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ABSTRACT based on the singular value decomposition of the local image

— . . radient matrix. We first introduce the gradient matrix and
A no-reference objective sharpness metric detecting both bl 9

. ST . J s largest singular value; for various types of local image
and noise is proposed in this paper. This metric is based o gions, and characterize the behavios i the presence of
the local gradients of the image and does not require any ed%? ¥

detecti It lue d ith hen the test i b ur and noise. Then we give the definition of our sharpness
etection. 1is value arops ertnerwhenthe test image becomeza - 11 - geveral experiments are provided to highlight the

blurred or corrupted by random noise. It can be thought of afﬁerformance of the metric. Conclusions and further research

an |nd|cat9r of the S|gnal to noise ratio of the image. EXper'directions based on metrig are provided in the final section.
iments using synthetic, natural, and compressed images are

presented to demonstrate the effectiveness and robustness of

this metric. Its statistical properties are also provided. 2. SINGULAR VALUE?/IS‘II':R-II—QE IMAGE GRADIENT
Index Terms— Sharpness metric, blur, noise, singular
value, gradient, covariance. Image structure can be measured effectively by using the dif-
ferences in pixels (or image gradients). Consider an image
1. INTRODUCTION of interestg(x, y). The gradient matrix of a region within an

N x N local analysis windowz(;) is defined as:

A no-reference image quality metric can play a significant

role in image processing, as it can be used in many applica- : :

tions such as algorithm performance analysis, algorithm para- G=| guo(k) gy(k) |, kew; )
meter optimization, video compression and communication. : :

Various methods focusing on sharpness or blur measurement ' '

have been proposed. Some of them are based on pixel deriwhere[g, (k), g, (k)] denote the gradient of the image at point
atives [1], kurtosis [2], and DCT coefficients [3], and a large(x, yx). The corresponding gradient covariance matrix is
group of metrics analyze the spread of the edges in an image 5

[4], [5]. Although these metrics are often applied to assesg’ = GTG = [ 2kew, 92 (k) 2 kew, gr(kz)gy(k)
the image quality, most neglect the effects from other possi- 2 kew; 92 (k) gy (k) 2 kew; y(K)

ble degradation sources, such as random noise. (@)

Some sharpness metrics perform well in detecting blur in Not surpris_ingly, some interesting i_nformation about t_he
the presence of white Gaussian noise (WGN) [6], [7]; an expontent 9f the image pa_ltobi can pe derived from the gradi-
t matrixG or the gradient covariance mati@ One exam-

ample is the Riemannian tensor based metric [6], whose val is t lculate the local dominant orientation b t
drops when the image is increasingly more blurred. Howevett,)e IS to calculate the Jocal dominant orientation by comput-

the value of this measure rises if the variance of noise is it the (compact) Singular Value Decomposition (SVDJf
creased, which means that it can not be used to distinguiéﬁ]
image quality decay against high frequency behavior due to
noise.

In this paper we propose a new sharpness metric that canh both q h | . Th |
guantify the amount of both blur and random noise. The valu@/€® othlJ and V" are orthonormal matrices. The column

of this metric drops either when image becomes blurred oYectorvy represents the dominant orientation of the local gra-

noisy, so that it can be used to capture the change of visugfent field. Correspondingly, the second singular vestr

quality in many image processing applications. The metric i§Which is orthogonal tov,) will describe the dominant ori-
entation of this patch. The singular values > s; > 0

This work was supported in part by AFOSR grant FA9550-07-1-0365. represent the energy in the directionsandv,, respectively.
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where(z., y.) is the center point. The singular values of its
gradient matrix are:
S1 = amawN\/ (N_l)g)(N+1)

(a) Flat (b) Linear (c) Quadratic (d) Edged _ (N—1)(N+1) ©)
82 = AminN\/ ~—3——
Fig. 1. Types of patches that are used in the experiments
through this paper. where _ ( )
Umaz = Max(ay, a2 (10)

Umin = min(ay,as)

