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output frame is the weighted average of Y (t), the current input low-resolution
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Abstract

A Fast and Robust Framework for Image Fusion and Enhancement

by

Sina Farsiu

Theoretical and practical limitations usually constrain the achievable resolution of

any imaging device. The limited resolution of many commercial digital cameras resulting in

aliased images are due to the limited number of sensors. In such systems, the CCD readout

noise, the blur resulting from the aperture and the optical lens, and the color artifacts due to the

use of color filtering arrays further degrade the quality of captured images.

Super-Resolution methods are developed to go beyond camera’s resolution limit by

acquiring and fusing several non-redundant low-resolution images of the same scene, producing

a high-resolution image. The early works on super-resolution (often designed for grayscale

images), although occasionally mathematically optimal for particular models of data and noise,

produced poor results when applied to real images. On another front, single frame demosaicing

methods developed to reduce color artifacts, often fail to completely remove such errors.

In this thesis, we use the statistical signal processing approach to propose an effective

framework for fusing low-quality images and producing higher quality ones. Our framework

addresses the main issues related to designing a practical image fusion system, namely recon-

struction accuracy and computational efficiency. Reconstruction accuracy refers to the problem

of designing a robust image fusion method applicable to images from different imaging systems.

Advocating the use of robust L1 norm, our general framework is applicable for optimal recon-

struction of images from grayscale, color, or color filtered (CFA) cameras. The performance

of our proposed method is boosted by using powerful priors and is robust to both measurement

(e.g. CCD read out noise) and system noise (e.g. motion estimation error). Noting that motion

estimation is often considered a bottleneck in terms of super-resolution performance, we utilize

the concept of “constrained motions” for enhancing the quality of super-resolved images. We



show that using such constraints will enhance the quality of the motion estimation and there-

fore results in more accurate reconstruction of the HR images. We also justify some practical

assumptions that greatly reduce the computational complexity and memory requirements of the

proposed methods. We use efficient approximation of the Kalman Filter and adopt a dynamic

point of view to the super-resolution problem. Novel methods for addressing these issues are

accompanied by experimental results on simulated and real data.
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Chapter 1

Introduction

On the path to designing high resolution imaging systems, one quickly runs into the problem

of diminishing returns. Specifically, the imaging chips and optical components necessary to

capture very high resolution images become prohibitively expensive, costing in the millions of

dollars for scientific applications [5]. Hence, there is a growing interest in multi-frame image

reconstruction algorithms that compensate for the shortcomings of the imaging systems. Such

methods can achieve high-quality images using less expensive imaging chips and optical com-

ponents by capturing multiple images and fusing them. The application of such algorithms will

certainly continue to proliferate in any situation where high quality optical imaging systems

cannot be incorporated or are too expensive to utilize.

A block diagram representation of the problem in hand is illustrated in Figure 1.1,

where a set of images are captured by a typical imaging system (e.g. a digital camcorder).

As the relative motion between the scene and the camera, the readout noise of the electronic

imaging sensor (e.g. the CCD), and possibly the optical lens characteristics change through

the time, each estimated image captures some unique characteristic of the underlying original

image.

In this thesis, we investigate a multi-frame image reconstruction framework for fusing

the information of these low-quality images to achieve an image (or a set of images) with higher

1



quality. We develop the theory and practical algorithms with real world applications. Our

proposed methods result in sharp, less noisy images with higher spatial resolution.

The resolution of most imaging systems is limited by their optical components. The

smallest resolvable resolution of such systems empirically follows the Rayleigh limit [6], and is

related to the wavelength of light and the diameter of the pinhole. The lens in optical imaging

systems truncates the image spectrum in the frequency domain and further limits the resolution.

In typical digital imaging systems however, it is the density of the sensor (e.g. CCD) pixels that

defines the the resolution limits 1 [7].

Forward Model

Inverse Problem

Varying Channel
(e.g. A Moving 

Camera) 

High-Quality Image
Set of Low-Quality  Images

Varying Channel
(e.g. A Moving 

Camera) 
Imaging System 

Figure 1.1: A block diagram representation of image formation and multi-frame image reconstruction
in a typical digital imaging system. The forward model is a mathematical description of the image
degradation process. The inverse problem addresses the issue of retrieving (or estimating) the original
scene from the low-quality captured images.

An example of the multi-frame image fusion techniques is the multi-frame super-

resolution, which is the main focus of this thesis. Super-resolution (SR) is the term generally

applied to the problem of transcending the limitations of optical imaging systems through the

1Throughout this thesis, we only consider the resolution issues due to the sensor density (sampling under Nyquist
limit). Although, the general framework presented here is a valuable tool for going beyond other limiting factors
such as the diffraction constraints, such discussions are beyond the scope of this thesis.
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Figure 1.2: An illustrative example of the motion-based super-resolution problem. (a) A high-resolution
image consisting of four pixels. (b)-(e) Low-resolution images consisting of only one pixel, each cap-
tured by subpixel motion of an imaginary camera. Assuming that the camera point spread function is
known, and the graylevel of all bordering pixels is zero, the pixel values of the high-resolution image can
be precisely estimated from the low-resolution images.

use of image processing algorithms, which presumably are relatively inexpensive to implement.

The basic idea behind super-resolution is the fusion of a sequence of low-resolution

(LR) noisy blurred images to produce a higher resolution image. The resulting high-resolution

(HR) image (or sequence) has more high-frequency content and less noise and blur effects than

any of the low-resolution input images. Early works on super-resolution showed that it is the

aliasing effects in the low-resolution images that enable the recovery of the high-resolution

fused image, provided that a relative sub-pixel motion exists between the under-sampled input

images [8].

The very simplified super-resolution experiment of Figure 1.2 illustrates the basics of

the motion-based super-resolution algorithms. A scene consisting of four high-resolution pixels

is shown in Figure 1.2(a). An imaginary camera with controlled subpixel motion, consisting

of only one pixel captures multiple images from this scene. Figures 1.2(b)-(e) illustrate these

captured images. Of course none of these low-resolution images can capture the details of the

underlying image. Assuming that the point spread function (PSF) of the imaginary camera is a

known linear function, and the graylevel of all bordering pixels is zero, the following equations

relate the the low-resolution blurry images to the high-resolution crisper one.

3



That is, ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

y1 = h1.x1 + h2.x2 + h3.x3 + h4.x4 + v1

y2 = 0.x1 + h2.x2 + 0.x3 + h4.x4 + v2

y3 = 0.x1 + 0.x2 + h3.x3 + h4.x4 + v3

y4 = 0.x1 + 0.x2 + 0.x3 + h4.x4 + v4

,

where yi ’s (i = 1, 2, 3, 4) are the captured low-resolution images, xi ’s are the graylevel

values of the pixels in the high-resolution image, hi’s are the elements of the known PSF, and

vi’s are the random additive CCD readout noise of the low-resolution frames. In cases where

the additive noise is small (vi � 0), the above set of linear equations can be solved, obtaining

the high-resolution pixel values. Unfortunately, as we shall see in the following sections the

simplifying assumption made above are rarely valid in the real situations.

The experiment in Figure 1.3 shows a real example of super-resolution technology.

In this experiment, a set of 26 images were captured by an OLYMPUS C-4000 camera. One of

these images is shown in Figure 1.3(a). Unfortunately due to the limited number of pixels in

the digital camera the details of these images are not clear, as shown in the zoomed image of

Figure 1.3(b). Super-resolution helps us to reconstruct the details lost in the imaging process.

The result of applying the super-resolution algorithm described in Chapter 2 is shown in Figure

1.3(c), which is a high-quality image with 16 times more pixels than any low-resolution frame

(resolution enhancement factor of 4 in each direction).

Applications of the super-resolution technology include, but are not limited to:

• Industrial Applications: Designing cost-effective digital cameras, IC inspection, Design-

ing high-quality/low-bit-rate HDTV compression algorithms.

• Scientific Imaging: Astronomy (enhancing images from telescopes), Biology (enhancing

images from electronic and optical microscopes), Medical Imaging.

• Forensics and Homeland Security Applications: Enhancing images from surveillance

cameras.
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a b c

Figure 1.3: Super-resolution experiment on real world data. A set of 26 low quality images were fused
resulting in a higher quality image. One captured image is shown in (a). The red square section of (a) is
zoomed in (b). Super-resolved image in (c) is the high quality output image.

However, we shall see that in general, super resolution is a computationally complex and numer-

ically ill-posed problem 2. All this makes super-resolution one of the most appealing research

areas in image processing.

1.1 Super-Resolution as an Inverse Problem

Super-resolution algorithms attempt to extract the high resolution image corrupted

by the limitations of an optical imaging system. This type of problem is an example of an

inverse problem, wherein the source of information (high resolution image) is estimated from

the observed data (low resolution image or images). Solving an inverse problem in general

requires first constructing a forward model. By far, the most common forward model for the

2Let � : φ1 −→ φ2, Y = �(X) is said to be well-posed [9] if

1. for Y ∈ φ2 there exists X ∈ φ1, called a solution, for which Y = �(X) holds.

2. the solution X is unique.

3. the solution is stable with respect to perturbations in Y . This means that if Y = �(X)and Y̆ = �(X̌) then
X → X̌ whenever Y → Y̌ .

A problem that is not well-posed is said to be ill-posed.
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problem of super-resolution is linear in form

Y = MX + V , (1.1)

where Y is the measured data (single or collection of images), X is the unknown high resolution

image or images, V is the random noise inherent to any imaging system.We use the underscore

notation such as X to indicate a vector. In this formulation, the image is represented in vector

form by scanning the 2-D image in a raster or any other scanning format3 to 1-D.

The matrix M in the above forward model represents the imaging system, consisting

of several processes that affect the quality of the estimated images. The simplest form of M

is the identity matrix, which simplifies the problem at hand to a simple denoising problem.

More interesting (and harder to solve) problems can be defined by considering more complex

models for M . For example, to define the grey-scale super-resolution problem in Chapter 2,

we consider an imaging system that consists of the blur, warp, and down-sampling processes.

Moreover, addition of the color filtering process to the later model, enables us to solve for the

multi-frame demosaicing problem defined in Chapter 3.

Aside from some special cases where the imaging system can be physically measured

on the scene, we are bound to estimate the system matrix M from the data. In the first few

chapters of this thesis (Chapters 2-4), we assume that M is given or estimated in a separate

process. However, we acknowledge that such estimation is prone to errors, and design our

methods considering this fact. We will discuss this in detail in the next chapter.

Armed with a forward model, a clean but practically naive solution to (1.1) can be

achieved via the direct pseudo-inverse technique:

X =
(
MT M

)−1
MT Y . (1.2)

Unfortunately, the dimensions of the matrix M (as explicitly defined in the next chapters) is so

large that even storing (putting aside inverting) the matrix MT M is computationally impracti-

cal.
3Note that this conversion is semantic and bares no loss in the description of the relation between measurements

and ideal signal.
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The practitioners of super-resolution usually explicitly or implicitly (e.g. the projec-

tion onto convex sets (POCS) based methods [10]) define a cost function to estimate X in an

iterative fashion.This type of cost function assures a certain fidelity or closeness of the final

solution to the measured data. Historically, the construction of such a cost function has been

motivated from either an algebraic or a statistical perspective. Perhaps the cost function most

common to both perspectives is the least-squares (LS) cost function, which minimizes the L2

norm of the residual vector,

X̂ = ArgMin
X

J(X) = ArgMin
X

‖Y − MX‖2
2 . (1.3)

For the case where the noise V is additive white, zero mean Gaussian, this approach has the

interpretation of providing the Maximum Likelihood estimate of X [11]. We shall show in this

thesis that such a cost function is not necessarily adequate for super-resolution.

An inherent difficulty with inverse problems is the challenge of inverting the forward

model without amplifying the effect of noise in the measured data. In the linear model, this

results from the very high, possibly infinite, condition number for the model matrix M . Solving

the inverse problem, as the name suggests, requires inverting the effects of the system matrix M .

At best, this system matrix is ill-conditioned, presenting the challenge of inverting the matrix in

a numerically stable fashion [12]. Furthermore, finding the minimizer of (1.3) would amplify

the random noise V in the direction of the singular vectors (in the super-resolution case these

are the high spatial frequencies), making the solution highly sensitive to measurement noise. In

many real scenarios, the problem is exacerbated by the fact that the system matrix M is singular.

For a singular model matrix M , there is an infinite space of solutions minimizing (1.3). Thus,

for the problem of super-resolution, some form of regularization must be included in the cost

function to stabilize the problem or constrain the space of solutions.

Needless to say, the choice of regularization plays a vital role in the performance

of any super-resolution algorithm. Traditionally, regularization has been described from both

the algebraic and statistical perspectives. In both cases, regularization takes the form of soft

constraints on the space of possible solutions often independent of the measured data. This is
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accomplished by way of Lagrangian type penalty terms as in

J(X) = ‖Y − MX‖2
2 + λΥ(X) . (1.4)

The function Υ(X) places a penalty on the unknown X to direct it to a better formed solution.

The coefficient λ dictates the strength with which this penalty is enforced. Generally speak-

ing, choosing λ could be either done manually, using visual inspection, or automatically using

methods like Generalized Cross-Validation [13, 14], L-curve [15], and other techniques.

Tikhonov regularization4 [11, 16, 17] is a widely employed form of regularization,

which has been motivated from an analytic standpoint to justify certain mathematical properties

of the estimated solution. Often, little attention, however, is given to the effects of such simple

regularization on the super-resolution results. For instance, the regularization often penalizes

energy in the higher frequencies of the solution, opting for a smooth and hence blurry solution.

From a statistical perspective, regularization is incorporated as a priori knowledge about the

solution. Thus, using the Maximum A-Posteriori (MAP) estimator, a much richer class of reg-

ularization functions emerges, enabling us to capture the specifics of the particular application

(e.g. in [18] the piecewise-constant property of natural images are captured by modeling them

as Huber-Markov random field data). Such robust methods, unlike the traditional Tikhonov

penalty terms, are capable of performing adaptive smoothing based on the local structure of

the image. For instance, in Chapter 2, we offer a penalty term capable of preserving the high

frequency edge structures commonly found in images.

In summary, an efficient solution to the multi-frame imaging inverse problem should

1. define a forward model describing all the components of the imaging channel (such as

probability density function (PDF) of additive noise, blur point spread function (PSF),

relative motion vectors,...).

2. adopt proper prior information to turn the ill-posed inverse problem to a well-posed prob-

lem (regularization)
4Tikhonov regularization is often implemented by penalizing a high-pass filtered image by L2 norm as formu-

lated and explained in details in Section 2.2.3.
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3. apply a method for fusing the information from multiple images which is

(a) robust to inaccuracies in the forward model and the noise in the estimated data.

(b) computationally efficient.

In the last two decades, many papers have been published, proposing a variety of so-

lutions to different multi-frame image restoration related inverse problems. These methods are

usually very sensitive to their assumed model of data and noise, which limits their utility. This

thesis reviews some of these methods and addresses their shortcomings. We use the statistical

signal processing approach to propose efficient robust image reconstruction methods to deal

with different data and noise models.

1.2 Organization of this thesis

In what follows in this thesis, we study several important multi-frame image fu-

sion/reconstruction problems under a general framework that helps us provide fast and robust

solutions.

• In Chapter 2, we study the “multi-frame super-resolution” problem for grayscale images.

To solve this problem, first we review the main concepts of robust estimation techniques.

We justify the use of the L1 norm to minimize the data penalty term, and propose a

robust regularization technique called Bilateral Total-Variation, with many applications

in diverse image processing problems. We will also justify a simple but effective image

fusion technique called Shift-and-Add, which is not only very fast to implement but also

gives insight to more complex image fusion problems. Finally, we propose a fast super-

resolution technique for fusing grayscale images, which is robust to errors in motion and

blur estimation and results in images with sharp edges.

• In Chapter 3, we focus on color images and search for an efficient method for remov-

ing color artifacts in digital images. We study the single frame “demosaicing” problem,

9



which addresses the artifacts resulting from the color-filtering process in digital cameras.

A closer look at demosaicing and super-resolution problems reveals the relation between

them, and as conventional color digital cameras suffer from both low-spatial resolution

and color-filtering, we optimally address them in a unified context. We propose a fast and

robust hybrid method of super-resolution and demosaicing, based on a MAP estimation

technique by minimizing a multi-term cost function.

• In Chapter 4, unlike previous chapters in which the final output was a single high-

resolution image, we focus on producing high-resolution videos. The memory and com-

putational requirements for practical implementation of this problem, which we call “dy-

namic super-resolution”, are so taxing that require highly efficient algorithms. For the

case of translational motion and common space-invariant blur, we propose such a method,

based on a very fast and memory efficient approximation of the Kalman Filter, applicable

to both grayscale and color(filtered) images.

• In Chapter 5, we address the problem of estimating the relative motion between the frames

of a video sequence. In contrast to the commonly applied pairwise image registration

methods, we consider global consistency conditions for the overall multi-frame motion

estimation problem, which is more accurate. We review the recent work on this subject

and propose an optimal framework, which can apply the consistency conditions as both

hard constraints in the estimation problem, or as soft constraints in the form of stochastic

(Bayesian) priors. The proposed MAP framework is applicable to virtually any motion

model and enables us to develop a robust approach, which is resilient against the effects

of outliers and noise.
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Chapter 2

Robust Multi-Frame Super-resolution

of Grayscale Images

2.1 Introduction

As we discussed in the introduction section, theoretical and practical limitations usu-

ally constrain the achievable resolution of any imaging device. In this chapter, we focus on the

incoherent grayscale imaging systems and propose an effective multi-frame super-resolution

method that helps improve the quality of the captured images.

A block-diagram representation of such an imaging system is illustrated in Figure 2.1,

where a dynamic scene with continuous intensity distribution X(x, y) is seen to be warped at

the camera lens because of the relative motion between the scene and camera. The images are

blurred both by atmospheric turbulence and camera lens (and CCD) by continuous point spread

functions Hatm(x, y) and Hcam(x, y). Then they will be discretized at the CCD resulting in a

digitized noisy frame Y . We represent this forward model by the following equation:

Y = [Hcam(x, y) ∗ ∗F (Hatm(x, y) ∗ ∗X(x, y))] ↓ +V, (2.1)

in which ∗∗ is the two dimensional convolution operator, F is the warping operator (projecting

the scene into the camera’s coordinate system), ↓ is the discretizing operator, V is the system

11



noise and Y is the resulting discrete noisy and blurred image.

