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Abstract

This paper presents an investigation of the use of
the Radon (projection) transform in speeding up exist-
ing image registration techniques. The ultimate goal is
to make these algorithms more computationally sim-
ple, while simultaneously realizing acceptably accurate
performance.

The use of the projections in estimating transla-
tional motion decomposes a 2-D problem into a pair
of 1-D problems, leading to signi�cant computational
savings. Here we present the tradeo�s of computa-
tional eÆciency and accuracy for two current meth-
ods. Our experiments show that for most applications,
the modi�cations we suggest in using the projections
instead of the image directly cost little in performance,
yet realize dramatic improvements in computational
eÆciency.

1 Introduction

Image registration and motion estimation are well
researched problems having many applications in vari-
ous �elds such as computer vision and video processing
and compression. In many practical applications, the
computational cost of performing accurate motion es-
timation is generally prohibitively high. For instance,
in the �eld of video coding, fast and accurate motion
estimation is fundamental for any real-time motion
compensating video encoder. In fact, most real-time
video coders require special hardware to achieve the
necessary motion estimation eÆciency to support real-
time encoding. As also realized in [9], utilization of the
Radon transform within these motion estimation tech-
niques can provide signi�cant computational savings.
However, since the projection-based techniques do not
make full use of the data directly, they will naturally
su�er some loss in performance. This paper presents
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a quantitative characterization of the performance-
speed tradeo� from both experimental and theoretical
perspectives.

We have chosen two current motion estimation
techniques to evaluate the tradeo�s between perfor-
mance and accuracy by using projections. We exam-
ine the di�erential technique of Lucas/Kanade [4] and
the relative phase-based method of Stone et al. [8].
We chose these two techniques as they produce accu-
rate results while representing two distinctly di�erent
methodologies for estimating a motion �eld. Further-
more, from [3] we see that the Lucas/Kanade method
is one of the faster methods and, with our computa-
tional speedup, will come even closer to real-time given
the current frame rates. We will describe the basic
ideas behind each of these techniques below and then
describe the modi�cations required in each case to take
advantage of the Radon transform. We will compare
the general computational costs associated with each
method as well as the accuracy of each method on a
set of image sequences.

2 The Radon transform

The Radon transform or projection of an image at
an angle � is de�ned as,

g(p; �) = R� [f(x; y)]

=

Z Z
f(x; y)Æ (p�x cos (�)�y sin (�)) dx dy

(1)

It is well-known that uniform translation in the image
domain corresponds to translation in the projection
domain,

R� [f(x� vx; y � vy)] =

g(p� vx cos (�)� vy sin (�) ; �): (2)



From this result, it becomes evident that by estimat-
ing the components of projected motion (i.e. u� =
vx cos(�) + vy sin(�)), for at least two independent di-
rections, we can solve for the uniform motion vector
v = [vx; vy]

T . More generally, the two-dimensional
motion vectors can then be computed by solving the
following least-squares problem:
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In this way, motion estimation in 2-D is reduced to
a set of 1-D estimation problems, reducing the dimen-
sionality of the optimization problem for any motion
estimation technique, and hence dramatically reduc-
ing the computational complexity. In what follows, to
keep the computational complexity low, we only use
two angles of projection at zero and 90 degrees. We
will show that the use of only these two angles pro-
duces excellent overall results. In general, there may
be some bene�t in choosing the projection angles dif-
ferently from these, but we leave the analysis of that
issue for future work.

Finally, as indicated in [5], the model of projected
motion can also be generalized to include higher order
models of motion such as general aÆne motion. How-
ever, for the purposes of this paper, we will treat only
the case of locally translational motion.

3 Motion Estimation Techniques
Each of the two techniques we will study subdivides

the images into blocks and performs the motion esti-
mation on each block. Throughout this paper we use
the notation 
 to indicate a block or region. The block
sizes are chosen to both avoid the aperture problem,
and to improve the likelihood that the actual block
motion �ts the assumed translational motion model.
If the block size is small enough, the motion within
the block can be modeled as translational. We shall
say more about this issue later.