The above quantities can equivalently be measured usirlderes; ands; reflect the value of; anda,, which determine

the eigenvectors df’, because the slope at each point, and thus determine the sharpness of
the region.
9 . . . "
 xraTaxsT s 0 T Another type of image region that is very sensitive to blur-
C=VS SV =V [ 0 s3 ] v “) ring is the ideal edged patch. Again, in the interest of conve-

nience we just look at an ideal vertical edge:
As we will describe below, since the singular values re-
flect the strength of the gradients along dominant direction 9(@n, yp) = { bt+c x> Te (11)
and its perpendicular direction, they are sensitive to blurring, ’ b otherwise
and therefore, may be used to define a sharpness metric. Be-
fore we proceed with the definition of our sharpness metric”’ where, without loss of generality, is a positive value. The
we analyze the behavior ef ands, on several types of ide- torresponding singular values are:

alized patches. They include flat, linear, quadratic, and edged _ ¢
patches (shown in Fig. 1). 2 _ Sm (12)
In the flat case, all points within th¥ x NV patch share a

common intensity value: Only s, here reflects the value of parametewhich gives the

intensity difference between two sides of the edge.
9(Tr,yr) = ¢ (5) In general, regardless of the patch type, rotating an im-

age patch by an arbitrary anglewill not change the singular

Both g, (k) andg, (k) are equal to 0 fok = 1,2,---,N?,  values of the gradient matrix. The relationship between the

ands; = s = 0. Naturally, ignoring boundary effect aris- rotated gradient matri, and the unrotate@ is
ing from the finite nature of the window, a flat patch remains

unchanged after being blurred. In what follows, we will ap- Gy =GR} (13)
ply a space invariant Gaussian blur function iteratively to the

canonical regions shown in Fig. 1, and observe how the singyYhereRy is the (orthonormal) rotation matrix:

lar values behave. In this sense, the flat region can be thought

of as the "final” result as the number of iterations (or equiva- Ry = { Z?ﬁg _Ccs)lsneg ] (14)
lently the strength of the blur) is made arbitrarily large.
In the linear patch, the gray value of each point can berherefore, the SVD 06y becomes:
modeled as:
Gy = US(Ry V)T (15)

9(Tk, yr) = a(ry cos 0 + yp sinf) + b (6) _ _ o
This equation says that the directions and v, are corre-
wherea decides the slopd, decides the orientation, ands ~ spondingly rotated, but the singular valugsand s, remain
the bias. It can be deduced thatands, have the following unchanged.

values: It is observed through the above analysis that the singular
s1=alN value s; is quite intimately related with the sharpness of the
$9=0 (7) local region. This is valid not only in regions with strong

) _ ) direction and contrast (edged patch), but also in regions which
Both s, ands, are independent from the orientation, and  may e isotropic (quadratic patch, where = as), or very
is proportional to the slope given a fixed patch size, while  smooth (linear patch).

remains at zero. S _ . To verify the usefulness of; in the presence of blur, we
For the sake of simplicity, the quadratic patch is modelechpplied a Gaussian blur (of sifex 5 and varianc®.25) iter-
as: atively to the above patch types and recorded the resuliing

9@k, yr) = a1(zp — 20)* + az(yp — ye)? (8) values, which are shown in Fig. 2. The size of the patches is



! value ofG,, is:
s 0.468 EG,) =[]0 0] (19)
046 and the expected gradient covariance matrix becomes:
0455 E(C,) = E(GZ;GR)
05 ™NT ™NT
_ n"'D;D;n n"'D;Dyn
B o = F ([ n’D/D,n n"D]Dyn }) (20)
0 bluvr\‘rlxg nerauor? 8 0 blurriﬁg \!era!io: 8
(a) Flat (b) Linear where the first entry can be deduced as:
076 0.95, E(Cn)l,l = F (nTDz;DIn)
0.9
0.74 oes = F (tr (DxnnTDf))
" o = o%tr(D,DT) (21)
& 07 #1075 - =z
068 0"6; and similarly we have:
068 06 E(Cn)LQ = 0'225’1“(]:)yDg)7 E(Cn)Q,l = UQtT(Dng)
> blurring feraton. s " % bluring teraton. ¢ E (0")272 = O'QtT(DZIDg)
(c) Quadratic (d) Edged