Figure 2.1: Block diagram representation of (2.1), where X(x, y) is the continuous intensity distribution
of the scene, V is the additive noise, and Y is the resulting discrete low-quality image.

Super-resolution is the process of combining a sequence of low-resolution noisy

12



blurred images to produce a higher resolution image or sequence. The multi-frame super-

resolution problem was first addressed in [8], where they proposed a frequency domain ap-

proach, extended by others such as [19]. Although the frequency domain methods are intuitively

simple and computationally cheap, they are extremely sensitive to noise and model errors [20],

limiting their usefulness. Also by design, only pure translational motion can be treated with

such tools and even small deviations from translational motion significantly degrade perfor-

mance.

Another popular class of methods solves the problem of resolution enhancement in the

spatial domain. Non-iterative spatial domain data fusion approaches were proposed in [21], [22]

and [23]. The iterative back-projection method was developed in papers such as [24] and [25].

In [26], the authors suggested a method based on the multichannel sampling theorem. In [11],

a hybrid method, combining the simplicity of maximum likelihood (ML) with proper prior in-

formation was suggested.

The spatial domain methods discussed so far are generally computationally expen-

sive. The authors in [17] introduced a block circulant preconditioner for solving the Tikhonov

regularized super-resolution problem formulated in [11], and addressed the calculation of regu-

larization factor for the under-determined case1 by generalized cross-validation in [27]. Later,

a very fast super-resolution algorithm for pure translational motion and common space invari-

ant blur was developed in [22]. Another fast spatial domain method was recently suggested

in [28], where low-resolution images are registered with respect to a reference frame defining a

nonuniformly spaced high-resolution grid. Then, an interpolation method called Delaunay tri-

angulation is used for creating a noisy and blurry high-resolution image, which is subsequently

deblurred. All of the above methods assumed the additive Gaussian noise model. Furthermore,

regularization was either not implemented or it was limited to Tikhonov regularization.

In recent years there has also been a growing number of learning based MAP meth-

1where the number of non-redundant low-resolution frames is smaller than the square of resolution enhancement
factor. A resolution enhancement factor of r means that low-resolution images of dimension Q1 × Q2 produce a
high-resolution output of dimension rQ1 × rQ2. Scalars Q1 and Q2 are the number of pixels in the vertical and
horizontal axes of the low-resolution images, respectively.

13



ods, where the regularization-like penalty terms are derived from collections of training sam-

ples [29–32]. For example, in [31] an explicit relationship between low-resolution images of

faces and their known high-resolution image is learned from a face database. This learned infor-

mation is later used in reconstructing face images from low-resolution images. Due to the need

for gathering a vast number of examples, often these methods are only effective when applied

to very specific scenarios, such as faces or text.

Considering outliers, [1] describes a very successful robust super-resolution method,

but lacks the proper mathematical justification (limitations of this robust method and its relation

to our proposed method are discussed in Appendix B). Also, to achieve robustness with respect

to errors in motion estimation, the very recent work of [33] has proposed an alternative solu-

tion based on modifying camera hardware. Finally, [34–36] have considered quantization noise

resulting from video compression and proposed iterative methods to reduce compression noise

effects in the super-resolved outcome. More comprehensive surveys of the different grayscale

multi-frame super-resolution methods can be found in [7, 20, 37, 38].

Since super-resolution methods reconstruct discrete images, we use the two most

common matrix notations, formulating the general continues super-resolution model of (2.1)

in the pixel domain. The more popular notation used in [1, 17, 22] considers only camera lens

blur and is defined as:

Y (k) = D(k)Hcam(k)F (k)X + V (k) k = 1, . . . , N , (2.2)

where the [r2Q1Q2 × r2Q1Q2] matrix F (k) is the geometric motion operator between the dis-

crete high-resolution frame X (of size [r2Q1Q2×1]) and the kth low-resolution frame Y (k) (of

size [Q1Q2 × 1]) which are rearranged in lexicographic order and r is the resolution enhance-

ment factor. The camera’s point spread function (PSF) is modeled by the [r2Q1Q2 × r2Q1Q2]

blur matrix Hcam(k), and [Q1Q2 × r2Q1Q2] matrix D(k) represents the decimation operator.

The [r2Q1Q2 × 1] vector V (k) is the system noise and N is the number of available low-

resolution frames.

Considering only atmosphere and motion blur, [28] recently presented an alternate
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matrix formulation of (2.1) as

Y (k) = D(k)F (k)Hatm(k)X + V (k) k = 1, . . . , N . (2.3)

In conventional imaging systems (such as video cameras), camera lens (and CCD) blur has

a more important effect than the atmospheric blur (which is very important for astronomical

images). In this chapter we use the model (2.2). Note that, under some assumptions which

will be discussed in Section 2.2.2, blur and motion matrices commute and the general matrix

super-resolution formulation from (2.1) can be rewritten as:

Y (k) = D(k)Hcam(k)F (k)Hatm(k)X + V (k)

= D(k)Hcam(k)Hatm(k)F (k)X + V (k) k = 1, . . . , N . (2.4)

Defining H(k) = Hcam(k)Hatm(k) merges both models into a form similar to (2.2).

In this chapter, we propose a fast and robust super-resolution algorithm using the L1

norm, both for the regularization and the data fusion terms. Whereas the former (regularization

term) is responsible for edge preservation, the latter (data fusion term) seeks robustness with

respect to motion error, blur, outliers, and other kinds of errors not explicitly modeled in the

fused images. We show that our method’s performance is superior to what was proposed earlier

in [22], [17], [1], etc. and has fast convergence. We also mathematically justify a non-iterative

data fusion algorithm using a median operation and explain its superior performance.

This chapter is organized as follows: Section 2.2 explains the main concepts of robust

super-resolution; subsection 2.2.2 justifies using the L1 norm to minimize the data error term;

subsection 2.2.3 justifies using our proposed regularization term; subsection 2.2.4 combines

the results of the two previous sections and explains our method and subsection 2.2.5 proposes

a faster implementation method. Simulations on both real and synthetic data sequences are

presented in Section 2.3, and Section 2.4 concludes this chapter.
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2.2 Robust Super-Resolution

2.2.1 Robust Estimation

Estimation of an unknown high-resolution image is not exclusively based on the low-

resolution measurements. It is also based on many assumptions such as noise or motion models.

These models are not supposed to be exactly true, as they are merely mathematically convenient

formulations of some general prior information.

From many available estimators, which estimate a high-resolution image from a set of

noisy low-resolution images, one may choose an estimation method which promises the optimal

estimation of the high-resolution frame, based on certain assumptions on data and noise models.

When the fundamental assumptions of data and noise models do not faithfully describe the

measured data, the estimator performance degrades. Furthermore, existence of outliers, which

are defined as data points with different distributional characteristics than the assumed model,

will produce erroneous estimates. A method which promises optimality for a limited class

of data and noise models may not be the most effective overall approach. Often, estimation

methods which are not as sensitive to modeling and data errors may produce better and more

stable robust results.

To study the effect of outliers the concept of a breakdown point has been used to

measure the robustness of an algorithm. The breakdown point is the smallest percentage of

outlier contamination that may force the value of the estimate outside some range [39]. For

instance, the breakdown point of the simple mean estimator is zero, meaning that one single

outlier is sufficient to move the estimate outside any predicted bound. A robust estimator, such

as the median estimator, may achieve a breakdown equal to 0.5 (or 50 percent), which is the

highest value for breakdown points. This suggests that median estimation may not be affected

by data sets in which outlier contaminated measurements form less that half of all data points.

A popular family of estimators are the Maximum Likelihood type estimators (M-

estimators) [40]. We rewrite the definition of these estimators in the super-resolution context as
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the following minimization problem:

X̂ = ArgMin
X

[
N∑

k=1

ρ(Y (k),D(k)H(k)F (k)X )

]
, (2.5)

or by an implicit equation

∑
k

Ψ(Y (k),D(k)H(k)F (k)X ) = 0, (2.6)

where ρ is measuring the “distance” between the model and measurements, and

Ψ(Y (k),D(k)H(k)F (k)X ) = ∂
∂X ρ(Y (k),D(k)H(k)F (k)X ). The maximum likelihood es-

timate of X for an assumed underlying family of exponential densities f(Y (k),D(k)H(k)F (k)X )

can be achieved when Ψ(Y (k),D(k)H(k)F (k)X ) = − log f(Y (k),D(k)H(k)F (k)X ).

To find the maximum likelihood (ML) estimate of the high-resolution image, many

papers such as [19], [22], [17] adopt a data model such as (2.2) and model V (k)(additive noise)

as white Gaussian noise. With this noise model, the least squares approach will result in the

maximum likelihood estimate [41]. The least squares formulation is achieved when ρ is the L2

norm of residual:

X̂ = ArgMin
X

[
N∑

k=1

‖D(k)H(k)F (k)X − Y (k)‖2
2

]
. (2.7)

For the special case of super-resolution, based on [22], we will show in the next sec-

tion, that least-squares estimation has the interpretation of being a non-robust mean estimation.

As a result, least-squares based estimation of a high-resolution image, from a data set contami-

nated with non-Gaussian outliers, produces an image with visually apparent errors.

To appreciate this claim and study the visual effects of different sources of outliers in a

video sequence, we set up the following experiments. In these experiments, four low-resolution

images were used to reconstruct a higher resolution image with twice as many pixels in vertical

and horizontal directions (a resolution enhancement factor of two using the least-squares ap-

proach (2.7)). Figure 2.2(a) shows the original high-resolution image and Figure 2.2(b) shows

one of these low-resolution images which has been acquired by shifting Figure 2.2(a) in vertical
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and horizontal directions and subsampling it by factor of two (pixel replication is used to match

its size with other pictures).

In the first experiment one of the four low-resolution images contained affine motion

with respect to the other low-resolution images. If the model assumes translational motion, this

results in a very common source of error when super-resolution is applied to real data sequences,

as the respective motion of camera and the scene are seldom pure translational. Figure 2.2(c)

shows this (zoomed) outlier image. Figure 2.2(d) shows the effect of this error in the motion

model (shadows around Lena’s hat) when the non robust least-squares approach [22] is used for

reconstruction.

To study the effect of non-Gaussian noise models, in the second experiment all four

low-resolution images were contaminated with salt and pepper noise. Figure 2.2(e) shows one

of these low-resolution images, and Figure 2.2(f) is the outcome of the least-squares approach

for reconstruction.

As the outlier effects are visible in the output results of least square based super-

resolution methods, it seems essential to find an alternative estimator. This new estimator should

have the essential properties of robustness to outliers, and fast implementation.

2.2.2 Robust Data Fusion

In subsection 2.2.1, we discussed the shortcomings of least squares based high-resolution

image reconstruction. In this subsection, we study the family of Lp, 1 ≤ p ≤ 2 norm estimators.

We choose the most robust estimator of this family, which results in images with the least outlier

effects and show how implementation of this estimator requires minimum memory usage and is

very fast.

The following expression formulates the Lp minimization criterion:

X̂ = ArgMin
X

[
N∑

k=1

‖D(k)H(k)F (k)X − Y (k)‖p
p

]
. (2.8)
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a: Original HR Frame b: LR Frame

c: LR Frame with Zoom d: Least-Squares Result

e: LR Frame with Salt and Pepper Outlier f: Least-Squares Result

Figure 2.2: Simulation results of outlier effects on super-resolved images. The original high-resolution
image of Lena in (a) was warped with translational motion and down-sampled resulting in four images
such as (b). (c) is an image acquired with downsampling and zoom (affine motion). (d) Reconstruction
of these four low-resolution images with least-squares approach. (e) One of four LR images acquired by
adding salt and pepper noise to set of images in (b). (f) Reconstruction of images in (e) with least-squares
approach.
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Note that if p = 2 then (2.8) will be equal to (2.7).

Considering translational motion and with reasonable assumptions such as common

space-invariant PSF, and similar decimation factor for all low-resolution frames (i.e. ∀k H(k) =

H & D(k) = D which is true when all images are acquired with the same camera), we cal-

culate the gradient of the Lp cost. We will show that Lp norm minimization is equivalent to

pixelwise weighted averaging of the registered frames. We calculate these weights for the spe-

cial case of L1 norm minimization and show that L1 norm converges to median estimation

which has the highest breakpoint value.

Since H and F (k) are block circulant matrices, they commute (F (k)H = HF (k)

and FT (k)HT = HT F T (k)). Therefore, (2.8) may be rewritten as:

X̂ = ArgMin
X

[
N∑

k=1

‖DF (k)HX − Y (k)‖p
p

]
. (2.9)

We define Z = HX . So Z is the blurred version of the ideal high-resolution image X. Thus,

we break our minimization problem in two separate steps:

1. Finding a blurred high-resolution image from the low-resolution measurements (we call

this result Ẑ).

2. Estimating the deblurred image X̂ from Ẑ

Note that anything in the null space of H will not converge by the proposed scheme. However,

if we choose an initialization that has no gradient energy in the null space, this will not pose a

problem (see [22] for more details). As it turns out, the null space of H corresponds to very

high frequencies, which are not part of our desired solution. Note that addition of an appropriate

regularization term (Section 2.2.3) will result in a well-posed problem with an empty null-space.

To find Ẑ, we substitute HX with Z:

Ẑ = ArgMin
Z

[
N∑

k=1

‖DF (k)Z − Y (k)‖p
p

]
. (2.10)
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The gradient of the cost in (2.10) is:

Gp =
∂

∂Z

[
N∑

k=1

‖DF (k)Z − Y (k)‖p
p

]

=
N∑

k=1

F T (k)DT sign(DF (k)Z − Y (k)) � |DF (k)Z − Y (k)|p−1, (2.11)

where operator � is the element-by-element product of two vectors.

The vector Ẑ which minimizes the criterion (2.10) will be the solution to Gp = 0.

There is a simple interpretation for the solution: The vector Ẑ is the weighted mean of all

measurements at a given pixel, after proper zero filling2 and motion compensation.

To appreciate this fact, let us consider two extreme values of p. If p = 2, then

G2 =
N∑

k=1

F T (k)DT (DF (k)Ẑn − Y (k)) = 0, (2.12)

which is proved in [22] to be the pixelwise average of measurements after image registration. If

p = 1 then the gradient term will be:

G1 =
N∑

k=1

F T (k)DT sign(DF (k)Ẑ − Y (k)) = 0. (2.13)

We note that FT (k)DT copies the values from the low-resolution grid to the high-resolution

grid after proper shifting and zero filling, and DF (k) copies a selected set of pixels in high-

resolution grid back on the low-resolution grid (Figure 2.3 illustrates the effect of upsampling

and downsampling matrices DT , and D). Neither of these two operations changes the pixel

values. Therefore, each element of G1, which corresponds to one element in Ẑ , is the aggregate

of the effects of all low-resolution frames. The effect of each frame has one of the following

three forms:

1. Addition of zero, which results from zero filling.

2. Addition of +1, which means a pixel in Ẑ was larger than the corresponding contributing

pixel from frame Y (k).
2The zero filling effect of the upsampling process is illustrated in Figure 2.3.
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Figure 2.3: Effect of upsampling DT matrix on a 3 × 3 image and downsampling matrix D on the
corresponding 9 × 9 upsampled image (resolution enhancement factor of three). In this figure, to give
a better intuition the image vectors are reshaped as matrices. In this thesis, we assume that the blurring
effects of the CCD are captured by the blur matrix H , and therefore the CCD downsampling process
can be modeled by a simple periodic sampling of the high-resolution image. Hence, The corresponding
upsampling process is implemented as a zero filling process.

3. Addition of −1, which means a pixel in Ẑ was smaller than the corresponding contribut-

ing pixel from frame Y (k).

A zero gradient state (G1 = 0) will be the result of adding an equal number of −1 and +1,

which means each element of Ẑ should be the median value of corresponding elements in the

low-resolution frames. X̂, the final super-resolved picture, is calculated by deblurringẐ .

So far we have shown that p = 1 results in pixelwise median and p = 2 results

in pixelwise mean of all measurements after motion compensation. According to (2.11), if

1 < p < 2 then both sign(DF (k)Zn − Y (k)) and |DF (k)Zn − Y (k)|p−1 terms appear in Gp.

Therefore, when the value of p is near one, Ẑ is a weighted mean of measurements, with much

larger weights around the measurements near the median value, while when the value of p is

near two the weights will be distributed more uniformly.

In this subsection we studied the Lp, 1 ≤ p ≤ 2 norm minimization family. As

p −→ 1, this estimator takes the shape of median estimator, which has the highest breakpoint

value, making it the most robust cost function. For the rest of this chapter, we choose L1 to

minimize the measurement error3 (note that we left out the study of Lp, 0 ≤ p < 1 norm

3L1 norm minimization is the ML estimate of data in the presence of Laplacian noise. The statistical analysis
presented in [42] and Appendices D-C justifies modeling the super-resolution noise in the presence of different
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minimization family as they are not convex functions).

In the square 4 or under-determined cases, there is only one measurement available

for each high-resolution pixel. As median and mean operators for one or two measurements

give the same result, L1 and L2 norm minimizations will result in identical answers. Also in

the under-determined cases certain pixel locations will have no estimate at all. For these cases,

it is essential for the estimator to have an extra term, called the regularization term, to remove

outliers. The next section discusses different regularization terms and introduces a robust and

convenient regularization term.

2.2.3 Robust Regularization

As mentioned in Chapter 1, super-resolution is an ill-posed problem [17], [43]. For

the under-determined cases (i.e. when fewer than r2 non-redundant frames are available), there

exist an infinite number of solutions which satisfy (2.2). The solution for square and over-

determined 5 cases is not stable, which means small amounts of noise in the measurements

will result in large perturbations in the final solution. Therefore, considering regularization in

super-resolution as a means for picking a stable solution is indeed necessary. Also, regulariza-

tion can help the algorithm to remove artifacts from the final answer and improve the rate of

convergence. Of the many possible regularization terms, we desire one which results in high-

resolution images with sharp edges and is easy to implement.

