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ABSTRACT

A no-reference objective sharpness metric detecting both blur
and noise is proposed in this paper. This metric is based on
the local gradients of the image and does not require any edge
detection. Its value drops either when the test image becomes
blurred or corrupted by random noise. It can be thought of as
an indicator of the signal to noise ratio of the image. Exper-
iments using synthetic, natural, and compressed images are
presented to demonstrate the effectiveness and robustness of
this metric. Its statistical properties are also provided.

Index Terms— Sharpness metric, blur, noise, singular
value, gradient, covariance.

1. INTRODUCTION

A no-reference image quality metric can play a significant
role in image processing, as it can be used in many applica-
tions such as algorithm performance analysis, algorithm para-
meter optimization, video compression and communication.
Various methods focusing on sharpness or blur measurement
have been proposed. Some of them are based on pixel deriv-
atives [1], kurtosis [2], and DCT coefficients [3], and a large
group of metrics analyze the spread of the edges in an image
[4], [5]. Although these metrics are often applied to assess
the image quality, most neglect the effects from other possi-
ble degradation sources, such as random noise.

Some sharpness metrics perform well in detecting blur in
the presence of white Gaussian noise (WGN) [6], [7]; an ex-
ample is the Riemannian tensor based metric [6], whose value
drops when the image is increasingly more blurred. However,
the value of this measure rises if the variance of noise is in-
creased, which means that it can not be used to distinguish
image quality decay against high frequency behavior due to
noise.

In this paper we propose a new sharpness metric that can
quantify the amount of both blur and random noise. The value
of this metric drops either when image becomes blurred or
noisy, so that it can be used to capture the change of visual
quality in many image processing applications. The metric is
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based on the singular value decomposition of the local image
gradient matrix. We first introduce the gradient matrix and
its largest singular values1 for various types of local image
regions, and characterize the behavior ofs1 in the presence of
blur and noise. Then we give the definition of our sharpness
metricH. Several experiments are provided to highlight the
performance of the metric. Conclusions and further research
directions based on metricH are provided in the final section.

2. SINGULAR VALUES OF THE IMAGE GRADIENT
MATRIX

Image structure can be measured effectively by using the dif-
ferences in pixels (or image gradients). Consider an image
of interestg(x, y). The gradient matrix of a region within an
N ×N local analysis window (wi) is defined as:

G =




...
...

gx(k) gy(k)
...

...


 , k ∈ wi (1)

where[gx(k), gy(k)] denote the gradient of the image at point
(xk, yk). The corresponding gradient covariance matrix is

C = GT G =
[ ∑

k∈wi
g2

x(k)
∑

k∈wi
gx(k)gy(k)∑

k∈wi
gx(k)gy(k)

∑
k∈wi

g2
y(k)

]

(2)
Not surprisingly, some interesting information about the

content of the image patchwi can be derived from the gradi-
ent matrixG or the gradient covariance matrixC. One exam-
ple is to calculate the local dominant orientation by comput-
ing the (compact) Singular Value Decomposition (SVD) ofG
[8]

G = USVT = U
[

s1 0
0 s2

] [
v1 v2

]T
(3)

where bothU andV are orthonormal matrices. The column
vectorv1 represents the dominant orientation of the local gra-
dient field. Correspondingly, the second singular vectorv2

(which is orthogonal tov1) will describe the dominant ori-
entation of this patch. The singular valuess1 ≥ s2 ≥ 0
represent the energy in the directionsv1 andv2, respectively.
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Fig. 1. Types of patches that are used in the experiments
through this paper.

The above quantities can equivalently be measured using
the eigenvectors ofC, because

C = VST SVT = V
[

s2
1 0
0 s2

2

]
VT . (4)

As we will describe below, since the singular values re-
flect the strength of the gradients along dominant direction
and its perpendicular direction, they are sensitive to blurring,
and therefore, may be used to define a sharpness metric. Be-
fore we proceed with the definition of our sharpness metric,
we analyze the behavior ofs1 ands2 on several types of ide-
alized patches. They include flat, linear, quadratic, and edged
patches (shown in Fig. 1).