3.1 Gradient Based Technique ([4])
A di�erential method computes image velocity di-

rectly from the image pixel intensities by making an
assumption about the conservation of intensity be-
tween a pair of images [2], which leads to the well
recognized gradient constraint equation relating im-
age motion to image gradients in space and time:

fxvx + fyvy + ft = 0; (4)

where the subscripts on f denote partial derivatives
with respect to the relevant variables. In the current

context, the velocities vx and vy in (4) are modeled
as locally translational so that each image block is a
shifted version of the corresponding block in the ad-
jacent frame. Lucas and Kanade, [4] use a locally
constant model coupled with a weighted least squares
approach, to solve for the motion vector �eld. viz.

X
x;y2


W 2 (x; y)
h
rf � [vx vy]T + ft

i2
(5)

where 
 is the local neighborhood or the block for
which motion is being estimated, and r is the spa-
tial gradient operator. The positive weighting func-
tion W is chosen such that the center of the block
is weighted more than the periphery, which allows for
better localization, and larger block overlaps, while si-
multaneously reducing the likelihood of encountering
the aperture problem1.

3.2 Projection-Based Gradient Technique
The implementation of the projection-based variant

of the Lucas/Kanade method is straightforward. As
before, the image is subdivided into overlapping blocks
corresponding to 
 in equation (5), but here we apply
the Radon transform to the pixel intensities �rst in
each block.

As in the original gradient-based method, we as-
sume a model of constant velocity for each block in
the image. Applying the Radon transform to (4) we
generate two equations of the form

gp(p; �i; t)u�i + gt(p; �i; t) = 0; (6)

for i = 1; 2, from which we �nd the weighted least
squares estimates of u�i by minimizing

X
p2
�i

W 2
�i(p)
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@

@t
g(p; �i; t)

�2
(7)

For this pair of minimization problems the neigh-
borhood 
� is the image of the original 
 from (5)
under the Radon transform at an angle �. Finally,
using equation (3) we calculate the estimates of con-
stant velocity v̂x and v̂y for each block from the pair
of estimates û�1;2 .

3.3 Relative-Phase Technique [8]
Stone et al. have presented a variation of the tradi-

tional Fourier based image registration technique, ex-
amining the relative phase between a pair of images.
Here again, the image is subdivided into overlapping
blocks. Given an N � N block f1 = f(x; y; 0) and

1The aperture problem describes a situation wherein there is
insuÆcient intensity gradient information to determine unique
motion vectors [7].
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a translated version of the block f2 = f(x; y;�t) =
f(x � vx�t; y � vy�t; 0), in the 2D Discrete Fourier
Transform domain we have,

F2 = F1e
�j2�(!vx�t+�vy�t)=N (8)

where Fi denotes the Fourier transform of the image
fi, and j represents

p�1. For convenience, we can let
�t = 1. We have

F1 F
�

2

jF2j2 =
F1(!; �)

F2(!; �)
= ej2�(!vx+�vy)=N = ej�(!;�) (9)

The displacement vector [vx; vy]
T
can then be esti-

mated by �tting a linear model to the phase function
�. i.e. by minimizing:

X
!;�

C(!; �) [2�(!vx + �vy)=N � �(!; �)]2 (10)

where the sum is computed over the appropriate re-
gion of the Fourier plane. In general, this phase-based
approach works quite well only for images with high
SNR, and its performance degrades rather rapidly in
the presence of noise. Also, this model assumes sub-
pixel motion. In the case of super-pixel motion, phase-
wrapping again degrades its performance. To address
these issues, Stone et al. generate a binary weighting
function (or mask) C, which reduces the in
uence of
spatial aliasing and noise and signi�cantly improves
performance. In e�ect, C regularizes the problem and
produces more robust estimates by trimming or elim-
inating spectral values that are more susceptible to
noise and aliasing e�ects.

3.4 Projection-Based Relative-Phase
Technique

As with the gradient-based method, we utilize the
Radon Transform in two orthogonal directions �1;2 on
the intensity values for each block as an initial step,
generating a pair of 1-D image sequences g(p; �1;2; t).

Analogous to the 2-D case, equation (9) becomes a
pair of equations after applying the Radon transform,
where each equation has the form,

G1(k)

G2(k)
= ej2�(ku� )=N = ej��(k) (11)

where Gi(k) denotes the Fourier transform of g(p; �i).
As in the 2-D method, the pair of parameters u�1 and
u�2 are then estimated as the minimizers of

X
k

C�(k) [(2�ku�)=N � ��(k)]
2

(12)

where again the sum is computed over the appropriate
region of the 1-D Fourier space. Here we apply the

same assumptions as made by [8] to generate a binary
weighting mask C� to reduce the e�ect of spurious
spectral values.