A regularization term compensates the missing measurement information with some

general prior information about the desirable high-resolution solution, and is usually imple-

mented as a penalty factor in the generalized minimization cost function (5.5):

X̂ = ArgMin
X

[
N∑

k=1

ρ(Y (k),D(k)H(k)F (k)X ) + λΥ(X)

]
, (2.14)

sources of outliers as Laplacian probability density function (PDF) rather than Gaussian PDF.
4where the number of non-redundant low-resolution frames is equal to the square of resolution enhancement

factor.
5where the number of non-redundant low-resolution frames is larger than the square of resolution enhancement

factor.
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where λ, the regularization parameter, is a scalar for properly weighting the first term (similarity

cost) against the second term (regularization cost) and Υ is the regularization cost function.

One of the most widely used regularization cost functions is the Tikhonov cost func-

tion [11], [17]:

ΥT (X) = ‖ΛX‖2
2, (2.15)

where Λ is usually a high-pass operator such as derivative, Laplacian, or even identity matrix.

The intuition behind this regularization method is to limit the total energy of the image (when

Λ is the identity matrix) or forcing spatial smoothness (for derivative or Laplacian choices of

Λ). As the noisy and edge pixels both contain high-frequency energy, they will be removed in

the regularization process and the resulting reconstructed image will not contain sharp edges.

Certain types of regularization cost functions work effectively for some special types

of images but are not suitable for general images. For instance Maximum Entropy regularization

produces sharp reconstructions of point objects, such as star fields in astronomical images [16],

however it is not applicable to natural images.

One of the most successful regularization methods for denoising and deblurring is

the total variation (TV) method [44]. The total variation criterion penalizes the total amount of

change in the image as measured by the L1 norm of the magnitude of the gradient and is loosely

defined as:

ΥTV (X) = ‖∇X‖1,

where ∇ is the gradient operator. The most useful property of total variation is that it tends to

preserve edges in the reconstruction [16], [44], [45], as it does not severely penalize steep local

gradients.

Based on the spirit of the total variation criterion, and a related technique called the

bilateral filter (Appendix A), we introduce our robust regularizer called Bilateral Total Variation

(BTV), which is computationally cheap to implement, and preserves edges. The regularizing
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function looks like

ΥBTV (X) =
P∑

l,m=−P

α|m|+|l|‖X − Sl
xSm

y X‖1, (2.16)

where Sl
x and Sm

y are the operators corresponding to shifting the image represented by X by l

pixels in the horizontal direction and m pixels in the vertical direction, respectively. This cost

function in effect computes derivatives across multiple scales of resolution (as determined by

the parameter P ). The scalar weight 0<α<1 is applied to give a spatially decaying effect to the

summation of the regularization term. The parameter “P” defines the size of the corresponding

bilateral filter kernel. The scalar weight α, 0 < α < 1, is applied to give a spatially decaying

effect to the summation of the regularization terms.

It is easy to show that this regularization method is a generalization of other popular

regularization methods. If P = α = 1, and Qx and Qy are the first derivative (Qx = I − Sx

and Qy = I − Sy) then (2.16) results in

ΥBTV (X) = ‖QxX‖1 + ‖QyX‖1, (2.17)

which is suggested in [46] as a reliable and computationally efficient approximation to the Total-

Variation prior [44].

To compare the performance of BTV (P ≥ 1) to common TV prior (P = 1), we

set up the following denoising experiment. We added Gaussian white noise of mean zero and

variance 0.045 to the image in Figure 2.4(a) resulting in the noisy image of Figure 2.4(b). If X

and Y represent the original and corrupted images then following (2.14), we minimized

X̂ = ArgMin
X

[‖Y − X‖2
2 + λΥ(X)

]
(2.18)

to reconstruct the original image. Tikhonov denoising resulted in Figure 2.4(c), where Λ in

(2.15) was replaced by the Laplacian kernel

Λ =
1
8

⎡⎢⎢⎢⎢⎣
1 1 1

1 −8 1

1 1 1

⎤⎥⎥⎥⎥⎦ . (2.19)
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Although a relatively large regularization factor (λ = 4.5) was chosen for this reconstruction

which resulted in the loss of sharp edges, the noise has not been removed effectively. The result

of using TV prior (P = 1, λ = 0.009) for denoising is shown in Figure 2.4(d). Figure 2.4(e)

shows the result of applying BTV prior (P = 3, λ = 0.009)6. Notice the effect of each recon-

struction method on the pixel indicated by an arrow in Figure 2.4(a). As this pixel is surrounded

by non-similar pixels, TV prior considers it as a heavily noisy pixel, and uses the value of im-

mediate neighboring pixels to estimate its original value. On the other hand, BTV considers

a larger neighborhood. By bridging over immediate neighboring pixels, the value of similar

pixels are also considered in graylevel estimation of this pixel, therefore the smoothing effect

in Figure 2.4(e) is much less than Figure 2.4(d). Figure 2.4(f) compares the performance of TV

and BTV denoising methods in estimating graylevel value of the arrow indicated pixel. Unlike

BTV regularization, increasing the number of iterations in Tikhonov and TV regularization will

result in more undesired smoothing. This example demonstrates the tendency of other regular-

ization functionals to remove point like details from the image. The proposed regularization not

only produces sharp edges but also retains point like details.

To compare the performance of our regularization method to the Tikhonov regular-

ization method, we set up another experiment. We corrupted an image by blurring it with a

Gaussian blur kernel followed by adding Gaussian additive noise. We reconstructed the image

using Tikhonov and our proposed regularization terms (this scenario can be thought of as a

super-resolution problem with resolution factor of one). If X and Y represent the original and

corrupted images and H represents the matrix form of the blur kernel then following (2.14), we

minimized

X̂ = ArgMin
X

[‖Y − HX‖2
2 + λΥ(X)

]
(2.20)

6The criteria for parameter selection in this example (and other examples discussed in this thesis) was to choose
parameters which produce visually most appealing results. Therefore to ensure fairness, each experiment was re-
peated several times with different parameters and the best result of each experiment was chosen as the outcome of
each method. Figure 2.4(c) is an exception where we show that Tikhonov regularization fails to effectively remove
noise even with a very large regularization factor.
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a: Original b: Noisy

c: Reconstruction using Tikhonov d: Reconstruction using TV
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e: Reconstruction using BTV f: Error in gray-level value estimation

Figure 2.4: a-e: Simulation results of denoising using different regularization methods. f: Error in gray-
level value estimation of the pixel indicated by arrow in (a) versus the iteration number in Tikhonov
(solid line), TV (dotted line), and Bilateral TV (broken line) denoising.

to reconstruct the blurred noisy image.

Figure 2.5 shows the results of our experiment. Figure 2.5(a) shows the original
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image(X). Figure 2.5(b) is the corrupted Y = HX + V , where V is the additive noise. Figure

2.5(c) is the result of reconstruction with Tikhonov regularization (Υ(X) = ‖ΛX‖22), where Λ

in (2.15) was replaced by the Laplacian kernel (2.19) and λ = 0.03. Figure 2.5(d) shows the

result of applying our regularization criterion (Υ(X) =
∑P

l,m=−P α|m|+|l|‖X − Sl
xSm

y X‖1)

with the following parameters: α = 0.7, λ = 0.17 and P = 2. The best Mean Square Error7

(MSE) achieved by Tikhonov regularization was 313 versus 215 for the proposed regularization.

The superior edge preserving property of the bilateral prior is apparent in this example.

2.2.4 Robust Super-Resolution Implementation

In this subsection, based on the material developed in sections 2.2.2 and 2.2.3, a so-

lution for the robust super-resolution problem will be proposed. Combining the ideas presented

thus far, we propose a robust solution of the super-resolution problem as follows

X̂=ArgMin
X

⎡⎣ N∑
k=1

‖D(k)H(k)F (k)X − Y (k)‖1 + λ

P∑
l,m=−P

α|m|+|l|‖X − Sl
xS

m
y X‖1

⎤⎦ .

(2.21)

We use steepest descent to find the solution to this minimization problem:

X̂n+1=X̂n− β

⎧⎪⎪⎪⎨⎪⎪⎪⎩
N∑

k=1

F T (k)HT (k)DT (k)sign(D(k)H(k)F (k)X̂n− Y (k))

+λ

P∑
l,m=−P

α|m|+|l|[I − S−m
y S−l

x ]sign(X̂n − Sl
xS

m
y X̂n)

⎫⎬⎭ , (2.22)

where β is a scalar defining the step size in the direction of the gradient. S−l
x and S−m

y define

the transposes of matrices Sl
x and Sm

y , respectively and have a shifting effect in the opposite

directions as Sl
x and Sm

y .

Simulation results in Section 2.3 will show the strength of the proposed algorithm.

7Mean square error of an estimate is defined as MSE = E{(X̂ − X)2}, where E is the expected value operator,
X̂ is the estimate, and X is the true value of the vector to be estimated.
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a: Original b: Blurred and Noisy

c: Best Tikhonov Regularization d: Proposed Regularization

Figure 2.5: Simulation results of deblurring using different regularization methods. The Mean Square
Error (MSE) of reconstructed image using Tikhonov regularization (c) was 313. The MSE of recon-
structed image using BTV (d) was 215.

The matrices F , H , D, S and their transposes can be exactly interpreted as direct image oper-

ators such as shift, blur, and decimation [47] [4]. Noting and implementing the effects of these

matrices as a sequence of operators spares us from explicitly constructing them as matrices.

This property helps our method to be implemented in an extremely fast and memory efficient

way.

Figure 2.6 is the block diagram representation of (2.22). There, each low-resolution

measurement Y (k) will be compared to the warped, blurred and decimated current estimate
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of high-resolution frame X̂n. Block Gk represents the gradient back projection operator that

compares the kth low-resolution image to the estimate of the high-resolution image in the nth

steepest descent iteration. Block Rm,l represents the gradient of the regularization term, where

the high-resolution estimate in the nth steepest descent iteration is compared to its shifted ver-

sion (l pixel shift in horizontal and m pixel shift in vertical directions).

Details of the blocks Gk and Rm,l are defined in Figures 2.7(a) and 2.7(b). Block

T (PSF ) in Figure 2.7(a) replaces the matrix HT (k) with a simple convolution. Function T

flips the columns of PSF kernel in the left-right direction (that is, about the vertical axis), and

then flips the rows of PSF kernel in the up-down direction (that is, about the horizontal axis)8.

The DT (k) up-sampling block in Figure 2.7(a) can be easily implemented by filling r−1 zeros

both in vertical and horizontal directions around each pixel (Figure 2.3). And finally the FT (k)

shift-back block in Figure 2.7(a), is implemented by inverting the translational motion in the

reverse direction. Note that even for the more general affine motion model a similar inverting

property (though more complicated) is still valid.

Parallel processing potential of this method, which significantly increases the overall

speed of implementation, can be easily interpreted from Figure 2.6, where the computation of

each Gk or Rl,m blocks may be assigned to a separate processor.

Our robust super-resolution approach also has an advantage in the computational as-

pects over other methods including the one proposed in [1]. In our method, an inherently robust

cost function has been proposed, for which a number of computationally efficient numerical

minimization methods9 are applicable. On the contrary, [1] uses steepest descent method to

minimize the non-robust L2 norm cost function, and robustness is achieved by modifying the

steepest descent method, where the median operator is used in place of summation operator

in computing the gradient term of (2.12). Implementing the same scheme of substituting the

summation operator with the median operator in computationally more efficient methods such

8If the PSF kernel has even dimensions, one extra row or column of zeros will be added to it, to make it odd size
(zero columns and rows have no effect in convolution process).

9Such as Conjugate Gradient (CG), Preconditioned Conjugate Gradient (PCG), Jacobi, and many others.
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Figure 2.6: Block diagram representation of (2.22), blocks G k and Rm,l are defined in Figure 2.7.

a:Block diagram representation of similarity cost derivative (Gk)
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b:Block diagram representation of regularization cost derivative (Rm,l)

Figure 2.7: Extended Block diagram representation of Gk and Rm,l blocks in Figure 2.6.
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as conjugate gradient is not a straightforward task and besides it is no longer guaranteed that the

modified steepest descent and conjugate gradient minimization converge to the same answer.

As an example, Figure 2.8(c) and Figure 2.8(d) show the result of implementing the

proposed method on the same images used to generate Figures 2.2(d), and Figure 2.2(f) (re-

peated in Figures 2.8(a) and 2.8(b) for the sake of comparison), respectively. The outlier effects

have been reduced significantly (more detailed examples are presented in section 2.3).

a b

c d

Figure 2.8: Reconstruction of the outlier contaminated images in Figure 2.2. Non-robust reconstructed
images in Figures 2.2(d) and 2.2(f) are repeated in (a) and (b), respectively for the sake of comparison.
The images in (c)-(d) are the robust reconstructions of the same images that was used to produce Figures
(a)-(b), using equation (2.22). Note the shadow around the hat in (a) and the salt and pepper noise in (b)
have been greatly reduced in (c) and (d).

In the next section we propose an alternate method to achieve further improvements

in computational efficiency.
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2.2.5 Fast Robust Super-Resolution Formulation

In Section 2.2.4, we proposed an iterative robust super-resolution method based on

equation (2.22). Although implementation of (2.22) is very fast10, for real-time image sequence

processing, faster methods are always desirable. In this subsection, based on the interpretation

of (2.13) offered in Section 2.2.2, we simplify (2.21) to achieve a faster method.

In this method, resolution enhancement is broken into two consecutive steps:

1. Non-iterative data fusion.

2. Iterative deblurring-interpolation

As we described in Section 2.2.2, registration followed by the pixelwise median operation (what

we call median Shift-and-Add) results in Ẑ = HX̂. Usage of the median operator for fusing

low-resolution images is also suggested in [21] and [23].

The goal of the deblurring-interpolation step is finding the deblurred high-resolution

frame X̂. Note that for the under-determined cases not all Ẑ pixel values can be defined in

the data fusion step, and their values should be defined in a separate interpolation step. In this

chapter unlike [21], [23] and [28], interpolation and deblurring are done simultaneously.

The following expression formulates our minimization criterion for obtainingX̂ from

Ẑ

X̂ = ArgMin
X

⎡⎣‖Φ(HX − Ẑ)‖1 + λ
′

P∑
l,m=−P

α|m|+|l|‖X − Sl
xS

m
y X‖1

⎤⎦ , (2.23)

where the confidence matrix Φ is a diagonal matrix with diagonal values equal to the square root

of the number of measurements that contributed to make each element ofẐ (in the square case

Φ is the identity matrix). So, the undefined pixels of Ẑ have no effect on the high-resolution

estimate X̂ . On the other hand, those pixels of Ẑ which have been produced from numerous

measurements, have a stronger effect in the estimation of the high-resolution frameX̂.

As Φ is a diagonal matrix, ΦT = Φ, and the corresponding steepest descent solution

10Computational complexity and memory requirement is similar to the method proposed in [25].

33



of minimization problem (2.23) can be expressed as

X̂n+1 = X̂n− β

⎧⎪⎪⎪⎨⎪⎪⎪⎩HT ΦT sign(HX̂n− Ẑ)

+ λ
′

P∑
l,m=−P

α|m|+|l|[I − S−m
y S−l

x ]sign(X̂n − Sl
xS

m
y X̂n)

⎫⎬⎭ . (2.24)

Decimation and warping matrices (D and F ) and summation of measurements are not present

anymore, which makes the implementation of (2.24) much faster than (2.22). Note that physical

construction of matrix Φ is not necessary as it can be implemented as a mask matrix with the

size equal to that of image X.

2.3 Experiments

In this section we compare the performance of the resolution enhancement algorithms

proposed in this chapter to existing resolution enhancement methods. The first example is a

controlled simulated experiment. In this experiment we create a sequence of low-resolution

frames by using one high-resolution image (Figure 2.9(a)). First we shifted this high-resolution

image by a pixel in the vertical direction. Then to simulate the effect of camera PSF, this

shifted image was convolved with a symmetric Gaussian low-pass filter of size 4 × 4 with

standard deviation equal to one. The resulting image was subsampled by the factor of 4 in each

direction. The same approach with different motion vectors (shifts) in vertical and horizontal

directions was used to produce 16 low-resolution images from the original scene. We added

Gaussian noise to the resulting low-resolution frames to achieve SNR equal11 to 18dB. One

of these low-resolution frames is presented in Figure 2.9(b). To simulate the errors in motion

estimation, a bias equal to one pixel shift in the low-resolution grid (or 4 pixel shift in the

high-resolution grid) was intentionally added to the known motion vectors of the last three low-

11Signal to noise ratio (SNR) is defined as 10 log10
σ2

σ2
n

, where σ2, σ2
n are variance of a clean frame and noise,

respectively
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Frame Number 1 2 3 4 5 6 7 8
Motion in X-Direction 0 0.25 0.5 0.75 0 0.25 0.5 0.75
Motion in Y-Direction 0 0 0 0 0.25 0.25 0.25 0.25

Frame Number 9 10 11 12 13 14 15 16
Motion in X-Direction 0 0.25 0.5 0.75 0 0.25 0.5 0.75
Motion in Y-Direction 0.5 0.5 0.5 0.5 0.75 0.75 0.75 0.75

Table 2.1: The true motion vectors (in the low-resolution grid) used for creating the low-resolution
frames in the experiment presented in Figure 2.9.

Frame Number 1 2 3 4 5 6 7 8
Motion in X-Direction 0 0.25 0.5 0.75 0 0.25 0.5 0.75
Motion in Y-Direction 0 0 0 0 0.25 0.25 0.25 0.25

Frame Number 9 10 11 12 13 14 15 16
Motion in X-Direction 0 0.25 0.5 0.75 0 -0.75 -0.5 -0.25
Motion in Y-Direction 0.5 0.5 0.5 0.5 0.75 -0.25 -0.25 -0.25

Table 2.2: The erroneous motion vectors (in the low-resolution grid) used for reconstructing the high-
resolution frames of the experiments presented in Figure 2.9.

resolution frames. The correct and erroneous motion vectors are shown in Table 2.1 and Table

2.2, respectively.