The value of the tracér(DD?) depends upon the specific
Fig. 2. Plots ofs; in blurring process for different patches. filter used in (18) . It can be shown th"’_‘t if we choose (16) or
Patch sizeV = 7. The distribution of the smoothing kernel is (17), the expecte@,, will have the form:
Gaussian, and its standard deviatigh = 0.5. We apply this 2 2

: . EN“o 0
kernel iteratively to make each patch more and more blurred. E(C,) = 0 ENZo? (22)

. . where¢ = 1 if we use filters (16) , and for filters in (17
11 x 11, and we only analyze thex 7 window in the center g3 ¢ 2 (16) (47)

to avoid border effects. It is observed that as the blurring iter> (16’

i f Il th flat patches d teadil Now consider how the value af changes when a clean
ation goes on, for all the hon-fiat patches drops steadily asimageg is corrupted by the noise image denotedrbyThe

expected. ! . L )
. radient matrix of the noisy imaggwould become:
Next, we take noise into account. A good sharpness meg y ®
ric should react reasonably to both blur and random noise. So G=G+G, (23)

the next question we address is what happens tbthe im- ) ) o ~

age (or patch) is corrupted by white Gaussian noise (WGN)_SlnceG is deterministic, the expecte@ would have the
Assume that we have aN x N image patch denoted in form:

column-stacked vector format as AFf x 1 vectorn, which E(@) E(GTG)

contains i.i.d. samples of zero-mean WGN with varianée p T T

In practice the statistics d&,, depend upon the way we cal- = G G+ E(G,G,)+2G  E(G,)

culate the discrete derivatives. For example, the gradient of v { 57+ EN?0? 0 } V7T (24)

in 2 andy directions can be produced by applying the filters: N 0 s3 + EN?0?
0 0 0 0 -1 0 So on average the singular valgg of the noisy image can
Ix| -1 0 , ix |0 0 0 (16)  approximately be written as:
0 O

1
0 0 1 0
81 &~ /82 +EN202 (25)

This equation tells us thaj is determined by botk, ando?.

or the filter masks:

1 Lol 1 -2l Given a fixeds?, the value ofs; drops ass; gets decreased,
sX | 72 0 20, §x o0 0 17 or say when the imagg is more blurry. Unfortunatelys, is
-1.01 1 2 1 also monotonically increasing with the noise varianée So
The gradient matrixG,, can be calculated as: our definition o_f a sharpness metric must be a modifi_cation
of 3;, as described below. It is useful to note thatff is
G, = [ D,n Dyn } (18) sufficiently large,5; becomes approximately proportional to

the standard deviatios:
where the matrice®, andD, are derived from filters such

as the above. Because the noise is zero-mean, the expected s1=¢

N[

No (26)
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o 8 Before describing further experimental results, we pause
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noise standard deviation o noise standard deviation o to note that when noise is presefi,is of course a random

(c) Quadratic (d) Edged variable. If the variance of the noise is assumed to be given,

) . o then a particular measured value@fcan be used to decide
Fig. 3. Plots of the averagél versus the noise deviatian  how much "true content” the image contains as compared to
in Monte-Carlo simulations for different patches, where  gise. Said another wayi can be thought of as a rough in-

5 x 10~* and the pixel intensity range |8, 1]. 100 different  gjcator of the signal to noise ratio. In order for this concept
noise realizations were used for eaclo get the averag#l. g pe useful, it is necessary to know the actual statistical dis-
The patch sizeV = 7. tribution of H. Unfortunately, this distribution is in general
quite complicated. But happily, it can be derived in closed
form when the image is pure WGN (or approximately when
the noise is overwhelming the signal). This is still useful as a
baseline value for the statisti¢. More specifically, based on
Srgsults from [9] we can derive this density as:

3. SHARPNESS METRIC H

The above analysis demonstrates thaitself cannot be used
directly as a sharpness metric in the presence of both noi

and blur. To alleviate this problem, we define the sharpness 1 w2 281 A28 e
metric H as follows: )= ¢ 2 — C2?
fH( ) 2(N272)|e HQ[? [ (H) €
51 2 2
H= 27 h h
€+ o2 @ 20128 -— )7 (8,55 ])| (28)
% 2p
wheree is a fixed, small positive constdntHere we assume h
: ) 9 where
that the noise variance“ is known, or at least can be es-
timated. For a fixed:?, the behavior offf is basically the o= g3 g = N1
same asi;. As o? rises, however, the value df drops to ote/o? ! 2
zero, as desired. ' . | | () = / ot it g 9)
Monte-Carlo simulations are carried out to examine the 0

behavior of f in different image patches. We add a real'Plots of this density with different window sizes and different

ization of WGN with o ranging from 0.1 to 0.8 to the test : A
: noise variances are shown in Fig.4. (Due to lack of space, we
patch, and calculate the metri€. For eachs, this process ; . D AT
do not describe the detailed derivation in this paper.)