Both estimates of û� can then be used in (3) to
generate estimates of v̂x and v̂y.

4 Experiments
Following the papers [1], [3] we applied the methods

described above to many standard experimental image
sequences, for which the true motion �elds were given.
For the sake of brevity, we report representative results
from three such sequences. These sequences, as in [1],
are:

1. Diverging Tree - Motion in the line of sight of
the camera with approximately radially symmet-
ric motion vector �eld. The motion is sub-pixel at
the center of the image and becomes super-pixel
towards the edges of the image.

2. Translating Tree - Simulation of translational
camera motion in the x-direction. The motion in
the x-direction is super-pixel and sub-pixel in the
y-direction.

3. Yosemite Flythrough - Image sequence with
the most complex motion �eld. There are regions
of sub and super pixel motion.

4.1 Error Measures
Following [1] we measured the mean angular er-

ror between the correct (true) motion vectors ~Vc =

[vx; vy; 1]
T and the estimated motion vector ~Ve =

[v̂x; v̂y; 1]
T . (The 1 in the third or time dimension re-

veals the assumption of normalized (unit) time steps

between frames.) The mean angular error between ~Vc
and ~Ve is measured as

 ang =
1

B

X
b

arccos(~V T
c (b) � ~Ve(b)) (13)

where B is the total number of blocks (motion vectors)

estimated for the image sequence, ~Ve(b) represents the

motion vector estimate for the b-th block, and ~Vc(b)
represents the actual motion at the center of the same
block. We measure  ang in units of degrees.

To gather more information about the four motion
estimation methods we also computed the mean mag-
nitude error de�ned as:

 mag =
1

B

X
b

q
(vx(b)� v̂x(b))2 + (vy(b)� v̂y(b))2

(14)
Again, the standard deviation of the estimated mean
magnitude is also included in the results of our tests.
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Finally, we also measured the mean-squared error
for each direction

 MSEx
=

1

B

X
b

(vx(b)� v̂x(b))
2

 MSEy
=

1

B

X
b

(vy(b)� v̂y(b))
2 (15)

and the corresponding biases and sample variances
for the motion estimates. Computation of bias and
sample variances allow us to study the tradeo�s in
these values. We also tabulated the standard devia-
tion about the estimated mean angular and magnitude
error as in [1].

5 Results and Conclusions
After conducting exhaustive experiments using dif-

ferent values of the parameters that can be chosen for
each algorithm, for �nal comparison, we selected a rep-
resentative set of parameters and used the same values
(when appropriate) across all the methods. In e�ect,
we strived to choose a set of parameters which would
not unfairly disadvantage any one technique. Further-
more, we wanted these parameters to be realistic in a
practical setting. In summary, we chose a block size
of 30 pixels and a motion vector spacing of 10 pixels
to allow for block overlap. A block size of 30 pixels
represents a modest tradeo� between speed and accu-
racy. Furthermore, this block size and spacing could
�t the needs of a video codec. Another parameter we
chose for the gradient-based methods was a weighting
function W with a standard deviation of 20% of the
block size or 6 pixels. This is intuitively reasonable
since the desired motion vector spacing was 10 pixels
and therefore this weighting function would help local-
ize the motion estimates in all cases. Finally, we chose
to use the modi�ed Prewitt operator to compute the
gradients. To eliminate edge e�ects we discarded the
outside ring of gradient estimates, essentially reducing
the block size to 28 pixels. The parameters we chose
for the relative-phase methods from our experiments
were basically in line with the suggestions made in [8].

Tables 1 to 3 show the results of our tests using the
above parameters2.

As a visual example, Figure 1 shows the estimated
motion vector �elds for the Diverging Tree image se-
quence overlaid atop one image of the sequence. The

2Note that we did not perform any pre-smoothing of the im-
age sequences to reduce the e�ects of aliasing and noise. This
pre-processing step was typically used in producing the results
found in [1]. Also, we do not perform any post-processing of the
motion vectors to eliminate or smooth the motion estimates.
Many other methods perform this step in an attempt to elimi-
nate spurious estimates [1].

motion vector �elds were obtained from the gradient-
based methods. Note that the motion vector �elds are
visually quite similar.