The result of implementing the non-iterative resolution enhancement method de-

scribed in [22] is shown in Figure 2.9(c). It is not surprising to see the motion error artifacts in

the high-resolution frame as the high-resolution image is the result of zero-filling, shifting and

adding the low-resolution measurements. Deblurring this result with the Wiener method12 (Fig-

ure 2.9(d)) does not remove these artifacts, of course. For reference, Figure 2.9(e) shows the

result of applying an iterative method based on minimizing the L2 norm, both for the residual

and the regularization terms. The following equation describes this minimization criterion

X̂=ArgMin

[
N∑

k=1

‖D(k)H(k)F (k)X − Y (k)‖2
2 + λ‖ΛX‖2

2

]
, (2.25)

in which Λ is defined in (2.19) and regularization factor λ was chosen to be 0.4. As the L2

12The Wiener deblurring is implemented by convolving a linear spatially-invariant kernel, known as Wiener Filter,
with the blurred image. Winer Filter, often estimated in the frequency domain, is the linear kernel that minimizes
the MSE of the difference between the ideal image and the restored one [16].
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norm is not robust to motion error, motion artifacts are still visible in the result. Note that the

relatively high regularization factor , chosen to reduce the motion artifact, has resulted in a

blurry image.

The robust super-resolution method which was proposed in [1] resulted in Figure

2.9(f). Figure 2.9(g) was obtained by simply adding the regularization term defined in (2.25)

to the proposed method of [1] which is far better than the L2 approach, yet exhibiting some

artifacts. Figure 2.9(h) shows the implementation of the proposed method described in Section

2.2.4. The selected parameters for this method were as follows: λ = 0.005, P = 2, β = 110,

α = 0.6. Figure 2.9(i) shows the implementation of the fast method described in Section

2.2.5. The selected parameters for this method were as follows: λ′ = 0.08, P = 2, β = 1,

α = 0.6. Comparing Figure 2.9(h) and 2.9(i) to other methods, we notice not only our method

has removed the outliers more efficiently, but also it has resulted in sharper edges without any

ringing effects.

Our second example is a real infrared camera image sequences with no known out-

liers; courtesy of B. Yasuda and the FLIR research group in the Sensors Technology Branch,

Wright Laboratory, WPAFB, OH. We used eight low-resolution frames of size [64 × 64] in our

reconstruction to get resolution enhancement factor of four (Figure 2.10(a) shows one of the

input low-resolution images)13. Figure 2.10(b) of size [256 × 256] shows the cubic spline in-

terpolation of Figure 2.10(a) by factor of four . The (unknown) camera PSF was assumed to be

a 4 × 4 Gaussian kernel with standard deviation equal to one. We used the method described

in [48] to computed the motion vectors. L2 norm reconstruction with Tikhonov regularization

(2.25) result is shown in Figure 2.10(c) where Λ is defined in (2.19) and regularization factor

λ was chosen to be 0.1. Figure 2.10(d) shows the implementation of (2.22) with the following

parameters λ = 0.006, P = 2, β = 81, and α = 0.5. Although modeling noise in these frames

as additive Gaussian is a reasonable assumption, our method achieved a better result than the

best L2 norm minimization.

13Note that this is an under-determined scenario.
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Our third experiment is a real compressed sequence of 20 images (containing transla-

tional motion) from a commercial surveillance video camera; courtesy of Adyoron Intelligent

Systems Ltd., Tel Aviv, Israel. Figure 2.11(a) is one of these low-resolution images (of size

[76 × 66]) and Figure 2.11(b) is the cubic spline interpolation of this image by factor of three

(of size [228×198]). We intentionally rotated five frames of this sequence (rotation from 20◦ to

60◦) out of position, creating a sequence of images with relative affine motion. The (unknown)

camera PSF was assumed to be a 5×5 Gaussian kernel with standard deviation equal to two. We

used the method described in [48] to computed the motion vectors with translational motion as-

sumption. The error in motion modeling results in apparent shadows in L2 norm reconstruction

with Tikhonov regularization (Figure 2.11(c)) where Λ is defined in (2.19) and regularization

factor λ was chosen to be 0.5. These shadows are removed in Figure 2.11(d), where the method

described in Section 2.2.4 (2.22) was used for reconstruction with the following parameters

λ = 0.003, P = 2, β = 50, and α = 0.7.

Our final experiment is a factor of three resolution enhancement of a real compressed

image sequence captured with a commercial webcam (3Com, Model No.3718). The (unknown)

camera PSF was assumed to be a 3×3 Gaussian kernel with standard deviation equal to 1. In this

sequence, two separate sources of motion were present. First, by shaking the camera a global

motion was created for each individual frame. Second, an Alpaca statue was independently

moved in to ten frames out of the total 55 input frames. One of the low-resolution input images

(of size [32 × 65]) is shown in Figure 2.12(a). Cubic spline interpolation of Figure 2.12(a) by

factor of three is shown in Figure 2.12(b). Figure 2.12(c) and Figure 2.12(d) (of size [96×195])

are the shift and add results using mean and median operators (minimizingẐ in (2.10) with p =

2 and p = 1, respectively). Note that the median operator has lessened the (shadow) artifacts

resulting from the Alpaca motion. L2 norm reconstruction with Tikhonov regularization (2.25)

results in Figure 2.12(e), where Λ is defined in (2.19) and regularization factor λ was chosen to
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be one. Figure 2.12(f) is the result of minimizing the following cost function

X̂ = ArgMin
X

⎡⎣ N∑
k=1

‖D(k)H(k)F (k)X − Y (k)‖2
2 + λ

P∑
l,m=−P

α|m|+|l|‖X − Sl
xSm

y X‖1

⎤⎦ ,

where L2 norm minimization of data error term is combined with Bilateral TV regularization

with the following parameters λ = 0.1, P = 2, α = 0.7, and β = 70 (steepest descent step

size). Note that the artifacts resulting from the motion of the Alpaca statue is visible in Figures

2.12(d)-(g). The result of using the robust super-resolution method proposed in [1] is shown in

Figure 2.12(h). Implementation of the method described in Section 2.2.4 equation (2.22) with

the following parameters λ = 0.003, P = 2, β = 30, and α = 0.7 resulted in Figure 2.12(i),

with the least outlier effect. And finally implementation of the fast method described in Section

2.2.5 (2.24) with the following parameters λ′ = 0.04, P = 2, β = 1, and α = 0.7 resulted in

Figure 2.12(j), which is very similar to the result in Figure 2.12(i).

2.4 Summary and Discussion

In this chapter, we presented an algorithm to enhance the quality of a set of noisy

blurred images and produce a high-resolution image with less noise and blur effects. We pre-

sented a robust super-resolution method based on the use of L1 norm both in the regularization

and the measurement terms of our penalty function. We showed that our method removes out-

liers efficiently, resulting in images with sharp edges. Even for images in which the noise

followed the Gaussian model, L1 norm minimization results were as good as L2 norm mini-

mization results, which encourages using L1 norm minimization for any data set. The proposed

method was fast and easy to implement.

We also proposed and mathematically justified a very fast method based on pixelwise

“Shift-and-Add” and related it to L1 norm minimization when relative motion is pure trans-

lational, and PSF and decimation factor is common and space-invariant in all low-resolution

images. Note that the mathematical derivation of the proposed shift and add method was in-

dependent of the constraint over decimation factor, but we included it as this constraint distin-
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guishes super-resolution from the more general problem of multi-scale image fusion. In the

presented experiments, we rounded the displacements in the high-resolution grid so that F (k)

applies only integer translations. This will not pose a problem as the rounding is done only on

the high-resolution grid [22]. However, we could as well shift the low-resolution images by

subpixel motion (e.g. using spline interpolation) as the justification given in Section 2.2.2 and

the formulation in (2.23) is general enough for both cases.

Analysis of the rate of convergence of the steepest descent method is only possible

for simplistic cases such as minimizing a quadratic function. Considering quantized images,

L1 norm minimization, and regularization terms make such analysis much harder. We have

observed that only 5-20 iterations are required for convergence to the desired solution, where

the initialization and the type of involved images play a vital role in determining the required

number of iterations. The outcome of the speed-up method of Section 2.2.5 is a very good ini-

tialization guess for the more general case of Section 2.2.4.

Although “cross validation” can be used to determine the parameter values [27], im-

plementing this for the L1 norm is rather more difficult and computationally expensive. Pa-

rameters like P can also be learned using a learning algorithm, however such an approach is

outside the scope of this chapter. We have found that setting P to 2 or 3 works well; using

higher values for P will be time consuming while not very useful in terms of producing higher

quality results.
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Figure 2.9: Controlled simulation experiment. Different resolution enhancement methods (r = 4) are
applied to the Figure (b).
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Figure 2.9: Controlled simulation experiment. Different resolution enhancement methods (r = 4) are
applied to the Figure (b).
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a: One of 8 LR Frames b: Cubic Spline Interpolation

c: L2 + Tikhonov d: L1 + Bilateral TV

Figure 2.10: Results of different resolution enhancement methods (r = 4) applied to Tank sequence.
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a: One of 20 LR Frames b: Cubic Spline Interpolation

c: L2 + Tikhonov d: L1 + Bilateral TV

Figure 2.11: Results of different resolution enhancement methods (r = 4) applied to Adyoron test
sequence.
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a: Frame 1 of 55 LR Frames b: Frame 50 of 55 LR Frames

c:Cubic Spline Interpolation of Frame 1 d: Mean Shift and Add

e: Median Shift and Add f: L2 + Tikhonov

Figure 2.12: Results of different resolution enhancement methods (r = 3) applied to the Alpaca se-
quence. Outlier effects are apparent in the non-robust reconstruction methods.
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g: L2 + Bilateral TV h: Zomet Method [1]

i: L1 + Bilateral TV j: Median Shift and Add + Bilateral TV

Figure 2.12: Results of different resolution enhancement methods applied to the Alpaca sequence. Out-
lier effects are apparent in the non-robust reconstruction method (g). The shadow of the Alpaca is
removed in the robust reconstruction methods of (h),(i), and (j).
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Chapter 3

Multi-Frame Demosaicing and Color

Super-Resolution

3.1 Introduction

In digital image processing, two reconstruction problems have been studied and solved

independently - super-resolution and demosaicing. The former (as studied in the previous chap-

ter) refers to the limited number of pixels and the desire to go beyond this limit using several

exposures. The latter refers to the color-filtering applied on a single CCD array of sensors on

most cameras, that measures a subset of R (red), G (green), and B (blue) values, instead of a

full RGB field1. It is natural to consider these problems in a joint setting because both refer to

resolution limitations at the camera. Also, since the measured images are mosaiced, solving the

super-resolution problem using pre-processed (demosaiced) images is sub-optimal and hence

inferior to a single unifying solution framework. In this chapter we propose a fast and robust

method for joint multi-frame demosaicing and color super-resolution.

The organization of this chapter is as follows. In Section 3.2 we review the super-

resolution and demosaicing problems and the inadequacy of independent solutions for them.

1Three CCD cameras which measure each color field independently tend to be relatively more expensive.
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In Section 3.3 we formulate and analyze the general mathematical model of the imaging sys-

tems we consider here. We also formulate and review the basics of the MAP estimator, robust

data fusion, and regularization methods. Armed with material developed in earlier sections,

in Section 3.4 we present and formulate our joint multi-frame demosaicing and color-super-

resolution method. In Section 3.5 we review two related methods of multi-frame demosaicing.

Experiments on both synthetic and real data sequences are given in Section 3.6 and concluding

remarks are presented in Section 3.7.

3.2 An overview of super-resolution and demosaicing problems

In this section, we study and review some of the previous work on super-resolution

and demosaicing problems. We show the inefficiency of independent solutions for these prob-

lems and discuss the obstacles to designing a unified approach for addressing these two common

shortcomings of digital cameras.

3.2.1 Super-Resolution

Digital cameras have a limited spatial resolution, dictated by their utilized optical

lens and CCD array. Surpassing this limit can be achieved by acquiring and fusing several low-

resolution images of the same scene, producing high-resolution images; this is the basic idea

behind super-resolution techniques [20, 38, 49] as studied in the previous chapter.

Note that almost all super-resolution methods to date have been designed to increase

the resolution of a single channel (grayscale or monochromatic) image. A related problem, color

SR, addresses fusing a set of previously demosaiced color low-resolution frames to enhance

their spatial resolution. To date, there is very little work addressing the problem of color SR. The

typical solution involves applying monochromatic SR algorithms to each of the color channels

independently [50, 51], while using the color information to improve the accuracy of motion

estimation. Another approach is transforming the problem to a different color space, where
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chrominance layers are separated from luminance, and SR is applied only to the luminance

channel [25]. Both of these methods are sub-optimal as they do not fully exploit the correlation

across the color bands.

In Section 3.6 we show that ignoring the relation between different color channels

will result in color artifacts in the super-resolved images. Moreover, as we will advocate later in

this chapter, even a proper treatment of the relation between the color layers is not sufficient for

removing color artifacts if the measured images are mosaiced. This brings us to the description

of the demosaicing problem.

3.2.2 Demosaicing

A color image is typically represented by combining three separate monochromatic

images. Ideally, each pixel reflects three data measurements; one for each of the color bands2.

In practice, to reduce production cost, many digital cameras have only one color measurement

(red, green, or blue) per pixel 3. The detector array is a grid of CCDs, each made sensitive to

one color by placing a color-filter array (CFA) in front of the CCD. The Bayer pattern shown

on the left hand side of Figure 3.2 is a very common example of such a color-filter. The values

of the missing color bands at every pixel are often synthesized using some form of interpolation

from neighboring pixel values. This process is known as color demosaicing.

Numerous demosaicing methods have been proposed through the years to solve this

under-determined problem, and in this section we review some of the more popular ones. Of

course, one can estimate the unknown pixel values by linear interpolation of the known ones

in each color band independently. This approach will ignore some important information about

the correlation between the color bands and will result in serious color artifacts. Note that with

the Bayer pattern, the Red and Blue channels are down-sampled two times more than the Green

channel. It is reasonable to assume that the independent interpolation of the Green band will

result in a more reliable reconstruction than the Red or Blue bands. This property, combined

2This is the scenario for the more expensive 3-CCD cameras.
3This is the scenario for cheaper 1-CCD cameras.
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with the assumption that the Red
Green and Blue

Green ratios are similar for the neighboring pixels,

makes the basics of the smooth hue transition method first discussed in [52].

Note that there is a negligible correlation between the values of neighboring pix-

els located on the different sides of an edge. Therefore, although the smooth hue transition

assumption is logical for smooth regions of the reconstructed image, it is not useful in the high-

frequency (edge) areas. Considering this fact, gradient-based methods, first addressed in [3], do

not preform interpolation across the edges of an image. This non-iterative method uses the sec-

ond derivative of the Red and Blue channels to estimate the edge direction in the Green channel.

Later, the Green channel is used to compute the missing values in the Red and Blue channels.

A variation of this method was later proposed in [53], where the second derivative of

the Green channel and the first derivative of the Red (or Blue) channels are used to estimate the

edge direction in the Green channel. The smooth hue and gradient based methods were later

combined in [2]. In this iterative method, the smooth hue interpolation is done with respect

to the local gradients computed in eight directions about a pixel of interest. A second stage

using anisotropic inverse diffusion will further enhance the quality of the reconstructed image.

This two step approach of interpolation followed by an enhancement step has been used in

many other publications. In [54], spatial and spectral correlations among neighboring pixels are

exploited to define the interpolation step, while adaptive median filtering is used as the enhance-

ment step. A different iterative implementation of the median filter is used as the enhancement

step of the method described in [55], that take advantage of a homogeneity assumption in the

neighboring pixels.

Iterative MAP methods form another important category of demosaicing methods. A

MAP algorithm with a smooth chrominance prior is discussed in [56]. The smooth chrominance

prior is also used in [57], where the original image is first transformed to YIQ representation4.

The chrominance interpolation is preformed using isotropic smoothing. The luminance inter-

polation is done using edge directions computed in a steerable wavelet pyramidal structure.

4YIQ is the standard color representation used in broadcast television (NTSC systems) [58].
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Other examples of popular demosaicing methods available in published literature are

[59], [60], [61], [62], [63], [64], and [65]. Almost all of the proposed demosaicing methods are

based on one or more of these following assumptions:

1. In the measured image with the mosaic pattern, there are more green sensors with regular

pattern of distribution than blue or red ones (in the case of Bayer CFA there are twice as

many greens than red or blue pixels and each is surrounded by 4 green pixels).

2. Most algorithms assume a Bayer CFA pattern, for which each red, green and blue pixel

is a neighbor to pixels of different color bands.

3. For each pixel, one and only one color band value is available.

4. The color pattern of available pixels does not change through the measured image.

5. The human eye is more sensitive to the details in the luminance component of the image

than the details in chrominance component [57].

6. The human eye is more sensitive to chromatic changes in the low spatial frequency region

than the luminance change [62].

7. Interpolation should be preformed along and not across the edges.

8. Different color bands are correlated with each other.

9. Edges should align between color channels.

Note that even the most popular and sophisticated demosaicing methods will fail to produce

satisfactory results when severe aliasing is present in the color-filtered image. Such severe

aliasing happens in cheap commercial still or video digital cameras, with small number of CCD

pixels. The color artifacts worsen as the number of CCD pixels decreases. The following

example shows this effect.

Figure 3.1.a shows a high-resolution image captured by a 3-CCD camera. If for cap-

turing this image, instead of a 3-CCD camera a 1-CCD camera with the same number of CCD
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pixels was used, the inevitable mosaicing process will result in color artifacts. Figure 3.1.d

shows the result of applying the demosaicing method of [2] with some negligible color-artifacts

on the edges.

Note that many commercial digital video cameras can only be used in lower spatial

resolution modes while working at higher frame rates. Figure 3.1.b shows a same scene from a

3-CCD camera with a down-sampling factor of 4 and Figure 3.1.e shows the demosaiced image

of it after color-filtering. Note that the color artifacts in this image are much more evident than

Figure 3.1.d. These color artifacts may be reduced by low-pass filtering the input data before

color-filtering. Figure 3.1.c shows a factor of four down-sampled version of Figure 3.1.a, which

is blurred with a symmetric Gaussian low-pass filter of size 4× 4 with standard deviation equal

to one, before down-sampling. The demosaiced image shown in Figure 3.1.f has less color

artifacts than Figure 3.1.e, however it has lost some high-frequency details.

The poor quality of single-frame demosaiced images stimulates us to search for multi-

frame demosaicing methods, where information from several low-quality images are fused to-

gether to produce high-quality demosaiced images.

3.2.3 Merging super-resolution and demosaicing into one process

Referring to the mosaic effects, the geometry of the single-frame and multi-frame

demosaicing problems are fundamentally different, making it impossible to simply cross-apply

traditional demosaicing algorithms to the multi-frame situation. To better understand the multi-

frame demosaicing problem, we offer an example for the case of translational motion. Suppose

that a set of color-filtered low-resolution images is available (images on the left in Figure 3.2).