In the flat case, all points within theN ×N patch share a
common intensity value:

g(xk, yk) = c (5)

Both gx(k) andgy(k) are equal to 0 fork = 1, 2, · · · , N2,
ands1 = s2 = 0. Naturally, ignoring boundary effect aris-
ing from the finite nature of the window, a flat patch remains
unchanged after being blurred. In what follows, we will ap-
ply a space invariant Gaussian blur function iteratively to the
canonical regions shown in Fig. 1, and observe how the singu-
lar values behave. In this sense, the flat region can be thought
of as the ”final” result as the number of iterations (or equiva-
lently the strength of the blur) is made arbitrarily large.

In the linear patch, the gray value of each point can be
modeled as:

g(xk, yk) = a(xk cos θ + yk sin θ) + b (6)

wherea decides the slope,θ decides the orientation, andb is
the bias. It can be deduced thats1 ands2 have the following
values:

s1 = aN
s2 = 0 (7)

Both s1 ands2 are independent from the orientation, ands1

is proportional to the slope given a fixed patch size, whiles2

remains at zero.
For the sake of simplicity, the quadratic patch is modeled

as:

g(xk, yk) = a1(xk − xc)2 + a2(yk − yc)2 (8)

where(xc, yc) is the center point. The singular values of its
gradient matrix are:

s1 = amaxN
√

(N−1)(N+1)
3

s2 = aminN
√

(N−1)(N+1)
3

(9)

where
amax = max(a1, a2)
amin = min(a1, a2)

(10)

Heres1 ands2 reflect the value ofa1 anda2, which determine
the slope at each point, and thus determine the sharpness of
the region.

Another type of image region that is very sensitive to blur-
ring is the ideal edged patch. Again, in the interest of conve-
nience we just look at an ideal vertical edge:

g(xk, yk) =
{

b + c xn > xc

b otherwise
(11)

where, without loss of generality,c is a positive value. The
corresponding singular values are:

s1 = c
2

√
2N

s2 = 0
(12)

Only s1 here reflects the value of parameterc, which gives the
intensity difference between two sides of the edge.

In general, regardless of the patch type, rotating an im-
age patch by an arbitrary angleθ will not change the singular
values of the gradient matrix. The relationship between the
rotated gradient matrixGθ and the unrotatedG is

Gθ = GRT
θ (13)

whereRθ is the (orthonormal) rotation matrix:

Rθ =
[

cos θ − sin θ
sin θ cos θ

]
(14)

Therefore, the SVD ofGθ becomes:

Gθ = US(RθV)T (15)

This equation says that the directionsv1 andv2 are corre-
spondingly rotated, but the singular valuess1 ands2 remain
unchanged.

It is observed through the above analysis that the singular
values1 is quite intimately related with the sharpness of the
local region. This is valid not only in regions with strong
direction and contrast (edged patch), but also in regions which
may be isotropic (quadratic patch, wherea1 = a2), or very
smooth (linear patch).

To verify the usefulness ofs1 in the presence of blur, we
applied a Gaussian blur (of size5× 5 and variance0.25) iter-
atively to the above patch types and recorded the resultings1

values, which are shown in Fig. 2. The size of the patches is
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Fig. 2. Plots ofs1 in blurring process for different patches.
Patch sizeN = 7. The distribution of the smoothing kernel is
Gaussian, and its standard deviationσG = 0.5. We apply this
kernel iteratively to make each patch more and more blurred.

11× 11, and we only analyze the7× 7 window in the center
to avoid border effects. It is observed that as the blurring iter-
ation goes on,s1 for all the non-flat patches drops steadily as
expected.

Next, we take noise into account. A good sharpness met-
ric should react reasonably to both blur and random noise. So
the next question we address is what happens tos1 if the im-
age (or patch) is corrupted by white Gaussian noise (WGN).

Assume that we have anN × N image patch denoted in
column-stacked vector format as anN2 × 1 vectorn, which
contains i.i.d. samples of zero-mean WGN with varianceσ2.
In practice the statistics ofGn depend upon the way we cal-
culate the discrete derivatives. For example, the gradient ofn
in x andy directions can be produced by applying the filters:

1
2 ×




0 0 0
−1 0 1
0 0 0


 , 1

2 ×



0 −1 0
0 0 0
0 1 0


 (16)

or the filter masks:

1
8 ×



−1 0 1
−2 0 2
−1 0 1


 , 1

8 ×


−1 −2 −1
0 0 0
1 2 1


 (17)

The gradient matrixGn can be calculated as:

Gn =
[

Dxn Dyn
]

(18)

where the matricesDx andDy are derived from filters such
as the above. Because the noise is zero-mean, the expected

value ofGn is:
E(Gn) = [ 0 0 ] (19)

and the expected gradient covariance matrix becomes:

