ICNAAM-2004 00-4

Inverting a multidimensional shape from moments
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1 Problem statement

The problem of reconstructing a function and/or its domain given its moments is encountered in many
areas. Several applications from diverse areas such as probability and statistics [4], signal processing [10],
computed tomography [8, 9], and inverse potential theory [1, 11] (magnetic and gravitational anomaly
detection) can be cited, to name just a few. We can expound on some of these applications in a bit more
detail. Consider the following diverse set of examples:

e A region of the plane can be regarded as the domain of a (uniform) probability density function. In
this case, the problem is that of reconstructing, or approximating, the domain from measurements of
its moments [4].

e Tomographic (line integral) measurements of a body of constant density can be converted into mo-
ments from which an approximation to its boundary can be extracted [9].

e Measurements of exterior gravitational field induced by a body of uniform mass can be turned into
moment measurement, from which the shape of the region may be reconstructed [11].

e Measurements of exterior magnetic field induced by a body of uniform magnetization can yield mea-
surement of the moments of the region from which the shape of the region may be determined [11].

e Measurements of thermal radiation made outside a uniformly hot region can yield moment informa-
tion, which can subsequently be inverted to give the shape of the region [11].

In fact, inverse problems for uniform density regions related to general elliptical equations can all be
cast as moment problems which fall within the scope of application of the results of this paper.

Although the reconstruction of a shape from its Radon transform is well-understood, the reconstruction
of a shape from its moments is a problem that has only partially been solved. For instance, when the object
is a polygon [5], or when it defines a quadrature domain in the complex plane [6], it has been proved
that its shape can exactly be reconstructed from the knowledge of its moments. Both results deal with
particular 2-dimensional shapes. For general n-dimensional shapes no inversion algorithm departing from
the moments, is known. In order to explain the type of result we are looking for, we briefly repeat the
inversion formula based on a shape’s projections provided by the Radon transform.
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2 The Radon and Fourier integral transforms

The Radon transform R;f ) ofa square-integrable n-variate function f(Z) with & = (z 1, ..., z,) is defined
as
RY ()= | f(®) 607 ~ ) di
]R'n.
with ||X|]| = 1 and AZ = w an (n — 1)-dimensional manifold orthogonal to X. When n = 2, X is fully
determined by an angle 6 and is given by
+oo +oo
R(f / / d(tcost + ssinf — u) dt ds

Forn = 3, X is determined by angles # and ¢ and
Réf; / ft,s,v)d(tcospcosf + scos@sind + vsin ¢ — u) dt ds dv

Making use of the celebrated Fourier slice theorem one obtains [7] that the one-dimensional Fourier trans-
form of Réf) (u),
(Réf )) 400
Fi (2) = / Réf) (u) exp(—2mizu) du
— 00

equals the two-dimensional Fourier transform of the function f restricted to the straight line (z cos 8, z sin 6):
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Fi (zcos6, zsing) = / (t,s) exp (—2miz(t cosf + ssin b)) dt ds
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When f(t, s) is the characteristic function of a compact set A in the complex plane, then (1) allows to re-
construct A, departing from its Radon transform, by taking the inverse two-dimensional Fourier transform
of the right hand side of (1). In higher dimensions the procedure is completely analogous [7].

Our aim is to establish a similar type of relationship, making use of moment information instead of
projections. To this end we need to introduce a few tools.

3 The Stieltjes and Markov integral transforms

The n-variate Stieltjes transform Sy, ¢ )( v) of the non-negative function f(Z) defined in R} = ([0, 4-00))™
is given by

S (%) = / &)q dz (2)
re 1+2-0
v
where 7 - ¥ = Y., x;v; for T = (21,...,2,) and ¥ = (v1,...,v,). According to the famous Fourier
slice theorem
. %) RY) (2
S (Nu) = / ) dz (3)
ay 1+zu

where ||X|| = 1 and [a(X), b(X)] denotes the support of the Radon transform R(Xf ) of the function f (@).
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In other words, the n-variate Stieltjes transform S ,(lf ) restricted to the one-dimensional slice
S5 = {Xu ER"||IN|=1,ue ]R}

equals the univariate Markov transform

M) = [ RO

1 dz
< l+zu

A less well-known n-variate Padé slice property asserts that the n-variate Padé approximant r fﬁr k. (Z) to
the function f(Z), as defined in [2, 3], satisfies

()

m-+k,m

(Xz):rgi%m(z) meNkeZ

where the univariate function fy is the restriction of f(Z) to the slice Sy, namely f;(z) = f (Xz), and

(3)

T3 km(2) s the classical univariate Padé approximant to the function fy. Making use of this property,
we can show in addition that, if the non-negative function f(Z) is zero outside the unit ball B(0; 1)

Sﬁf)(ﬁ)le( 5 )(u)z lim o) @) d=Xu k> -1 )

Note that requiring that f (&) is zero outside B(0; 1) is only a matter of scaling. In the new reconstruction
algorithm, this Markov and Radon transform shall not be computed explicitly. We only use of moment
information. The importance of the relationship (3) is that it is an identity of the same type as (1).

4 Numerical algorithm

How are the above results used in practice, when the input is moment and not Radon information and
without the need to compute the Markov integral transform? How does the use of these results compare to
1?

To answer the first question, we briefly describe the reconstruction of a compact shape A C Ri N
B(0,1). Let f(Z) be the characteristic function of the set A, in other words f(Z¥) = 1 for ¥ € A and
f(&) =0 for & ¢ A. Having available the shape’s moments

Cij:/
R

we can compute a Padé approximant for the Stieltjes transform Sflf ) of which the formal series represen-
tation is obtained from (2) and is given by

S (N

= 1
,7=0

2y f(z,y) dedy = /Awa dx dy

2
+

This Padé approximant can be evaluated in several points ¥. According to (4), the value of the Padé
approximant in ¢’ provides an approximation for S 7(1’[ ) (¥). Given a sufficiently large number of evaluations,
we are thus able to solve (2) for f(Z). This usually results in solving an ill-posed problem and requires
regularization. For this we found the truncated SVD technique to be very successful.

With respect to the second question we note that (1) requires a change from the cartesian to the polar
coordinate system. This change creates numerical problems when computing the inverse bivariate Fourier
transform, problems which are usually overcome by the use of some interpolation technique. Although
the new relation between the Markov and Stieltjes transform uses this change of coordinate system in its
description, it is clear from (4) that it can entirely be avoided in the implementation.
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