We use the two step process explained in Section 3.4 to fuse these images. The Shift-and-

Add image on the right side of Figure 3.2 illustrates the pattern of sensor measurements in the

high-resolution image grid. In such situations, the sampling pattern is quite arbitrary depending

on the relative motion of the low-resolution images. This necessitates different demosaicing

algorithms than those designed for the original Bayer pattern.
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a: Original b: Down-sampled c: Blurred and down-sampled

downd: Demosaiced (a)down downe: Demosaiced (b)down downf: Demosaiced (c)down

Figure 3.1: A high-resolution image (a) captured by a 3-CCD camera is down-sampled by a factor of
four (b). In (c) the image in (a) is blurred by a Gaussian kernel before down-sampling by a factor of 4.
The images in (a), (b), and (c) are color-filtered and then demosaiced by the method of [2]. The results
are shown in (d), (e), (f), respectively.

Figure 3.2 shows that treating the green channel differently than the red or blue chan-

nels, as done in many single-frame demosaicing methods before, is not useful for the multi-

frame case. While globally there are more green pixels than blue or red pixels, locally, any

pixel may be surrounded by only red or blue colors. So, there is no general preference for one

color band over the others (the first and second assumptions in Section 3.2.2 are not true for the
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Figure 3.2: Fusion of 7 Bayer pattern low-resolution images with relative translational motion (the
figures in the left side of the accolade) results in a high-resolution image ( Ẑ) that does not follow Bayer
pattern (the figure in the right side of the accolade). The symbol “?” represents the high-resolution pixel
values that were undetermined (as a result of insufficient low-resolution frames) after the Shift-and-Add
step (Shift-and-Add method is extensively discussed in Chapter 2).

multi-frame case).

Another assumption, the availability of one and only one color band value for each

pixel, is also not correct in the multi-frame case. In the under-determined cases, there are not

enough measurements to fill the high-resolution grid. The symbol “?” in Figure 3.2 represents

such pixels. On the other hand, in the over-determined cases, for some pixels, there may in fact

be more than one color value available.

The fourth assumption in the existing demosaicing literature described earlier is not

true because the field of view (FOV) of real world low-resolution images changes from one

frame to the other, so the center and the border patterns of red, green, and blue pixels differ in

the resulting high-resolution image.
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3.3 Mathematical Model and Solution Outline

3.3.1 Mathematical Model of the Imaging System

In the previous chapter, we studied several distorting processes such as warping, blur-

ring, and additive noise that affect the quality of images acquired by commercial digital cam-

eras. These effects were illustrated in Figure 2.1 and mathematically modeled in (2.4). In this

chapter, we generalize this imaging system model to also consider the color-filtering effects as

illustrated in Figure 3.3. In this model, a real-world scene is seen to be warped at the camera

lens because of the relative motion between the scene and camera. The optical lens and aper-

ture result in the blurring of this warped image which is then sub-sampled and color-filtered at

the CCD. The additive readout noise at the CCD will further degrade the quality of captured

images.

We represent this approximated forward model by the following equation

Y i(k) = Di(k)H(k)F (k)X i + V i(k) (3.1)

= Mi(k)X i + V i(k) k = 1, . . . , N i = R,G,B ,

which can be also expressed as:

Y = MX+V , Y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y R(1)

Y G(1)

Y B(1)

Y R(2)
...

Y B(N)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, V =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V R(1)

V G(1)

V B(1)

V R(2)
...

V B(N)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

MR(1)

MG(1)

MB(1)

MR(2)
...

MB(N)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,X =

⎡⎢⎢⎢⎢⎣
XR

XG

XB

⎤⎥⎥⎥⎥⎦ .

(3.2)

The vectors Xi and Y i(k) are representing the ith band (R, G, or B) of the high-resolution color

frame and the kth low-resolution frame after lexicographic ordering, respectively. Matrix F (k)

is the geometric motion operator between the high-resolution and low-resolution frames. The

camera’s point spread function (PSF) is modeled by the blur matrix H(k). The matrix Di(k)
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Figure 3.3: Block diagram representing the image formation model considered in this chapter, where
X is the intensity distribution of the scene, V is the additive noise, and Y is the resulting color-filtered
low-quality image. The operators F , H , D, and A are representatives of the warping, blurring, down-
sampling, and color-filtering processes, respectively.
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represents the down-sampling operator, which includes both the color-filtering and CCD down-

sampling operations5. Geometric motion, blur, and down-sampling operators are covered by

the operator Mi(k), which we call the system matrix. The vector V i(k) is the system noise and

N is the number of available low-resolution frames.

The high-resolution color image (X) is of size [12r2Q1Q2 × 1]), where r is the res-

olution enhancement factor. The size of the vectors VG(k) and Y G(k) is [2Q1Q2 × 1] and

vectors V R(k), Y R(k), V B(k), and Y B(k) are of size [Q1Q2 × 1]. The geometric motion and

blur matrices are of size [4r2Q1Q2 × 4r2Q1Q2]. The down-sampling and system matrices are

of size [2Q1Q2 × 4r2Q1Q2] for the Green band, and of size [Q1Q2 × 4r2Q1Q2] for the Red

and Blue bands6.

Considered separately, super-resolution and demosaicing models are special cases of

the general model presented above. In particular, in the super-resolution literature the effect of

color-filtering is usually ignored [4, 11, 47] and therefore the model is simplified to

Y (k) = D(k)H(k)F (k)X + V (k) k = 1, . . . , N . (3.3)

In this model (as explained in the previous chapter) the low-resolution images Y (k) and the

high-resolution image X are assumed to be monochromatic. On the other hand, in the demo-

saicing literature only single frame reconstruction of color images is considered, resulting in the

simplified model

Y i = DiXi + V i i = R,G,B . (3.4)

As such, the classical approach to the multi-frame reconstruction of color images has

been a two-step process. The first step is to solve (3.4) for each image (demosaicing step) and

the second step is to use the model in (3.3) to fuse the low-resolution images resulting from

the first step, reconstructing the color high-resolution image (usually each R, G , or B bands is

processed individually). Figure 3.4 illustrates the block diagram representation of this method.

5It is convenient to think of Di(k) = Ai(k)D(k), where D(k) models the down-sampling effect of the CCD
and Ai(k) models the color-filter effect [66].

6Note that color super-resolution by itself is a special case of this model, where vectors V i(k) and Y i(k) are of
size [4Q1Q2 × 1] and matrices Mi(k) and Di(k) are of size [4Q1Q2 × 4r2Q1Q2] for any color band.
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Of course, this two step method is a suboptimal approach to solving the overall problem. In

Section 3.4, we propose a Maximum A-Posteriori (MAP) estimation approach to directly solve

(3.2). Figure 3.5 illustrates the block diagram representation of our proposed method.

Demosaic

Acquire a Set of 
LR Color

Filtered Images

A Set of LR 
Color Images

Super-Resolution

Super-Resolution

Super-Resolution

LR Red 
Bands

LR 
Green 

Bands

LR Blue 

Bands

HR Color 
Image

HR Red 

Band

HR 

Green 
Band

HR Blue 
Band

Figure 3.4: Block diagram representing the classical approach to the multi-frame reconstruction of color
images.

3.4 Multi-Frame Demosaicing

In Section 3.2.3 we indicated how the multi-frame demosaicing is fundamentally dif-

ferent than single-frame demosaicing. In this section, we propose a computationally efficient

MAP estimation method to fuse and demosaic a set of low-resolution frames (which may have

been color-filtered by any CFA) resulting in a color image with higher spatial resolution and

reduced color artifacts. Our MAP based cost function consists of the following terms, briefly

motivated in the previous section:

1. A penalty term to enforce similarities between the raw data and the high-resolution esti-

mate (Data Fidelity Penalty Term).

2. A penalty term to encourage sharp edges in the luminance component of the high-resolution
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image (Spatial Luminance Penalty Term).

3. A penalty term to encourage smoothness in the chrominance component of the high-

resolution image (Spatial Chrominance Penalty Term).

4. A penalty term to encourage homogeneity of the edge location and orientation in different

color bands (Inter-Color Dependencies Penalty Term).

Each of these penalty terms will be discussed in more detail in the following subsections.

Fuse LR Data

Acquire a Set of 
LR Color

Filtered Images

Demosaic HR Color 
Image

Simultaneous Super-Resolution and Demosaicing

Figure 3.5: Block diagram representing the proposed direct approach to the multi-frame reconstruction
of color images.

3.4.1 Data Fidelity Penalty Term

This term measures the similarity between the resulting high-resolution image and

the original low-resolution images. As explained in Section 2.2 and [4], L1 norm minimization

of the error term results in robust reconstruction of the high-resolution image in the presence of

uncertainties such as motion error. Considering the general motion and blur model of (3.2), the

(multi spectral) data fidelity penalty term is defined as:

J0(X) =
∑

i=R,G,B

N∑
k=1

‖Di(k)H(k)F (k)X i − Y i(k)‖1. (3.5)
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Note that the above penalty function is applicable for general models of data, blur and

motion. However, in this chapter we only treat the simpler case of common space invariant PSF

and translational motion. This could, for example, correspond to a vibrating camera acquiring

a sequence of images from a static scene.

For this purpose, we use the two step method of Section 2.2.5 to represent the data

fidelity penalty term, which is easier to interpret and has a faster implementation potential [4].

This simplified data fidelity penalty term is defined as

J0(X) =
∑

i=R,G,B

‖Φi

(
HX̂i − Ẑi

)
‖1 , (3.6)

where ẐR, ẐG, and ẐB are the three color channels of the color Shift-and-Add image,Ẑ . The

matrix Φi (i = R,G,B), is a diagonal matrix with diagonal values equal to the square root of

the number of measurements that contributed to make each element of Ẑi (in the square case

is the identity matrix). So, the undefined pixels of ẐB have no effect on the high-resolution

estimate. On the other hand, those pixels of ẐB which have been produced from numerous

measurements, have a stronger effect in the estimation of the high-resolution frame. The vectors

X̂R, X̂G, and X̂B are the three color components of the reconstructed high-resolution image

X̂. Figure 3.6 illustrates the block diagram representation of this fast two-step method.

3.4.2 Spatial Luminance Penalty Term

The human eye is more sensitive to the details in the luminance component of an

image than the details in the chrominance components [57]. Therefore, it is important that

the edges in the luminance component of the reconstructed high-resolution image look sharp.

As explained in Section 2.2.3, applying BTV regularization to the luminance component will

result in this desired property [4]. The luminance image can be calculated as the weighted sum

XL = 0.299XR + 0.597XG + 0.114XB as explained in [58]. The luminance regularization

term is then defined as

J1(X) =
P∑

l,m=−P

α|m|+|l|‖XL − Sl
xS

m
y XL‖1. (3.7)
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Fuse LR Data

Acquire a Set of 
LR Color

Filtered Images

Color (filtered)
Shift-and-Add

Image

Demosaic HR Color 
Image

Figure 3.6: Block diagram representing the proposed fast two-step approach (3.6) to the multi-frame
reconstruction of color images, applicable to the case of common space invariant PSF and translational
motion.

3.4.3 Spatial Chrominance Penalty Term

Spatial regularization is required also for the chrominance layers. However, since the

human visual system is less sensitive to the resolution of these bands, we can use a simpler reg-

ularization, based on the L2 norm (similar to the Tikhonov regularization discussed in Section

2.2.3)

J2(X) = ‖ΛXC1
‖2
2 + ‖ΛXC2

‖2
2 , (3.8)

where the images XC1
and XC2

are the I and Q layers in the YIQ color representation 7, and Λ

is a high-pass operator such as derivative, Laplacian, or even identity matrix.

3.4.4 Inter-Color Dependencies Penalty Term

This term penalizes the mismatch between locations or orientations of edges across

the color bands. Following [56], minimizing the vector product norm of any two adjacent color

pixels forces different bands to have similar edge location and orientation. The squared-norm

of the vector (outer) product of U : [ur, ug, ub]T and W : [wr, wg, wb]T , which represent the

7The Y layer (XL) is treated in (3.7).
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color values of two adjacent pixels, is defined as

‖ U × W ‖2
2 = ‖U‖2

2‖W‖2
2 sin2(Θ) = ‖�i(ugwb − ubwg)‖2

2

+ ‖�j(ubwr − urwb)‖2
2 + ‖�k(urwg − ugwr)‖2

2, (3.9)

where Θ is the angle between these two vectors, and�i,�j,�k are the principal direction vectors

in 3-D. As the data fidelity penalty term will restrict the values of ‖U‖ and ‖W‖, minimization

of ‖U × W‖2
2 will minimize sin(Θ), and consequently Θ itself, where a small value of Θ is

an indicator of similar orientation. Based on the theoretical justifications of [67], the authors

of [56] suggest a pixelwise inter-color dependencies cost function to be minimized. This term

has the vector outer product norm of all pairs of neighboring pixels, which is solved by the finite

element method.

With some modifications to what was proposed in [56], our inter-color dependencies

penalty term is a differentiable cost function

J3(X) =
1∑

l,m=−1

[
‖XG � Sl

xSm
y XB − XB � Sl

xS
m
y XG‖2

2+

‖XB � Sl
xS

m
y XR − XR � Sl

xSm
y XB‖2

2 + ‖XR � Sl
xSm

y XG − XG � Sl
xS

m
y XR‖2

2

]
,(3.10)

where � is the element by element multiplication operator.

3.4.5 Overall Cost Function

The overall cost function is the combination of the cost functions described in the

previous subsections:

X̂ = ArgMin
X

[
J0(X) + λ′J1(X) + λ′′J2(X) + λ′′′J3(X)

]
. (3.11)

A version of steepest descent optimization may be applied to minimize this cost function. In the

first step, the derivative of (3.11) with respect to one of the color bands is calculated, assuming

the other two color bands are fixed. In the next steps, the derivative will be computed with
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respect to the other color channels. For example the derivative with respect to the Green band

(XG) is calculated as follows

∇X̂
n

G = HT ΦT
Gsign(ΦGHX̂

n

G− ΦGẐG) +

λ
′

P∑
l,m=−P

α|m|+|l| × 0.5870 × [I − S−m
y S−l

x ]sign
(
0.2989(Xn

R − Sl
xS

m
y Xn

R)+

0.5870(Xn
G − Sl

xSm
y Xn

G) + 0.1140(Xn
B − Sl

xS
m
y Xn

B)
)

+

λ
′′

1∑
l,m=−1

[
2(Xl,m

B − S−l
x S−m

y XB)(Xl,m
B XG − XBSl

xS
m
y XG)+

2(Xl,m
R − S−l

x S−m
y XR)(Xl,m

R XG − XRSl
xSm

y XG)
]

+

λ
′′′

ΛT Λ(−0.1536 × XR + 0.2851 × XG − 0.1316 × XB), (3.12)

where S−l
x and S−m

y define the transposes of matrices Sl
x and Sm

y , respectively, and have a shift-

ing effect in the opposite directions of Sl
x and Sm

y . The notation XR, and XB stands for the

diagonal matrix representations of the Red and Blue bands and Xl,m
R and Xl,m

B are the diagonal

representations of these matrices shifted by l and m pixels in the horizontal and vertical direc-

tions, respectively. The calculation of the inter-color dependencies term derivative is explained

in the Appendix E.

Similar to the grayscale super-resolution case, matrices H , Λ, Φ, D, Sl
x, and Sm

y and

their transposes can be exactly interpreted as direct image operators such as blur, high-pass

filtering, masking, down-sampling, and shift. Noting and implementing the effects of these ma-

trices as a sequence of operators on the images directly spares us from explicitly constructing

them as matrices. This property helps our method to be implemented in a fast and memory

efficient way.

The gradient of the other channels will be computed in the same way, and the fol-

lowing steepest (coordinate) descent iterations is used to calculate the high-resolution image

estimate iteratively.

X̂
n+1

i = X̂
n

i − β∇X̂
n

i i = R,G,B , (3.13)
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where the scalar β is the step size.

3.5 Related Methods

As mentioned earlier, there has been very little work on the problem we have posed

here. One related paper is the work of Zomet and Peleg [68], who have recently proposed a

novel method for combining the information from multiple sensors, which can also be used for

demosaicing purposes. Although their method has produced successful results for the single

frame demosaicing problem, it is not specifically posed or directed towards solving the multi-

frame demosaicing problem, and no multi-frame demosaicing case experiment is given.

The method of [68] is based on the assumption of affine relation between the inten-

sities of different sensors in a local neighborhood. To estimate the Red channel, first, affine

relations that project Green and Blue channels to the Red channel are computed. In the sec-

ond stage, a super-resolution algorithm (e.g. the method of [25]) is applied on the available

low-resolution images in the Red channel (i.e. the original CFA data of the Red channel plus

the projected Green and Blue channels) to estimate the high-resolution Red channel image. A

similar procedure estimates the high-resolution Green and Blue channel images. As an affine

model is not always valid for all sensors or image sets, an affine model validity test is utilized

in [68]. In the case that the affine model is not valid for some pixels, those projected pixels are

simply ignored.

The method of [68] is strongly dependent on the validity of the affine model, which

is not confirmed for the multi-frame case with inaccurate registration artifacts. Besides, the

original CFA low-resolution image of a channel (raw data) and the less reliable projected low-

resolution images of other channels are equally weighted to construct the missing values, and

this does not appear to be an optimal solution.

In contrast to their method, our proposed technique exploits the correlation of the

information in different channels explicitly to guarantee similar edge position and orientation
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in different color bands. Our proposed method also exploits the difference in sensitivity of the

human eye to the frequency content and outliers in the luminance and chrominance components

of the image.

In parallel to our work, Gotoh and Okotumi [69] are proposing another MAP esti-

mation method for solving the same joint demosaicing/super-resolution problem. While their

algorithm and ours share much in common, there are fundamental differences between the two

in terms of robustness to model errors, and prior used. Model errors, such as choice of blur or

motion estimation errors, are treated favorably by our algorithm due to the L1 norm employed

in the likelihood fidelity term. By contrast, in [69], an L2-norm data fusion term is used, which

is not robust to such errors. In [4] it is shown how this difference in norm can become crucial

in obtaining better results in the presence of model mismatches.

As to the choice of prior, ours is built of several pieces, giving an overall edge pre-

served outcome, smoothed chrominance layers, and forced edge and orientation alignment be-

tween color layers. To the contrary, [69] utilizes an anisotropic Tikhonov (L2 norm) method of

regularizing.