Figure 1: Motion Vector �eld from 2-D (upper) and
1-D (lower) Gradient-Based method

We observe that while the accuracy of the 1-D and
2-D methods appear to be statistically equivalent, the
computational complexity is dramatically reduced in
the projection-based approaches. The 1-D gradient-
based method required a factor of 10 fewer 
oating-
point operations than its 2-D counterpart, and the
total CPU time was reduced by about a factor of 12.
More dramatic still, the projection-based phase-based
technique reduced the number of 
oating-point opera-
tions by a factor of about 25, while still yielding a fac-
tor of about 9 improvement in total CPU time3. On
balance, these results indicate that by using projec-
tions in motion estimation, dramatic savings in com-
putation can be realized with essentially no degrada-

3The di�erence between the total 
oating-point operations
and total CPU time results from memory management.
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Method Lucas1 Lucas2 Stone 1 Stone2
Mean Angular Error (degrees) 5.888 6.112 7.474 6.882

Standard Deviation (about the mean) 0.3325 0.3361 0.1928 0.1896
Mean Magnitude Error (pix/frame) 0.153 0.169 0.204 0.189

Standard Deviation (about the mean) 0.0094 0.0110 0.0073 0.0067
Mean Square Error X-dir 0.025 0.033 0.029 0.025
Mean Square Error Y-dir 0.013 0.017 0.022 0.018
Bias X-dir (pix/frame) -0.0237 -0.0400 -0.0177 -0.0066
Bias Y-dir (pix/frame) 0.0036 -0.0063 -0.0008 -0.0003
Sample Variance X-dir 0.2897 0.2233 0.1921 0.1991
Sample Variance Y-dir 0.2946 0.2490 0.2098 0.2193

Cpu Time (s) 1.930 24.030 4.690 23.450
Flop Count 6326861 52885970 22703975 495772359

Table 1: Results for Divtree sequence using set parameters

Method Lucas1 Lucas2 Stone 1 Stone2
Mean Angular Error (degrees) 11.385 14.108 8.391 9.423

Standard Deviation (about the mean) 0.7064 0.6470 0.6108 0.4673
Mean Magnitude Error (pix/frame) 0.574 0.778 0.501 0.593

Standard Deviation (about the mean) 0.0269 0.0231 0.0286 0.0256
Mean Square Error X-dir 0.366 0.680 0.382 0.461
Mean Square Error Y-dir 0.085 0.015 0.008 0.001
Bias X-dir (pix/frame) -0.5029 -0.7701 -0.4904 -0.5919
Bias Y-dir (pix/frame) 0.0323 0.0263 0.0075 0.0012
Sample Variance X-dir 0.1046 0.0738 0.0842 0.0507
Sample Variance Y-dir 0.0840 0.0147 0.0078 0.0014

Cpu Time (s) 1.920 23.880 4.710 23.710
Flop Count 6326861 52885970 22703975 495773097

Table 2: Results for Trantree sequence using set parameters

Method Lucas1 Lucas2 Stone 1 Stone2
Mean Angular Error (degrees) 18.820 21.195 19.866 31.106

Standard Deviation (about the mean) 0.7245 0.7861 0.9009 1.0724
Mean Magnitude Error (pix/frame) 1.120 1.023 0.915 1.261

Standard Deviation (about the mean) 0.0503 0.0359 0.0377 0.0451
Mean Square Error X-dir 0.874 0.993 1.290 1.847
Mean Square Error Y-dir 2.071 0.913 0.496 1.099
Bias X-dir (pix/frame) 0.3316 0.1934 -0.0200 -0.0136
Bias Y-dir (pix/frame) -0.1000 0.4245 0.3706 0.5686
Sample Variance X-dir 2.4748 1.3411 0.6628 0.1786
Sample Variance Y-dir 1.5224 0.1360 0.2613 0.1725

Cpu Time (s) 7.530 96.160 18.770 91.360
Flop Count 24970487 207414886 89606789 1956688790

Table 3: Results for Yosem sequence using set parameters
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tion in accuracy. With fast hardware implementations
of the Radon transform such as that found in [6] and
[9], we can expect that the use of projections will def-
initely provide signi�cant speedups for applications
such as video coding that require fast and accurate
motion estimation.
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