is repeated with 100 independent noise realizations to get the
average sharpness metrids set to bes x 10~4, and the true
standard deviation is used in calculatindg?. The plots are 4. EXPERIMENTS

illustrated in Fig. 3, which shows that the sharpness metric ] ) ]

H is decreasing as the variance of noise rises. In Section ! this section we illustrate further experimental results for

we present experimental validation Bf using more general the proposed no-reference sharpness méfricThe experi-
natural images with noise, blur, and compression artifacts. Mental measurement strategy we take is the same for all the
experiments. Namely, the image is first divided idtbnon-

We note thag; = s1 andH = =L if no noise is present. overlapping blocks, and thefi; is calculated for each block
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Fig. 5. Plots of H versus smoothing kernel deviation.  rig 6, plots of 7 versus Gaussian noise standard deviation
WGN with o, = 10, 10.1, 10.2 was added respectively t0The test image itena and the smoothing kernel, = 1.2.
the test imagéena In calculating locald, the window size |, calculating locale, the window sizeV = 16 ande = 1.

N = 16, ¢ = 1 and the noise standard deviation estimated

through MAD method were used.

i. Finally we use the averagé = ; SM. H; as the metric
for the whole image. It is worth mentioning that in practice,
when calculatingd;, if the standard deviation of noise is not =
known, it too can be estimated using a variety of methods. In (c) Monarch

the experiments here we employ the median absolute devia-

tion (MAD) method [10] to measure the standard deviatiorf-!9- 7- Images from the LIVE database for JPEG2000 test.
o of Gaussian noise globally, and assume that this value iSN€ir Size i$512 > 76G8.

unchanged through all the blocks.

in a similar fashion. This may indicate that the no-reference
metric H is also able to capture the visual quality of the im-
First, we examine the validity dff in measuring blur for nat- ages in the presence of compression artifacts. In addition, it is
ural images with random noise. The test gray imageeisa  observed that the metrig has a larger range of values, com-
(512 x 512). A Gaussian blur kernel (of sizk x 10), whose  pared with SSIM (which basically computes the fidelity, and
standard deviation, ranges from 0.4 to 2.0, is applied to the is always between 0 and 1). This is becadiéndicates the
image respectively, and WGN with variangéis added after signal to noise ratio as we described before. Images with more
each blurring process. The plots Bf are shown in Fig. 5. detail will get higher value irf{. By looking at the estimated
The block size iSV = 16, ande = 12. H of different test images at the same bit rate, we can see that
Next, we keep the blur kernel fixed and increase the varithe value for theBuildingsimage, which is more detailed, is
ance of WGN. Results are shown in Fig. 6. It is observedigher thanLighthousg andMonarch whose background is
that both blur and noise decrease the value of the proposédurry, is always the smallest.
sharpnesé$i, as desired.

4.1. Simulations

4.2. JPEG2000 experiments 5. CONCLUSION

As an extension of the application of our metfic here we

use it to compute the quality of JPEG2000 compressed imin this paper, we proposed a no-reference sharpness rietric

ages from the LIVE database [11]. The specific images usedlased on image gradients. Experiments show that it can quan-

are shown in Fig. 7H is calculated from the luminance chan- tify the amount of both blur and random noise, and thus, can

nel of the images. All the parameters tHr are the same as capture the change of visual quality in many image processing

in Section 4.1 above, and we assume no random noise is iapplications.

volved. The recently introduced and popularized image qual-  ag described in Section 3, the metfitactually serves as

ity metric SSIM [12] is also calculated for comparison. an indicator of the signal to noise ratio. However, it requires
From the results shown in Fig. 8, it can be seen that thg prior estimation of noise variance. Further study is already

rate distortion curves using (or sayH across the whole im- nger way to devise an image content metric based on an ex-

age) and SSIM as the distortion metric respectively behavgnsion off7, which does not need any prior knowledge, and

2The value ofc is higher compared with the experiments before, becausé&an be utilized in s_olving th_e parameter optimizgt_ion problem
the pixel intensity range here is [0, 255]. for image restoration algorithms, such as denoising [13].