3.6 Experiments

Experiments on synthetic and real data sets are presented in this section. In the first

experiment, following the model of (3.2), we created a sequence of low-resolution frames from

an original high-resolution image (Figure 3.7(a)), which is a color image with full RGB val-

ues. First we shifted this high-resolution image by one pixel in the vertical direction. Then to

simulate the effect of camera PSF, each color band of this shifted image was convolved with

a symmetric Gaussian low-pass filter of size 5 × 5 with standard deviation equal to one. The

resulting image was subsampled by the factor of 4 in each direction. The same process with

different motion vectors (shifts) in vertical and horizontal directions was used to produce 10
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low-resolution images from the original scene. The horizontal shift between the low-resolution

images was varied between 0 to .75 pixels in the low-resolution grid (0 to 3 pixels in the high-

resolution grid). The vertical shift between the low-resolution images varied between 0 to .5

pixels in the low-resolution grid (0 to 2 pixels in the high-resolution grid). To simulate the

errors in motion estimation, a bias equal to half a pixel shift in the low-resolution grid was in-

tentionally added to the known motion vector of one of the low-resolution frames. We added

Gaussian noise to the resulting low-resolution frames to achieve SNR equal to 30dB. Then each

low-resolution color image was subsampled by the Bayer filter.

One of these Bayer filtered low-resolution images is reconstructed by the demosaic-

ing method of [3] and shown in Figure 3.7(b). The above method is implemented on Kodak

DCS-200 digital cameras [70], so each low-resolution image may be thought of as one picture

taken with this camera brand. Figure 3.7(c) shows the result of using the more sophisticated

demosaicing method 8 of [2].

As the motion model for this experiment is translational and the blur kernel is space

invariant, we can use the fast model of (3.12) to reconstruct the blurry image (̂Z) on the high-

resolution grid. The Shift-and-Add result of the demosaiced low-resolution frames after bilinear

interpolation9, before deblurring and demosaicing is shown in Figure 3.7(d). We used the result

of the Shift-and-Add method as the initialization of the iterative multi-frame demosaicing meth-

ods. We used the original set of frames (raw data) to reconstruct a high-resolution image with

reduced color artifacts. Figures 3.8(a), 3.8(b), and 3.8(c) show the effect of the individual imple-

mentation of each regularization term (luminance, chrominance, and inter-color dependencies),

described in Section 3.4.

We applied the method of [2] to demosaic each of these 10 low-resolution frames

individually, and then applied the robust super-resolution method of [4] (Chapter 2) on each

resulting color channel. The result of this method is shown in Figure 3.8(d). We also applied

8We thank Prof. Ron Kimmel of the Technion for providing us with the code that implements the method in [2].
9Interpolation is needed as this experiment is an under-determined problem, where some pixel values are missing.
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the robust super-resolution method of [4] on the raw (Bayer filtered) data (before demosaic-

ing)10. The result of this method is shown in Figure 3.9(a). To study the effectiveness of each

regularization term, we paired (inter-color dependencies-luminance, inter-color dependencies-

chrominance, and luminance-chrominance) regularization terms for which the results are shown

in Figures 3.9(b), 3.9(c), and 3.9(d) ,respectively. Finally, Figure 3.10(a) shows the result of the

implementation of (3.11) with all terms. The parameters used for this example are as follows:

β = 0.002, α = 0.9, λ
′
= 0.01, λ

′′
= 150, λ

′′′
= 1.

It is clear that the resulting image (Figure 3.10(a)) has a better quality than the low-

resolution input frames or other reconstruction methods. Quantitative measurements confirm

this visual comparison. We used PSNR 11 and S-CIELAB 12 measures to compare the perfor-

mance of each of these methods. Table 3.1 compares these values in which the proposed method

has the lowest S-CIELAB error and the highest PSNR values (and also the best visual quality

specially in the red lifesaver section of the image).

In the second experiment, we used 30 compressed images captured from a commer-

cial webcam (PYRO-1394). Figure 3.11(a) shows one of these low-resolution images (a selected

region of this image is zoomed in Figure 3.11(e) for closer examination). Note that the com-

pression (blocking) and color artifacts are quite apparent in these images. This set of frames

was already demosaiced, and no information was available about the original sensor values,

which makes the color enhancement task more difficult. This example may be also considered

as a multi-frame color super-resolution case. The (unknown) camera PSF was assumed to be a

10To apply the monochromatic SR method of [4] on this color-filtered sequence, we treated each color band
separately. To consider the color-filtering operation, we substituted matrix A in Equation (23) of [4] with matrix Φ
in (3.6).

11The PSNR of two vectors X and X̂ of size [4r2Q1Q2 × 1] is defined as:

PSNR(X, X̂) = 10log10(
2552 × 4r2Q1Q2

‖X − X̂‖2
2

).

12The S-CIELAB measure is a perceptual color fidelity measure that measures how accurate the re-
production of a color is to the original when viewed by a human observer [71]. In our experi-
ments, we used the code with default parameters used in the implementation of this measure available at
http://white.stanford.edu/∼brian/scielab/scielab.html .
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Shift-and-Add LR Demosaiced Only Only Only
[2]+SR [4] Lumin. Orient. Chromin. .

S-CIELAB 1.532×1011 1.349×1011 7.892×1010 6.498×1010 4.648×1010

PSNR (dB) 17.17 19.12 17.74 20.10 20.35

SR [4] Lumin. Orient. Lumin. Full
on Raw Data +Orient. +Chrom. +Chrom.

S-CIELAB 5.456×1010 4.543×1010 4.382×1010 3.548×1010 3.365×1010

PSNR (dB) 19.28 20.79 20.68 21.12 21.13

Table 3.1: The quantitative comparison of the performance of different demosaicing methods on the
lighthouse sequence. The proposed method has the lowest S-CIELAB error and the highest PSNR value.

4 × 4 Gaussian kernel with standard deviation equal to one for each color band. As the relative

motion between these images followed the translational model, we only needed to estimate the

motion between the luminance components of these images [72]. We used the method described

in [48] to compute the motion vectors.

The Shift-and-Add result (resolution enhancement factor of 4) is shown in Figure

3.11(b) (zoomed in Figure 3.11(f)). In Figure 3.11(c) (zoomed in Figure 3.11(g)) the method

of [4] is used for increasing the resolution by a factor of 4 in each color band, independently.

And finally the result of applying our method on this sequence is shown in Figure 3.11(d)

(zoomed in Figure 3.11(h)), where color artifacts are significantly reduced. The parameters

used for this example are as follows: β = 0.004, α = 0.9, λ
′
= 0.25, λ

′′
= 500, λ

′′′
= 5.

In the third experiment, we used 40 compressed images of a test pattern from a

surveillance camera; courtesy of Adyoron Intelligent Systems Ltd., Tel Aviv, Israel. Figure

3.12(a) shows one of these low-resolution images (a selected region of this image is zoomed in

Figure 3.13.a for closer examination). Note that the compression (blocking) and color artifacts

are quite apparent in these images. This set of frames was also already demosaiced, and no in-

formation was available about the original sensor values. This example may be also considered

as a multi-frame color super-resolution case. The (unknown) camera PSF was assumed to be a

6 × 6 Gaussian kernel with standard deviation equal to two for each color band.
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We used the method described in [48] to compute the motion vectors. The Shift-and-

Add result (resolution enhancement factor of 4) is shown in Figure 3.12(b) (zoomed in Figure

3.13(b)). In Figure 3.12(c) (zoomed in Figure 3.13(c)) the method of [4] is used for increasing

the resolution by a factor of 4 in each color band, independently. And finally the result of

applying the proposed method on this sequence is shown in Figure 3.12(d), (zoomed in Figure

3.13(d)), where color artifacts are significantly reduced. Moreover, comparing to the Figures

3.12(a)-(d), the compression errors have been removed more effectively in Figures 3.12(d). The

parameters used for this example are as follows: β = 0.004, α = 0.9, λ
′
= 0.25, λ

′′
= 500,

λ
′′′

= 5.

In the fourth, fifth, and sixth experiments (Girl, Bookcase, and Window sequences),

we used 31 uncompressed, raw CFA images (30 frames for the Window sequence) from a

video camera (based on Zoran 2MP CMOS Sensors using the coach chipset). We applied the

method of [3] to demosaic each of these low-resolution frames, individually. Figure 3.14(a)

(zoomed in Figure 3.15(a)) shows one of these images from the Girl sequence (corresponding

image of the Bookcase sequence is shown in Figure 3.16(a) and the corresponding image of the

Window sequence is shown in Figure 3.18(a)). The result of the more sophisticated demosaicing

method of [2] for Girl sequence is shown in Figure 3.14(b) (zoomed in Figure 3.15(b)). Figure

3.16(b) shows the corresponding image for the Bookcase sequence and Figure 3.18(b) shows

the corresponding image for the Window sequence.

To increase the spatial resolution by a factor of three, we applied the proposed multi-

frame color super-resolution method on the demosaiced images of these two sequences. Figure

3.14(c) shows the high-resolution color super-resolution result from the low-resolution color

images of Girl sequence demosaiced by the method of [3] (zoomed in Figure 3.15(c)). Figure

3.16(c) shows the corresponding image for the Bookcase sequence and Figure 3.18(c) shows the

corresponding image for the Window sequence. Similarly, Figure 3.14(d) shows the result of

resolution enhancement of the low-resolution color images from Girl sequence demosaiced by

the method of [2] (zoomed in Figure 3.15(d)). Figure 3.16(d) shows the corresponding image
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for the Bookcase sequence and Figure 3.18(d) shows the corresponding image for the Window

sequence.

Finally, we directly applied the proposed multi-frame demosaicing method on the

raw CFA data to increase the spatial resolution by the same factor of three. Figure 3.14(e)

shows the high-resolution result of multi-frame demosaicing of the low-resolution raw CFA

images from Girl sequence without using the inter color dependence term [J3(X)] (zoomed in

Figure 3.15(e)). Figure 3.17(a) shows the corresponding image for the Bookcase sequence and

Figure 3.18(e) shows the corresponding image for the Window sequence. Figure 3.14(f) shows

the high-resolution result of applying the multi-frame demosaicing method using all proposed

terms in (3.11) on the low-resolution raw CFA images from Girl sequence (zoomed in Figure

3.15(f)). Figure 3.17(b) shows the corresponding image for the Bookcase sequence and Figure

3.18(f) shows the corresponding image for the Window sequence.

These experiments show that single frame demosaicing methods such as [2] (which

in effect implement de-aliasing filters) remove color artifacts at the expense of making the

images more blurry. The proposed color super-resolution algorithm can retrieve some high

frequency information and further remove the color artifacts. However, applying the proposed

multi-frame demosaicing method directly on raw CFA data produces the sharpest results and

effectively removes color artifacts. These experiments also show the importance of the inter-

color dependence term which further removes color artifacts. The parameters used for the

experiments on Girl, Bookcase, and Window sequences are as follows: β = 0.002, α = 0.9,

λ
′
= 0.1, λ

′′
= 250, λ

′′′
= 25. The (unknown) camera PSF was assumed to be a tapered 5 × 5

disk PSF 13.

3.7 Summary and Discussion

In this chapter, based on the MAP estimation framework, we proposed a unified

method of demosaicing and super-resolution, which increases the spatial resolution and reduces

13MATLAB command fspecial(‘disk’,2) creates such blurring kernel.
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the color artifacts of a set of low-quality color images. Using the L1 norm for the data error

term makes our method robust to errors in data and modeling. Bilateral regularization of the

luminance term results in sharp reconstruction of edges, and the chrominance and inter-color

dependencies cost functions remove the color artifacts from the high-resolution estimate. All

matrix-vector operations in the proposed method are implemented as simple image operators.

As these operations are locally performed on pixel values on the high-resolution grid, parallel

processing may also be used to further increase the computational efficiency. The computa-

tional complexity of this method is on the order of the computational complexity of the popular

iterative super-resolution algorithms, such as [11]. Namely, it is linear in the number of pixels.

The inter-color dependencies term (3.10) results in the non-convexity of the overall

penalty function. Therefore, the steepest decent optimization of (3.11) may reach a local rather

than the global minimum of the overall function. The non-convexity does not impose a serious

problem if a reasonable initial guess is used for the steepest decent method, as many experiments

showed effective multi-frame demosaicing results. In our experiments we noted that a good

initial guess is the Shift-and-Add result of the individually demosaiced low-resolution images.
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a: Original image b: LR image demosaiced by the method in [3]

c: LR image demosaiced by the method in [2] d: Shift-and-Add image.

Figure 3.7: A high-resolution image (a) of size [384×256×3] is passed through our model of camera to
produce a set of low-resolution images. One of these low-resolution images is demosaiced by the method
in [3] (b) (low-resolution image of size [96 × 64 × 3]). The same image is demosaiced by the method
in [2] (c). Shift-and-Add on the 10 input low-resolution images is shown in (d) (of size [384× 256× 3]).
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a: Reconst. with lumin. regul. b: Reconst. with inter-color regul.

c: Reconst. with chromin. regul. d: Reconst. from LR demosaiced [2]+SR [4]

Figure 3.8: Multi-frame demosaicing of this set of low-resolution frames with the help of only lu-
minance, inter-color dependencies or chrominance regularization terms is shown in (a), (b), and (c),
respectively. The result of applying the super-resolution method of [4] on the low-resolution frames each
demosaiced by the method [2] is shown in (d).
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a:Reconst. from SR [4] on raw images b: Reconst. with inter-color and lumin. regul.

c: Reconst. with chromin. and inter-color regul. d: Reconst. from chromin. and lumin. regul.

Figure 3.9: The result of super-resolving each color band (raw data before demosaicing) separately
considering only bilateral regularization [4], is shown in (a). Multi-frame demosaicing of this set of low-
resolution frames with the help of only inter-color dependencies-luminance, inter-color dependencies-
chrominance, and luminance-chrominance regularization terms is shown in (b), (c), and (d), respectively.
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a: Reconst. with all terms.

Figure 3.10: The result of applying the proposed method (using all regularization terms) to this data set
is shown in (a).
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Figure 3.11: Multi-frame color super-resolution implemented on a real data (Bookcase) sequence. (a)
shows one of the input low-resolution images of size [75 × 45 × 3] and (b) is the Shift-and-Add result
of size [300 × 180 × 3], increasing resolution by a factor of 4 in each direction. (c) is the result of the
individual implementation of the super-resolution [4] on each color band. (d) is implementation of (3.11)
which has increased the spatial resolution, removed the compression artifacts, and also reduced the color
artifacts. Figures (e) (of size [15× 9× 3]), (f) (of size [60× 36× 3]), (g), and (h) are the zoomed images
of the Figures (a), (b), (c), and (d) respectively.
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a: LR b: Shift-and-Add

c: SR [4] on LR frames d: Proposed method

Figure 3.12: Multi-frame color super-resolution implemented on a real data sequence. (a) shows one
of the input low-resolution images (of size [85 × 102 × 3]) and (b) is the Shift-and-Add result (of size
[340× 408× 3]) increasing resolution by a factor of 4 in each direction. (c) is the result of the individual
implementation of the super-resolution [4] on each color band. (d) is implementation of (3.11) which has
increased the spatial resolution, removed the compression artifacts, and also reduced the color artifacts.
These images are zoomed in Figure 3.13.
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a: LR b: Shift-and-Add

c: SR [4] on LR frames d: Proposed method

Figure 3.13: Multi-frame color super-resolution implemented on a real data sequence. A selected section
of Figure 3.12(a), 3.12(b), 3.12(c), and 3.12(d) are zoomed in Figure 3.13(a) (of size [20 × 27 × 3]),
3.13(b) (of size [80 × 108 × 3]), 3.13(c), and 3.13(d), respectively. In (d) almost all color artifacts that
are present on the edge areas of (a), (b), and (c) are effectively removed.
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Figure 3.14: Multi-frame color super-resolution implemented on a real data sequence. (a) shows one
of the input low-resolution images (of size [290 × 171 × 3]) demosaiced by [3] and (b) is one of the
input low-resolution images demosaiced by the more sophisticated [2]. (c) is the result of applying the
proposed color-super-resolution method on 31 low-resolution images each demosaiced by [3] method
(high-resolution image of size [870 × 513 × 3]). (d) is the result of applying the proposed color-super-
resolution method on 31 low-resolution images each demosaiced by [2] method. The result of applying
our method on the original mosaiced raw low-resolution images (without using the inter color depen-
dence term) is shown in (e). (f) is the result of applying our method on the original mosaiced raw
low-resolution images.
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Figure 3.15: Multi-frame color super-resolution implemented on a real data sequence (zoomed). (a)
shows one of the input low-resolution images (of size [87 × 82 × 3]) demosaiced by [3] and (b) is
one of the input low-resolution images demosaiced by the more sophisticated [2]. (c) is the result of
applying the proposed color-super-resolution method on 31 low-resolution images each demosaiced by
[3] method (high-resolution image of size [261 × 246 × 3]). (d) is the result of applying the proposed
color-super-resolution method on 31 low-resolution images each demosaiced by [2] method. The result
of applying our method on the original mosaiced raw low-resolution images (without using the inter
color dependence term) is shown in (e). (f) is the result of applying our method on the original mosaiced
raw low-resolution images.
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Figure 3.16: Multi-frame color super-resolution implemented on a real data sequence. (a) shows one
of the input low-resolution images (of size [141 × 147 × 3]) demosaiced by [3] and (b) is one of the
input low-resolution images demosaiced by the more sophisticated [2]. (c) is the result of applying the
proposed color-super-resolution method on 31 low-resolution images each demosaiced by [3] method
(high-resolution image of size [423 × 441 × 3]). (d) is the result of applying the proposed color-super-
resolution method on 31 low-resolution images each demosaiced by [2] method.
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a b

Figure 3.17: Multi-frame color super-resolution implemented on a real data sequence. The result of
applying our method on the original mosaiced raw low-resolution images (without using the inter color
dependence term) is shown in (a) (high-resolution image of size [423 × 441 × 3]). (b) is the result of
applying our method on the original mosaiced raw low-resolution images.
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Figure 3.18: Multi-frame color super-resolution implemented on a real data sequence. (a) shows one
of the input low-resolution images (of size [81 × 111 × 3]) demosaiced by [3] and (b) is one of the
input low-resolution images demosaiced by the more sophisticated [2]. (c) is the result of applying the
proposed color-super-resolution method on 30 low-resolution images each demosaiced by [3] method
(high-resolution image of size [243 × 333 × 3]). (d) is the result of applying the proposed color-super-
resolution method on 30 low-resolution images each demosaiced by [2] method. The result of applying
our method on the original mosaiced raw low-resolution images (without using the inter color depen-
dence term) is shown in (e). (f) is the result of applying our method on the original mosaiced raw
low-resolution images.
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Chapter 4

Dynamic Super-Resolution

4.1 Introduction

In the previous chapters, our approach to the super resolution problem was to fuse a

set of low-resolution images and reconstruct a single high-resolution image. We refer to this

as the static SR method, since it does not exploit the temporal evolution of the process. In this

chapter, we consider SR applied on an image sequence, producing a sequence of high-resolution

images; a process known as dynamic SR. The natural approach, as most existing works so far

suggest, is to apply the static SR on a set of images with the t-th frame as a reference, produce

the SR output, and repeat this process all over again per each temporal point. However, the

memory and computational requirements for the static process are so taxing as to preclude its

direct application to the dynamic case.

