z and C,. Photometrically
similar patches are identified for each patch as the reference,
from which we compute weights that ensure higher contribu-
tion for the most similar patches. The estimated parameters
are then used to denoise each patch. These estimated patches
are then combined to produce the denoised image. Next, we
motivate and describe each of these steps in greater detail.

2. PATCH-BASED LOCALLY OPTIMAL WIENER
FILTER (PLOW)

As mentioned earlier, the estimator in Eq. 3 can be improved
by accounting for the presence of photometrically similar
patches. Such similar patches need to be identified directly
from the noisy image. We define a patch y; to be photomet-
rically similar to a reference y; if it satisfies the condition

81> <~2 where & =y;—yi. 4
The threshold 2 is chosen such that it accounts for the level
of noise corrupting the image patches [9]. We can then define
an alternate data model for the entire set of patches that are

similar to a reference patch y; (inclusive) as

= Ai(z; +m;) + (g, +m, — Aimy)
= Az, +£i' (&)

Y, =Ayit§g
= Az, + g +n,

Here y  is a vector formed by concatenating all the y ; patches
that are photometrically similar to y;, and A; is the matrix
formed by vertically stacking /N; identity matrices, each of
size n x n. n, denotes the corresponding noise patches 7,
stacked together and €, and g, are vectors consisting of con-
catenated difference vectors s” and &,;, respectively, with

Eij =Zj—Zi=gij +T]i_nj' (6)

Since only similar patches are considered, €;; is small, re-
sulting in CZ_ = g; + n, exhibiting approximately Gaussian
characteristics, even for mild noise.

The LMMSE estimator for the revised data model of Eq. 5
takes the form [8]:

~

-1
=7+ (C;1 + AfCElAZ—) Afc;! (L- - Aii) ,
(7
where C¢ denotes the covariance matrix for the error vector
C When' g; vectors are assumed to be independent of each

other we obtain a diagonal form for Cg as

C¢ =Ce, +Cy = . 651 ° , (8)
0
where 67, = %E [z — z;|*] + o* ©)
= (B [lyi — v,lP] - 20%n) + 0?
= 2B [lyi — 17 - o* (10

Substituting Eq. 8 in Eq. 7, and denoting w;; = 6;]-2, we
obtain a simplified expression for our estimator as (refer [10]
for derivation)

1 N,
= (C +szj > Zwij (yj_z)v (11)
i=1

where it can be seen that /N; photometrically similar patches
contribute to denoising y;, and the contributing weight of
each y; depends on the expected distance between the y;,
y; patch pair (Eq. 10). However, computing the expected dis-
tance from a single pair of y;, y; observations is not practical.
Consequently, we drop the expectation and enforce w;; to be
strictly non-negative through an alternate weight function

1 lyi —v;l?
UQQXP{—hQ ) (12)

where h? = 1.750%n is an empirically chosen (but fixed) pa-
rameter that controls the amount of smoothing. The factor
o2 ensures that when no photometrically similar patches are
observed for any particular y;, w;; = o2 and the formula-
tion of Eq. 11 coincides with Eq. 3. Also note that, without
the expectation, Eq. 10 can be shown to be a first order Taylor
approximation of Eq. 12 (see [10]).

The other parameters that need to be estimated from the
noisy image are the moments z and C,. Considering intensity
independent noise, denoising performance can be expected to
be influenced by the complexity of patches captured by C,,
and not by the patch intensity. In keeping with this intuition,
we follow the framework employed in [1, 9] and cluster the

wij =
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image based on geometric similarity. The moments are, then,
estimated from all patches within each cluster. An example
of such geometric clustering is illustrated in Fig. 1 where a
synthetic box image is divided into 4 representative clusters,
each of which consists of patches containing either horizontal
or vertical edges, smooth regions or corners.

To perform such clustering we use the locally adaptive re-
gression kernels (LARK) [2] as features that capture the un-
derlying patch structure. Initially developed for denoising [2],
these features have been shown to be robust to noise, intensity
and contrast changes among patches, making them ideal for
geometric clustering [1, 9]. LARK features are computed for
all the densely overlapping patches, and a K-Means cluster-
ing is performed to segment the image into K discontinuous
geometric clusters. Within each cluster €2, the patches are
used to estimate the moments as

~ 1
Z:E[YiEQk]%E > v 13)
Yi€Qg

C, = [éy - GQIL : (14)

where éy is the sample covariance matrix, Mj, is the number
of patches in the k-th cluster, and [X], denotes the matrix
X with its negative eigenvalues replaced by zero (or a very
small positive value) [9]. Since the condition for geometric
similarity is more relaxed compared to that for photometric
similarity, we can expect more patches to lie within each clus-
ter, resulting in a stable estimate of the moment parameters.