0.95
0.9
=
0 0.85
n
0.8

0.75

1

0.95

0.9

SSIM

0.85

0.8

%% 0.5 1 15 % 0.5 1 1.5 2 25 3 %% 0.5 1 1.5 2 25 3
bit rate bit rate bit rate
(a) SSIM Buildingy (b) SSIM (Lighthous# (c) SSIM (Monarch
360 180 150
340 170 140
160 130
320
150
120
= 300 1'% 140 [
110
280 130
120 100
260 110 90
240O 0.5 1 15 100 0‘.5 i 115 é 2.‘5 3 8O() 0.5 1 15 2 25 3
bit rate bit rate bit rate
(d) H (Buildingg (e) H (Lighthousg () H (Monarch

Fig. 8. Plots of mean SSIM andf versus bit rate (bpp) for the JPEG2000 compressed imBgédings Monarch and

Lighthouse In calculating localH, N = 16, ¢ = 1 ando = 0.

6. REFERENCES

[1] C.F. Batten, “Autofocusing and astigmatism correction
in the scanning electron microscope,’NhPhil. Thesis,
University of CambridgeAugust 2000.

J. Caviedes and F. Oberti, “A new sharpness met- (8]
ric based on local kurtosis, edge and energy informa-
tion,” in Signal Processing: Image Communication
2004, vol. 19, pp. 147-161.

X. Marichal, W. Y. Ma, and H. J. Zhang, “Blur deter-
mination in the compressed domain using DCT informa-
tion,” in Proceedings of the International Conference on
Image Processingkobe, Japan, October 1999, vol. 2,
pp. 386—390.

P. Marziliano, F. Dufaux, S. Winkler, and T. Ebrahimi,
“A no-reference perceptual blur metric,” Proceedings
of the International Conference on Image Processing
Rochester, NY, 2002, vol. 3, pp. 57-60.

S. Varadarajan and L. J. Karam, “An improved
perception-based no-reference objective image shar;riz]
ness metric using iterative edge refinement,” Piro-
ceedings of the 15th IEEE International Conference on
Image Processingdctober 2008, pp. 401-404.

R. Ferzli and L. J. Karam, “A no reference objective [13]
sharpness metric using Riemannian tensorThird In-
ternational Workshop on Video Processing and Quality
Metrics for Consumer ElectronicScottsdale, Arizona,
January 2007, pp. 25-26.

[7]

(2]

8 (9

4] [10]

(11]
(5]

(6]

R. Ferzli and L. J. Karam, “No-reference objective
wavelet-based noise immune image sharpness metric,
in IEEE International Conference on Image Processing
September 2005, pp. 405-408.

X. Feng and P. Milanfar, “Multiscale principal compo-
nents analysis for image local orientation estimation,”
in Proceedings of the 36th Asilomar Conference on Sig-
nals, Systems and ComputePacific Grove, CA, No-
vember 2002, vol. 1, pp. 478-482.

A. Edelman, “Eigenvalues and condition numbers of
random matrices,” SIAM Journal on Matrix Analysis
and Applicationsvol. 9, no. 4, pp. 543-560, October
1988.

F. R. Hampel, “The influence curve and its role in robust
estimation,”Journal of the American Statistical Associ-
ation, vol. 69, pp. 383—-393, 1974.

H. R. Sheikh, Z. Wang, L. Cormack, and A. C.
Bovik, “LIVE image quality assessment database,”
http://live.ece.utexas.edu/research/quality

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simon-
celli, “Image quality assessment: From error visibility
to structural similarity,” IEEE Transactions on Image
Processingvol. 13, no. 4, pp. 600-612, April 2004.

X. Zhu and P. Milanfar, “A no-reference metric of
true image content and its application in denoisinig,”
preparation