In contrast, in this chapter we adopt a dynamic point of view, as introduced in [73, 74],

in developing the new SR solution. We take advantage of the fact that if the SR problem is solved

for time t−1, our task for time t could use the solution at the previous time instant as a stepping

stone towards a faster and more reliable SR solution. This is the essence of how dynamic SR is

to gain its speed and better results, as compared to a sequence of detached static SR solutions.

The chapter presented here builds on the core ideas as appeared in [73, 74], but devi-
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ates from them in several important ways, to propose a new and better reconstruction algorithm:

• Speed: Whereas the methods in [73, 74] rely on the information-pair to approximate the

Kalman Filter1 (KF), this work uses the more classic mean-covariance approach. We

show that for the case of translational motion and common space-invariant blur, the pro-

posed method is computationally less complex than the dynamic SR methods proposed

previously. Also, in line with Chapter 2, we show that this problem can be decomposed

into two disjoint pieces, without sacrificing optimality.

• Treatment of Mosaiced Images: As introduced in the last chapter, two common resolution-

enhancement problems in digital video/photography that are typically addressed sepa-

rately--namely, SR and demosaicing can be treated jointly. In this chapter, we propose

a method of dealing with these two problems jointly, and dynamically. Note that in the

previous chapter as in [66, 75] we addressed the static multi-frame demosaicing problem,

and so the work presented here stands as an extension of it to the dynamic case.

• Treatment of Color: Our goal in this chapter is to develop a dynamic SR algorithm for

both monochromatic and color input and output sequences. We seek improvements in

both visual quality (resolution enhancement and color artifact reduction) and computa-

tional/memory efficiency.

• Causality: The work presented in [73, 74] considered a causal mode of operation, where

the output image at time t0 fuses the information from times t ≤ t0. This is the appro-

priate mode of operation when on-line processing is considered. Here, we also study a

non-causal processing mode, where every high-resolution reconstructed image is derived

as an optimal estimate incorporating information from all the frames in the sequence.

This is an appropriate mode of operation for off-line processing of movies, stored on

disk. We use the smoothing KF formulation to obtain an efficient algorithm for this case.
1Kalman filtering is the best linear unbiased estimation (BLUE) technique for recovering sequential signals

contaminated with additive noise. Kalman estimators have desirable computational properties for dynamic systems,
since they recursively update their estimated signal based on the new arrived data and the previous estimated signal
and its corresponding covariance [41].
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This chapter is organized as follows: In Section 4.2 we discuss a fast dynamic image

fusion method for the translational motion model, assuming regular monochromatic images,

considering both causal and non-causal modes. This method is then extended in Section 4.3 to

consider an enhancement algorithm of monochromatic deblurring and interpolation. We address

multi-frame demosaicing and color-SR deblurring problems in Section 4.4. Simulations on both

real and synthetic data sequences are presented in Section 4.5; and Section 4.6 concludes this

chapter.

4.2 Dynamic Data Fusion

4.2.1 Recursive Model

In this chapter, we use the general linear dynamic forward model for the SR prob-

lem as in [73, 74]. A dynamic scene with intensity distribution X(t) is seen to be warped at

the camera lens because of the relative motion between the scene and camera, and blurred by

camera lens and sensor integration. Then, it is discretized at the CCD, resulting in a digitized

noisy frame Y (t). Discretization in many commercial digital cameras is a combination of color

filtering and down-sampling processes. However, in this section we shall restrict our treatment

to simple monochrome imaging. We represent this forward model by the following state-space

equations [41]:

X(t) = F (t)X(t − 1) + U(t), (4.1)

and

Y (t) = D(t)H(t)X(t) + V (t). (4.2)

Equation (4.1) describes how the ideal super-resolved images relate to each other

through time. Similar to Chapter 2, we use the underscore notation such as X to indicate a vec-

tor derived from the corresponding image of size [rQ1 × rQ2] pixels, scanned in lexicographic
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order. The current image X(t) is of size [r2Q1Q2 × 1], where r is the resolution enhancement

factor, and [Q1 ×Q2] is the size of an input low-resolution image. Equation (4.1) states that up

to some innovation content U(t), the current high-resolution image is a geometrically warped

version of the previous image, X(t − 1). The [r2Q1Q2 × r2Q1Q2] matrix F (t) represents

this warp operator. The so-called system noise U(t), of size [r2Q1Q2 × 1], is assumed to be

additive zero mean Gaussian with Cu(t) as its covariance matrix of size [r2Q1Q2 × r2Q1Q2].

Note that the closer the overlapping regions of X(t) and the motion compensated X(t − 1)

are, the smaller Cu(t) becomes. Therefore, Cu(t) in a sense reflects the accuracy of the motion

estimation process (as U(t) also captures unmodeled motions), and for overlapped regions it is

directly related to the motion estimation covariance matrix.

As to Equation (4.2), it describes how the measured image Y (t) of size [Q1Q2 × 1]

is related to the ideal one, X(t). The camera’s point spread function (PSF) is modeled by the

[r2Q1Q2 × r2Q1Q2] blur matrix H(t), while the [Q1Q2 × r2Q1Q2] matrix D(t) represents

the down-sampling operation at the CCD (down-sampling by the factor r in each axis). In

mosaiced cameras, this matrix also represents the effects of the color filter array, which further

down-samples the color images – this will be described and handled in Section 4.4. The noise

vector V (t) of size [Q1Q2 × 1] is assumed to be additive, zero mean, white Gaussian noise.

Thus, its [Q1Q2 × Q1Q2] covariance matrix is Cv(t) = σ2
vI . We further assume that U(t) and

V (t) are independent of each other.

The equations given above describe a system in its state-space form, where the state

is the desired ideal image. Thus, a KF formulation can be employed to recursively compute

the optimal estimates (X(t), t ∈ {1, ..., N}) from the measurements (Y (t), t ∈ {1, ..., N}), as-

suming that D(t),H(t), F (t), σv, and Cu(t) are all known [41, 73, 74]. This estimate could be

done causally, as an on-line processing of an incoming sequence, or non-causally, assuming that

the entire image sequence is stored on disk and processed off-line. We consider both options in

this chapter.

As to the assumption about the knowledge of various components of our model, while
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each of the operators D(t),H(t), and F (t) may vary in time, for most situations the down-

sampling (and later color filtering), and camera blurring operations remain constant over time,

assuming that the images are obtained from the same camera. In this chapter, we further as-

sume that the camera PSF is space-invariant, and the motion is composed of pure translations,

accounting for either vibrations of a gazing camera, or a panning motion of a camera viewing a

far away scene. Thus, both H and F (t) are block-circulant matrices2, and as such, they com-

mute. We assume that H is known, being dependent on the camera used, and F (t) is built from

motion estimation applied on the raw sequence Y (t). The down-sampling operator D is com-

pletely dictated by the choice of the resolution enhancement factor (r). As to σv, and Cu(t),

those will be handled shortly.

We limit our model to the case of translational motion for several reasons. First,

as we describe later, such a motion model allows for an extremely fast and memory efficient

dynamic SR algorithm. Second, while simple, the model fairly well approximates the motion

contained in many image sequences, where the scene is stationary and only the camera moves

in approximately linear fashion. Third, for sufficiently high frame rates most motion models

can be (at least locally) approximated by the translational model. Finally, we believe that an

in-depth study of this simple case yields much insight into the more general cases of motion in

dynamic SR.

By substituting Z(t) = HX(t), we obtain from (4.1) and (4.2) an alternative model,

where the state vector is Z(t),

Z(t) = F (t)Z(t − 1) + W (t), (4.3)

and

Y (t) = DZ(t) + V (t). (4.4)

Note that the first of the two equations is obtained by left multiplication of both sides of (4.1)

by H and using the fact that it commutes with F (t). Thus, the vector W (t) is a colored version

of U(t), leading to Cw(t) = HCu(t)HT as the covariance matrix.
2True for cyclic boundary conditions, that will be assumed throughout this work.
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With this alternative definition of the state of the dynamic system, the solution of the

inverse problem at hand decomposes, without loss of optimality, into the much simpler sub-

tasks of fusing the available images to compute the estimated blurry imageẐ(t), followed by a

deblurring/interpolation step, estimatingX̂(t) from Ẑ(t). In this section, we treat the three color

bands separately. For instance, only the red band values in the input frames, Y (t), contribute to

the reconstruction of the red band values in Ẑ(t). The correlation of the different color bands

are discussed and exploited in Section 4.4.

We next study the application of KF to estimate Z(t). In general, the application of

KF requires the update of the state-vector’s covariance matrix per each temporal point, and this

update requires an inversion of the state-vector’s covariance matrix. For a super-resolved image

with r2Q1Q2 pixels, this matrix is of size [r2Q1Q2 × r2Q1Q2], implying a prohibitive amount

of computations and memory.

Fast and memory efficient alternative ways are to be found, and such methods were

first proposed in the context of the dynamic SR in [73, 74]. Here we show that significant further

speedups are achieved for the case of translational motion and common space-invariant blur.

4.2.2 Forward Data Fusion Method

The following defines the forward Kalman propagation and update equations [41],

that account for a causal (on-line) process. We assume that at time t − 1 we already have the

mean-covariance pair, (Ẑ(t − 1), Π̂(t − 1)), and those should be updated to account for the

information obtained at time t. We start with the covariance matrix update based on Equation

(4.3),

Π̃(t) = F (t)Π̂(t − 1)F T (t) + Cw(t), (4.5)

where Π̃(t) is the propagated covariance matrix (initial estimate of the covariance matrix at time

t). The KF gain matrix is given by

K(t) = Π̃(t)DT [Cv(t) + DΠ̃(t)DT ]−1. (4.6)
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This matrix is rectangular of size [r2Q1Q2 × Q1Q2]. Based on K(t), the updated state vector

mean is computed by

Ẑ(t) = F (t)Ẑ(t − 1) + K(t)[Y (t) − DF (t)Ẑ(t − 1)]. (4.7)

The final stage requires the update of the covariance matrix, based on Equation (4.4),

Π̂(t) = Cov
(
Ẑ(t)

)
= [I − K(t)D]Π̃(t). (4.8)

More on the meaning of these equations and how they are derived can be found in [41, 76].

While in general the above equations require the propagation of intolerably large

matrices in time, if we refer to Cw(t) as a diagonal matrix, then Π̃(t), and Π̂(t) are diagonal

matrices of size [r2Q1Q2×r2Q1Q2]. It is relatively easy to verify this property: for an arbitrary

diagonal matrix GB (B stands for big), the matrix DGBDT is a diagonal matrix. Similarly, for

an arbitrary diagonal matrix GS (S stands for small), the matrix DT GSD is diagonal as well.

Also, in [22] it is shown that for an arbitrary pure translation matrix F and an arbitrary diagonal

matrix GB , the matrix FGBF T is diagonal. Therefore, if the matrix Π̃(0) is initialized as a

diagonal matrix, then Π̃(t), and Π̂(t) are necessarily diagonal for all t, being the results of

summation, multiplication, and inversions of diagonal matrices.

Diagonality of Cw(t) is a key assumption in transferring the general KF into a simple

and fast procedure, and as we shall see, the approximated version emerging is quite faithful.

Following [73, 74], if we choose a matrix σ2
wI ≥ Cw(t), it implies that σ2

wI−Cw(t) is a positive

semi-definite matrix, and there is always a finite σw that satisfies this requirement. Replacing

Cw(t) with this majorizing diagonal matrix, the new state-space system in Equations (4.3) and

(4.4) simply assumes a stronger innovation process. The effect on the KF is to rely less on

the temporal relation in (4.3) and more on the measurements in (4.4). In fact, at the extreme

case, if σw → ∞, the KF uses only the measurements, leading to an intra-frame maximum-

likelihood estimator. Thus, more generally, such a change causes a loss in the accuracy of

the KF because it relies less on the internal dynamics of the system, but this comes with a

welcomed simplification of the recursive estimator. It must be clear that such change in Cw(t)
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GS GB

a 0 0

0 b 0

0 0 c

DT GSD

=⇒

⇐=

DGBDT

a 0 0 0 0 0
0 0 0 0 0 0
0 0 b 0 0 0
0 0 0 0 0 0
0 0 0 0 c 0
0 0 0 0 0 0

Figure 4.1: The diagonal matrix GB on the right is the result of applying the up-sampling operation
(DT GSD) on an arbitrary diagonal matrix GS on the left. The matrix GS can be retrieved by applying
the down-sampling operation (DGBDT ). The up-sampling/down-sampling factor for this example is
two.

has no impact on the convergence properties of the dynamic estimator we apply, and it does not

introduce a bias in the estimate. Note that all the above is true also for a diagonal non-toeplitz

alternative, where the main diagonal entries are varying is space.

Once we chose Cw(t) to be diagonal, Equations (4.5), (4.6), (4.7), and (4.8) are sim-

plified, and their use is better understood on a pixel-by-pixel basis. Before we turn to describe

such a KF for the forward case, we introduce some notations to simplify the explanation of the

process.

The warp matrix F (t) and its transpose can be exactly interpreted as image shift

operators [4, 22]. We use hereafter the superscript “f”, to simplify the notation of forward

shifting of vectors and diagonal matrices, and thus, Zf (t) = F (t)Z(t − 1) and Π̂f (t) =

F (t)Π̂(t − 1)F T (t).

Also, the matrix D and its transpose can be exactly interpreted as down-sampling and

up-sampling operators. Application of DZ(t) and DΠ̂(t)DT results in down-sampling of the

vector Z(t) and the diagonal matrix Π̂(t). Likewise, application of DT Y (t) and DT Cv(t)D

results in up-sampling of the vector Y (t) and the diagonal matrix Cv(t) with zero filling. Figure

4.1 illustrates the effect of matrix up-sampling and down-sampling operations, and this also

sheds some light on the previous discussion on the diagonality assumption onΠ̃(t) and Π̂(t).
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Finally, we will use the notation [G]q to refer to the (q, q) entry of the diagonal matrix

G, and [G]q to refer to the (q, 1) entry in the vector G. This way we will be able to handle both

the low-resolution and the high-resolution grids in the same equations. Let us now return to the

KF equations and show how they are implemented in practice on a pixel-by-pixel basis. First,

referring to the propagated covariance matrix, we start by observing that in Equation (4.6), the

term Cv(t)+DΠ̃DT is a diagonal matrix of size [Q1Q2×Q1Q2], with the (q, q)-th entry being

[Cv(t)]q + [Π̂f (t)]qr2 + [Cw(t)]qr2 ,

with q in the range [1, Q1Q2]. The “jumps” in r2 in the indices of Π̂f (t) and Cw(t) are caused

by the decimation D. Applying an inversion replaces the above by its reciprocal. Using inter-

polation DT (Cv(t) + DΠ̃DT )−1D gives a diagonal matrix of size [r2Q1Q2 × r2Q1Q2], with

the q-th entry being

1
[Cv(t)] q

r2
+ [Π̂f (t)]q + [Cw(t)]q

,

this time referring to the indices q = r2, 2r2, . . . , Q1Q2r
2. For all other (r2 − 1)Q1Q2

indices, the entries are simply zeros, filled by the interpolation. Merging this with Equations

(4.6) and (4.8), we obtain

[Π̂(t)]q =

⎧⎪⎪⎨⎪⎪⎩
[Cv(t)] q

r2
([Π̂f (t)]q+[Cw(t)]q)

[Cv(t)] q

r2
+[Π̂f (t)]q+[Cw(t)]q

for q = r2, 2r2, . . . , Q1Q2r
2

[Π̂f (t)]q + [Cw(t)]q otherwise.

(4.9)

Note that the incorporation of each newly measured low-resolution image only updates values

of Q1Q2 entries in the diagonal of Π̂(t), located at the [r2, 2r2, .., r2Q1Q2] positions. The

remaining (r2 − 1)Q1Q2 diagonal entries are simply propagated from the previous temporal

point, based on Equation (4.5) only. As we shall see, the same effect holds true for the update

of Ẑ(t), where (r2 − 1)Q1Q2 entries are propagated from the previous temporal point without

an update.

Turning to the update of the mean vector, Ẑ(t), using the same reasoning applied on
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Figure 4.2: Block diagram representation of (4.10), where Ẑ(t), the new input high-resolution output
frame is the weighted average of Y (t), the current input low-resolution frame and Ẑf (t), the previous
estimate of the high-resolution image after motion compensation.

Equations (4.6) and (4.7), we obtain the relation

[Ẑ(t)]q =

⎧⎪⎪⎨⎪⎪⎩
[Cv(t)] q

r2
[Ẑ

f
(t)]q+([Π̂f (t)]q+[Cw(t)]q)[Y (t)] q

r2

[Cv(t)] q

r2
+[Π̂f (t)]q+[Cw(t)]q

for q = r2, 2r2, . . . , Q1Q2r
2

[Ẑ
f
(t)]q otherwise.

(4.10)

Figure 4.2 describes the above equation’s upper part as a block diagram. Notice that two images

are merged here – an interpolated version of Y (t), andẐ
f
(t). The merging is done as a weighted

average between the two, as the figure suggests.