E(Cn) = E(GT
nGn)

= E

([
nT DT

x Dxn nT DT
x Dyn

nT DT
y Dxn nT DT

y Dyn

])
(20)

where the first entry can be deduced as:

E(Cn)1,1 = E
(
nT DT

x Dxn
)

= E
(
tr

(
DxnnT DT

x

))

= σ2tr(DxDT
x ) (21)

and similarly we have:

E(Cn)1,2 = σ2tr(DyDT
x ), E(Cn)2,1 = σ2tr(DxDT

y )
E(Cn)2,2 = σ2tr(DyDT

y )

The value of the tracetr(DDT ) depends upon the specific
filter used in (18) . It can be shown that if we choose (16) or
(17), the expectedCn will have the form:

E(Cn) =
[

ξN2σ2 0
0 ξN2σ2

]
(22)

whereξ = 1
2 if we use filters (16) , and for filters in (17)

ξ = 3
16 .

Now consider how the value ofs1 changes when a clean
imageg is corrupted by the noise image denoted byn. The
gradient matrix of the noisy imagêg would become:

Ĝ = G + Gn (23)

SinceG is deterministic, the expected̂C would have the
form:

E(Ĉ) = E(ĜT Ĝ)
= GT G + E(GT

nGn) + 2GT E(Gn)

= V
[

s2
1 + ξN2σ2 0

0 s2
2 + ξN2σ2

]
VT (24)

So on average the singular valueŝ1 of the noisy image can
approximately be written as:

ŝ1 ≈
√

s2
1 + ξN2σ2 (25)

This equation tells us that̂s1 is determined by boths1 andσ2.
Given a fixedσ2, the value of̂s1 drops ass1 gets decreased,
or say when the imageg is more blurry. Unfortunately,̂s1 is
also monotonically increasing with the noise varianceσ2. So
our definition of a sharpness metric must be a modification
of ŝ1, as described below. It is useful to note that ifσ2 is
sufficiently large,̂s1 becomes approximately proportional to
the standard deviationσ:

ŝ1 ≈ ξ
1
2 Nσ (26)
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Fig. 3. Plots of the averageH versus the noise deviationσ
in Monte-Carlo simulations for different patches, whereε =
5 × 10−4 and the pixel intensity range is[0, 1]. 100 different
noise realizations were used for eachσ to get the averageH.
The patch sizeN = 7.

3. SHARPNESS METRIC H

The above analysis demonstrates thatŝ1 itself cannot be used
directly as a sharpness metric in the presence of both noise
and blur. To alleviate this problem, we define the sharpness
metricH as follows:

H =
ŝ1

ε + σ2
(27)

whereε is a fixed, small positive constant1. Here we assume
that the noise varianceσ2 is known, or at least can be es-
timated. For a fixedσ2, the behavior ofH is basically the
same aŝs1. As σ2 rises, however, the value ofH drops to
zero, as desired.

Monte-Carlo simulations are carried out to examine the
behavior ofH in different image patches. We add a real-
ization of WGN withσ ranging from 0.1 to 0.8 to the test
patch, and calculate the metricH. For eachσ, this process
is repeated with 100 independent noise realizations to get the
average sharpness metric.ε is set to be5× 10−4, and the true
standard deviationσ is used in calculatingH. The plots are
illustrated in Fig. 3, which shows that the sharpness metric
H is decreasing as the variance of noise rises. In Section 4
we present experimental validation ofH using more general
natural images with noise, blur, and compression artifacts.

1We note that̂s1 = s1 andH = s1
ε

if no noise is present.
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Fig. 4. The probability density function of sharpness metric
H for white Gaussian noise. (a) Density functions with dif-
ferent window sizeN , whereσ = 1/

√
2, ε = 0 (b) Density

functions with different standard deviationσ, whereN = 9
andε = 0.