Once the parameters are estimated from the noisy image,
they can be used in Eq. 11 to obtain a denoised estimate for
each patch in the image. These patches being densely over-
lapped, we obtain multiple estimates for each pixel. To form
the denoised image, we need to combine these multiple es-
timates to obtain a single final estimate for each pixel in the
image. In the absence of any prior information about z;, we
use a weighted averaging scheme

R N

A V.1 2rl

5=y =5, (15)
r=1 Z?" Upy

where the weight for each estimate of a pixel z;, denoted by
Zp; as the [-th pixel in the r-th patch, is the inverse of that
pixel’s estimate variance v,;. This variance v,; is the [-th di-
agonal entry of the error covariance of the r-th patch estimate:

N; -1
C.~ (Czl + 3] wrjl) ) (16)
j=1

Note that in this aggregation step only those (R) patches that
contain pixel z; are considered. This provides us with a fi-
nal denoised image. We compare the performance of our
proposed denoising algorithm with some recently proposed
methods next.

3. RESULTS

In this section we compare our method to other popular de-
noising methods. In our approach, outlined in Fig. 1, we need
to cluster the image into K segments. Using a large K results
in too few patches being grouped together leading to possi-
ble inaccuracies in moment estimation. On the other hand,
too few clusters may result in structurally dissimilar patches
being grouped together. While K can be tuned for best per-
formance on a given image, we found using K = 15 achieves
close to the best denoising performance for our method.

Another parameter that influences the performance is the
patch size, which was empirically chosen to be 11 x 11. Our
method also requires us to identify photometrically similar
patches. In the interest of reducing execution time, we re-
strict ourselves to searching for such similar patches within
a 30 x 30 pixel neighborhood of each reference patch. All
our experiments were performed with these fixed parameters
without the need for any manual tuning. This makes our ap-
proach practical.

The results obtained by our method are visually compared
to some popular denoising methods in Fig. 2, where we show
(cropped) results obtained for different images strongly cor-
rupted by AWGN with o = 25. Note how our method is capa-
ble of removing the noise while retaining much of the finer de-
tails, even for such high noise cases. Visually, our method can
be seen to be superior to FoE [6] and K-SVD [4], while com-
parable to the state-of-the-art BM3D [7]. More such compar-
isons with different images and noise levels can be viewed at
http://users.soe.ucsc.edu/~priyam/PLOW/.

We also provide quantitative evaluation of our method
using peak signal-to-noise ratio (PSNR) as the performance
metric. The PSNRs obtained by the methods over different
noise levels are shown in Table 1. It can be seen there that
our method consistently produces results that are also quanti-
tatively comparable to the state-of-the-art.

Table 1. Quantitative comparison of denoising performance. PSNR
values reported are the mean results from 5 different noise realiza-

tions for each case. PSNR is measured in dB as 10 log,, ( 2557 )

MSE
| Image | o [ FoE[6] [ K-SVD [4] | BM3D [7] | PLOW |
Lena 5] 3824 38.55 38.73 38.66
s1ox519 | 13| 3328 33.71 34.26 33.90

25 | 30.83 31.28 32.07 31.92
House 5] 3823 39.33 39.80 39.52
056 % 256 | 10 | 3348 34.30 34.95 34.72
25 | 3111 32.12 32.89 32.70
Man 5| 36.97 37.05 37.28 37.02
s1oxs1g | 13| 30.22 30.46 30.98 30.26
25 | 2737 27.59 28.29 28.08
Sweam | O | 3337 35.58 35.75 35.59
s1ox 519 | 13| 2841 28.51 28.74 28.71
25 | 25.65 25.84 26.14 26.20
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(a) Original

(b) Noisy (o = 25) (c) FoE [6]

(d) K-SVD [4] (e) BM3D [7] (f) PLOW

Fig. 2. Comparison of denoising performance. Full images can be viewed at http://users.soe.ucsc.edu/~priyam/PLOW/.

4. CONCLUSIONS

In this paper, we proposed PLOW — a non-local patch-based
LMMSE filter that takes advantage of patch redundancies.
The method is designed with the motivation of achieving
near optimal performance. The proposed algorithm has a
sound theoretical framework that explains its denoising per-
formance. Experimentally, we showed that our method per-
forms comparably to the current state-of-the-art, both visually
and in terms of PSNR.

The approach proposed here was applied to gray-scale im-
ages. However, the framework can be extended to denoising
color images where inter-channel correlations are taken into
account. For this we need to estimate the covariance matrix
for the full color patches, whereby the dependencies across
color channels can be captured implicitly. This is a possible
direction for future research.
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