Before describing further experimental results, we pause
to note that when noise is present,H is of course a random
variable. If the variance of the noise is assumed to be given,
then a particular measured value ofH can be used to decide
how much ”true content” the image contains as compared to
noise. Said another way,H can be thought of as a rough in-
dicator of the signal to noise ratio. In order for this concept
to be useful, it is necessary to know the actual statistical dis-
tribution of H. Unfortunately, this distribution is in general
quite complicated. But happily, it can be derived in closed
form when the image is pure WGN (or approximately when
the noise is overwhelming the signal). This is still useful as a
baseline value for the statisticH. More specifically, based on
results from [9] we can derive this density as:

fH(h) =
1

2(N2 − 2)!
e
− h2

2µ2
h2β−1

µ2β

[
2

(
h

µ

)2β

e
− h2

2µ2

−2β

(
2β − h2

µ2

)
γ

(
β,

h2

2µ2

)]
(28)

where

µ = ξ
1
2

σ+ε/σ , β = N2−1
2

γ(α, x) =
∫ x

0

tα−1e−tdt (29)

Plots of this density with different window sizes and different
noise variances are shown in Fig.4. (Due to lack of space, we
do not describe the detailed derivation in this paper.)

4. EXPERIMENTS

In this section we illustrate further experimental results for
the proposed no-reference sharpness metricH. The experi-
mental measurement strategy we take is the same for all the
experiments. Namely, the image is first divided intoM non-
overlapping blocks, and thenHi is calculated for each block
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i. Finally we use the averageH = 1
M

∑M
i=1 Hi as the metric

for the whole image. It is worth mentioning that in practice,
when calculatingHi, if the standard deviation of noise is not
known, it too can be estimated using a variety of methods. In
the experiments here we employ the median absolute devia-
tion (MAD) method [10] to measure the standard deviation
σ of Gaussian noise globally, and assume that this value is
unchanged through all the blocks.

4.1. Simulations

First, we examine the validity ofH in measuring blur for nat-
ural images with random noise. The test gray image isLena
(512× 512). A Gaussian blur kernel (of size10× 10), whose
standard deviationσb ranges from 0.4 to 2.0, is applied to the
image respectively, and WGN with varianceσ2 is added after
each blurring process. The plots ofH are shown in Fig. 5.
The block size isN = 16, andε = 12.

Next, we keep the blur kernel fixed and increase the vari-
ance of WGN. Results are shown in Fig. 6. It is observed
that both blur and noise decrease the value of the proposed
sharpnessH, as desired.

4.2. JPEG2000 experiments

As an extension of the application of our metricH, here we
use it to compute the quality of JPEG2000 compressed im-
ages from the LIVE database [11]. The specific images used
are shown in Fig. 7.H is calculated from the luminance chan-
nel of the images. All the parameters forH are the same as
in Section 4.1 above, and we assume no random noise is in-
volved. The recently introduced and popularized image qual-
ity metric SSIM [12] is also calculated for comparison.

From the results shown in Fig. 8, it can be seen that the
rate distortion curves usingH (or sayH across the whole im-
age) and SSIM as the distortion metric respectively behave

2The value ofε is higher compared with the experiments before, because
the pixel intensity range here is [0, 255].
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Fig. 6. Plots ofH versus Gaussian noise standard deviationσ.
The test image isLena, and the smoothing kernelσb = 1.2.
In calculating localH, the window sizeN = 16 andε = 1.
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Fig. 7. Images from the LIVE database for JPEG2000 test.
Their size is512× 768.

in a similar fashion. This may indicate that the no-reference
metricH is also able to capture the visual quality of the im-
ages in the presence of compression artifacts. In addition, it is
observed that the metricH has a larger range of values, com-
pared with SSIM (which basically computes the fidelity, and
is always between 0 and 1). This is becauseH indicates the
signal to noise ratio as we described before. Images with more
detail will get higher value inH. By looking at the estimated
H of different test images at the same bit rate, we can see that
the value for theBuildings image, which is more detailed, is
higher thanLighthouse; andMonarch, whose background is
blurry, is always the smallest.

5. CONCLUSION

In this paper, we proposed a no-reference sharpness metricH
based on image gradients. Experiments show that it can quan-
tify the amount of both blur and random noise, and thus, can
capture the change of visual quality in many image processing
applications.

As described in Section 3, the metricH actually serves as
an indicator of the signal to noise ratio. However, it requires
a prior estimation of noise variance. Further study is already
under way to devise an image content metric based on an ex-
tension ofH, which does not need any prior knowledge, and
can be utilized in solving the parameter optimization problem
for image restoration algorithms, such as denoising [13].
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Fig. 8. Plots of mean SSIM andH versus bit rate (bpp) for the JPEG2000 compressed imagesBuildings, Monarch and
Lighthouse. In calculating localH, N = 16, ε = 1 andσ = 0.
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