The overall procedure using these update equations is outlined below in Algorithm

1. Since the update operations are simply based on shifting the previous estimatesẐ(t − 1)

and Π̂(t − 1) and updating the proper pixels using (4.9) and (4.10), we refer hereafter to this

algorithm as the dynamic Shift-and-Add process. Similarly, we call Ẑ(t) the dynamic Shift-

and-Add image. Several comments are in order, regarding the above procedure:
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1. Initialization: For long enough sequences, the initialization choice has a vanishing effect

on the outcome. Choosing Π̂(0) = ε2I guarantees that Π̂(t) is strictly positive definite

at all times, where ε is an arbitrary large number (ε � σ2
v). Better initialization can be

proposed, based on interpolation of the image Y (t). The same applies to regions coming

from occlusion – those can be initialized by the current image.

2. Arrays propagated in time: The algorithm propagates two images in time--namely, the

image estimate Ẑ(t), and the main diagonal of its covariance matrix Π̂(t). This last

quantity represents the weights assigned per pixel for the temporal fusion process, where

the weights are derived from the accumulated measurements for the pixel in question.

• Task: Given {Y (t)}t≥1, estimate {Z(t)}t≥1 causally.

• Initialization: Set t = 0, choose Ẑ(t) = 0 and Π̂(t) = ε2I.

• Update Process: Set t → t + 1, obtain Y (t) and apply

1. Motion Compensation: Compute Ẑ
f
(t) = F (t)Ẑ(t − 1) and

Π̂f (t) = F (t)Π̂(t − 1)F T (t).

2. Update of the Covariance: Use Equation (4.9) to

compute the update Π̂(t).

3. Update of the Mean: Use Equation (4.10) to compute

the update Ẑ(t).

• Repeat: Update process.

Algorithm 1: Forward dynamic Shift-and-Add algorithm.

At this point, we have an efficient recursive estimation algorithm producing estimates

of the blurry high-resolution image sequence Ẑ(t). From these frames, the sequence X̂(t)

should be estimated. Note that some (if not all) frames will not have estimates for every pixel in
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Ẑ(t), necessitating a further joint interpolation and deblurring step, which will be discussed in

Sections 4.3 and 4.4. For the cases of multi-frame demosaicing and color SR, the above process

is to be applied separately on the R, G, and B layers, producing the arrays we will start from in

the next sections.

While the recursive procedure outlined above will produce the optimal (minimum

mean-squared) estimate of the state (blurry imageẐ(t)) in a causal fashion, we can also consider

the best estimate of the same given “all” the frames. This optimal estimate is obtained by a two-

way recursive filtering operation known as “smoothing”, which we discuss next.

4.2.3 Smoothing Method

The fast and memory-efficient data fusion method described above is suitable for

causal, real-time processing, as it estimates the high-resolution frames from the previously seen

low-resolution frames. However, often times super-resolution is preformed off-line, and there-

fore a more accurate estimate of a high-resolution frame at a given time is possible by using both

previous and future low-resolution frames. In this section, we study such an off-line dynamic

SR method also known as smoothed dynamic SR [77].

The smoothed data fusion method is a two-pass (forward-backward) algorithm. In the

first pass, the low-resolution frames pass through a forward data fusion algorithm similar to the

method explained in Section 4.2.2, resulting in a set of high-resolution estimates {Ẑ(t)}N
t=1 and

their corresponding diagonal covariance matrices {Π̂(t)}N
t=1. The second pass runs backward in

time using those mean-covariance pairs, and improves these forward high-resolution estimates,

resulting in the smoothed mean-covariance pairs {Ẑs(t), Π̂s(t)}N
t=1.

While it is possible to simply implement the second pass (backward estimation) sim-

ilar to the forward KF algorithm, and obtain the smooth estimate by weighted averaging of

the forward and backward estimates with respect to their covariance matrices, computationally

more efficient methods are more desirable. In what follows we study such algorithm based on

the fixed-interval smoothing method of Rauch-Tung-Striebel [78, 79].
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The following equations define the high-resolution image and covariance updates in

the second pass. Assuming that we have the entire (forward-filtered) sequence {̂Z(t), Π̂(t)}N
t=1,

we desire to estimate the pairs {Ẑs(t), Π̂s(t)}N
t=1 that represent the mean and covariance per

time t, based on all the information in the sequence. We assume a process that runs from

t = N − 1 downwards, initialized with Ẑs(N) = Ẑ(N) and Π̂s(N) = Π̂(N).

We start with the covariance propagation matrix. Notice its similarity to Equation

(4.5):

Π̃(t + 1) = F (t + 1)Π̂(t)F T (t + 1) + Cw(t + 1). (4.11)

This equation builds a prediction of the covariance matrix for time t + 1, based on the first pass

forward stage. Note that the outcome is diagonal as well.

The Kalman smoothed gain matrix is computed using the above prediction matrix,

and the original forward covariance one, by

Ks(t) = Π̂(t)F T (t + 1)[Π̃(t + 1)]−1. (4.12)

This gain will be used both for the backward updates of the mean and the covariance,

Ẑs(t) = Ẑ(t) + Ks(t)[Ẑs(t + 1) − F (t + 1)Ẑ (t)], (4.13)

where the term Ẑs(t + 1) − F (t + 1)Ẑ (t) could be interpreted as a prediction error. The

smoothed covariance matrix is updated by

Π̂s(t) = Cov
(
Ẑs(t)

)
= Π̂(t) + Ks(t)[Π̂s(t + 1) − Π̃(t + 1)]KT

s (t). (4.14)

Following the notations we have used before, we use the superscript “b” to represent

backward shifting in time of vectors and matrices, so that Ẑ
b
s(t) = F T (t + 1)Ẑs(t + 1) and

similarly Π̂b
s(t) = F T (t + 1)Π̂s(t + 1)F (t + 1), and Cb

w(t) = F T (t + 1)Cw(t + 1)F (t + 1).

Then, using the same rationale practiced in the forward algorithm, the smoothed gain matrix for

a pixel at spatial position q is

[Π̂(t)]q
[Π̂(t)]q + [Cb

w(t)]q
.
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Figure 4.3: Block diagram representation of (4.16), where Ẑs(t), the new Rauch-Tung-Striebel
smoothed high-resolution output frame is the weighted average of Ẑ(t), the forward Kalman high-
resolution estimate at time t, and Ẑb

s(t), the previous smoothed estimate of the high-resolution image
(Ẑb

s(t) = FT (t + 1)Ẑs(t + 1)), after motion compensation.

Similar to what is shown in Section 4.2.2, we can simplify Equations (4.11), (4.12), (4.13), and

(4.14) to the following pixel-wise update formulas

[Π̂s(t)]q = [Π̂(t)]q + [Π̂(t)]2q
[Π̂b

s(t)]q − [Π̂(t)]q − [Cb
w(t)]q

[Π̂(t)]q + [Cb
w(t)]q

, (4.15)

and

[Ẑs(t)]q =
[Cb

w(t)]q[Ẑ(t)]q + [Π̂(t)]q[Ẑ
b
s(t)]q

[Π̂(t)]q + [Cb
w(t)]q

. (4.16)

Figure (4.3) describes the above equation as a block diagram.

There is a simple interpretation for (4.16). The smoothed high-resolution pixel at

time t is the weighted average of the forward high-resolution estimate at time t ([Ẑ(t)]q) and

the smoothed high-resolution pixel at time instant t + 1 after motion compensation ([Ẑ
b
s(t)]q).

In case there is high confidence in the [Ẑ(t)]q (i.e., the value of [Π̂(t)]q is small) the weight of
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[Ẑ
b
s(t)]q will be small. On the other hand, if there is high confidence in estimating the high-

resolution pixel at time t + 1 from a high-resolution pixel at time t after proper motion com-

pensation (that is the value of [Cb
w(t)]q is small), it is reasonable to assume that the smoothed

high-resolution pixel at time t can be estimated from a high-resolution pixel at time t + 1 after

proper motion compensation. Note that unlike the forward pass, estimation of high-resolution

smoothed images do not depend on the computation of smoothed covariance update matrices as

in Equations (4.14) and (4.15), and those can be ignored in the application.

The overall procedure using these update equations is outlined below in Algorithm 2.

• Task: Given {Y (t)}t≥1, estimate {Z(t)}t≥1

non-causally.

• First Pass: Assume that the causal algorithm has

been applied, giving the sequence {Ẑ(t), Π̂(t)}N
t=1.

• Initialization: Set t = N, choose Ẑs(t) = Ẑ(t) and Π̂s(t) =

Π̂(t).

• Update Process: Set t → t − 1 and apply

1. Motion Compensation: Compute Ẑ
b
s(t) = F T (t + 1)Ẑs(t + 1)

and Π̂b
s(t) = F T (t + 1)Π̂s(t + 1)F (t + 1).

2. Update of the Covariance: Use Equation (4.15)

to compute the update Π̂s(t).

3. Update of the Mean: Use Equation (4.16)

to compute the update Ẑs(t).

• Repeat: Update process.

Algorithm 2: Smoothed dynamic Shift-and-Add algorithm.
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4.3 Simultaneous Deblurring and Interpolation of Monochromatic

Image Sequences

In the previous sections, we described two very fast image fusion algorithms, re-

sulting in a blurry (possibly with some missing pixels) set of high-resolution images. In this

section, we describe an effective method of deblurring and interpolation to produce the final

high-quality reconstructed images. To perform robust deblurring and interpolation, we use the

MAP cost function

ε (X(t)) = ‖Φ(t)(HX(t) − Ẑ(t))‖2
2 + λΥ(X(t)), (4.17)

and define our desired solution as

X̂(t) = ArgMin
X(t)

ε (X(t)) . (4.18)

Here, the matrix Φ(t) is a diagonal matrix whose values are chosen in relation to our confidence

in the measurements that contributed to make each element ofẐ(t). These values have inverse

relation to the corresponding elements in the matrix3 Π̂(t). The regularization parameter, λ,

is a scalar for properly weighting the first term (data fidelity cost) against the second term

(regularization cost), and Υ(X) is the regularization cost function.

Following Chapter 2, we use the Bilateral Total Variation (B-TV) [4] as the regular-

ization term. Therefore, for the case of monochromatic dynamic SR problem, the overall cost

function is the summation of the data fidelity penalty term and the regularization penalty term

X̂(t)=ArgMin
X(t)

[
‖Φ(t)(HX(t) − Ẑ(t))‖2

2

+λ

P∑
l,m=−P

α|m|+|l|‖X(t) − Sl
xSm

y X(t)‖1

⎤⎦ . (4.19)

As explained in Chapter 2, steepest descent optimization may be applied to minimize

this cost function, which can be expressed as:

3Note that for the smoothed high-resolution estimation cases, Ẑs(t) and Π̂s(t) substitute for Ẑ(t) and Π̂(t).
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X̂n+1(t)=X̂n(t) + β
{

HT ΦT (t)(HX(t) − Ẑ(t))+

λ
P∑

l,m=−P

α|m|+|l|[I − S−m
y S−l

x ]sign
(
X(t) − Sl

x Sm
y X(t)

)}
. (4.20)

4.4 Demosaicing and Deblurring of Color (Filtered) Image Sequences

Similar to what was described in Section 4.3, we deal with color sequences in a two

step process of image fusion and simultaneous deblurring and interpolation for producing high

quality color sequences from a collection of low-resolution color (filtered) images. Our compu-

tationally efficient MAP estimation method is motivated by the color image perception proper-

ties of the human visual system which is directly applicable to both color SR (given full RGB

low-resolution frames), and the more general multi-frame demosaicing problems introduced

earlier.

Figure 4.4 shows an overall block diagram of the dynamic SR process for mosaiced

images (the feedback loops are eliminated to simplify the diagram). For the case of color SR,

the first step involves nothing more than the application of the recursive image fusion algo-

rithm separately on three different color bands. Image fusion of color filtered images is done

quite similarly, where each single channel color filtered frame is treated as a sparsely sampled

three-channel color image. The second step (“Deblur & Demosaic” block in Figure 4.4) is the

enhancement step that removes blur, noise, and color artifacts from the Shift-and-Add sequence,

and is based on minimizing a MAP cost function with several terms composing an overall cost

function similar to ε (X(t)) in (4.17).

The overall cost function ε (X(t)) is the summation of these cost functions:

X̂(t)=ArgMin
X(t)

[
J0(X(t)) + λ′J1(X(t)) + λ′′J2(X(t)) + λ′′′J3(X(t))

]
. (4.21)
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Figure 4.4: Block diagram representation of the overall dynamic SR process for color filtered images.
The feedback loops are omitted to simplify the diagram. Note Ẑi∈{R,G,B}(t) represents the forward
dynamic Shift-and-Add estimate studied in Section 4.2.2.
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where the first term is replaced by

J0(X(t)) =
∑

i=R,G,B

‖Φi(t)
(
HX̂i(t) − Ẑi(t)

)
‖2
2 , (4.22)

and all other terms are similar to the ones formulated in Section 3.4.

Coordinate-wise steepest descent optimization may be applied to minimize this cost

function. In the first step, the derivative of (4.21) with respect to one of the color bands is

calculated, assuming the other two color bands are fixed. In the next steps, the derivative is

computed with respect to the other color channels. The steepest descent iteration formulation

for this cost function is shown in [75].

Note that F (t)X̂(t − 1) is a suitable candidate to initialize X̂0(t), since it follows

the KF prediction of the state-vector updates. Therefore, as the deblurring-demosaicing step is

the computationally expensive part of this algorithm, for all of these experiments we used the

shifted version of deblurred image of t − 1 as the initial estimate of the deblurred-demosaiced

image at time instant t.

4.5 Experiments

Experiments on synthetic and real data sets are presented in this section. In the first

experiment, we synthesized a sequence of low-resolution color-filtered images from a single

color image of size 1200 × 1600 captured with a one-CCD OLYMPUS C-4000 digital camera.

A 128×128 section of this image was blurred with a symmetric Gaussian low-pass filter of size

4 × 4 pixels with standard deviation equal to one (all three color bands). The resulting images

were subsampled by the factor of four in each direction and further color filtered with Bayer

pattern creating a 32 × 32 image. We added Gaussian noise to the resulting low-resolution

frames to achieve SNR equal to 30dB. We consecutively shifted the 128 × 128 window on the

original high-resolution image by one pixel in right, down, or up directions, and repeated the

same image degradation process. In this fashion, we created a sequence of 250 frames.

Figures 4.5(a) & 4.5(e) show two sections of the high-resolution image. Figures
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4.5(b) & 4.5(f) show frames #50 and #100 of the low-resolution sequence (for the sake of

presentation each frame has been demosaiced following the method of [3]). We created a se-

quence of high-resolution fused images using the method described in Section 4.2.2 (factor of

4 resolution enhancement by forward Shift-and-Add method). Figures 4.5(c) & 4.5(g) show

frames #50 and #100 of this sequence, where the missing values were filled in, using bilinear

interpolation. Note that for the particular motion in this under-determined experiment, it is easy

to show that less than 1
3 of the pixel values in Ẑ(t) are determined by the Shift-and-Add process.

Later each frame was deblurred-demosaiced using the method described in Section

4.4. Figures 4.5(d) & 4.5(h) show frames #50 and #100 of this reconstructed sequence, where

the color artifacts have been almost completely removed. Figure 4.6 shows similar experiments

for frames #150 and #200, and Figure 4.7 shows the corresponding results for frame #250.

The PSNR values for this sequence are plotted in Figure 4.8. This plot shows that

after the first few frames are processed, the quality of the reconstruction is stabilized for the

remaining frames. The small distortions in the PSNR values of this sequence are due to the

difference in color and high-frequency information of different frames. The corresponding

parameters for this experiment (tuned by trial-and-error) were as follows: α = 0.9, β = 0.06,

λ′ = λ′′ = 0.001, and λ′′′ = 10. Fifteen iterations of steepest descent were used for this

experiment.

Our next experiment was preformed on a real (already demosaiced) compressed im-

age sequence courtesy of Adyoron Intelligent Systems Ltd., Tel Aviv, Israel. Two frames of this

sequence (frames # 20 and #40) are shown in Figures 4.9(a) & 4.9(d). We created a sequence of

high-resolution fused images (factor of 4 resolution enhancement) using the forward data fusion

method described in Section 4.2.2 (Figures 4.9(b) & 4.9(e)). Later each frame in this sequence

was deblurred using the method described in Section 4.4 (Figures 4.5(c) & 4.9(f) ). The corre-

sponding parameters for this experiment are as follows: α = 0.9, β = 0.1, λ′ = λ′′ = 0.005,

and λ′′′ = 50. Fifteen iterations of steepest descent were used for this experiment. The (un-

known) camera PSF was assumed to be a 4 × 4 Gaussian kernel with standard deviation equal
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Figure 4.5: A sequence of 250 low-resolution color filtered images where recursively fused (Section
4.2), increasing their resolution by the factor of 4 in each direction. They were further deblurred and
demosaiced (Section 4.4), resulting in images with much higher-quality than the input low-resolution
frames. In (a) & (e) we see the ground-truth for frames #50 and #100 of size [100 × 128 × 3], and
(b) & (f) are the corresponding synthesized low-resolution frames of size [25 × 32 × 3]. In (c) & (g)
we see the recursively fused high-resolution frames and (d) & (h) of size [100 × 128 × 3] show the
deblurred-demosaiced frames.
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Figure 4.6: A sequence of 250 low-resolution color filtered images where recursively fused (Section
4.2), increasing their resolution by the factor of 4 in each direction. They were further deblurred and
demosaiced (Section 4.4), resulting in images with much higher-quality than the input low-resolution
frames. In (a) & (e) we see the ground-truth for frames #150 and #200 of size [100 × 128 × 3], and
(b) & (f) are the corresponding synthesized low-resolution frames of size [25 × 32 × 3]. In (c) & (g)
we see the recursively fused high-resolution frames and (d) & (h) of size [100 × 128 × 3] show the
deblurred-demosaiced frames.
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Figure 4.7: A sequence of 250 low-resolution color filtered images where recursively fused (Section
4.2), increasing their resolution by the factor of 4 in each direction. They were further deblurred and
demosaiced (Section 4.4), resulting in images with much higher-quality than the input low-resolution
frames. In (a) we see the ground-truth for frame #250 of size [100×132×3], and (b) is the corresponding
synthesized low-resolution frame of size [25×32×3]. In (c) we see the recursively fused high-resolution
frame and (d) of size [100 × 128 × 3] show the deblurred-demosaiced frame.

to one. As the relative motion between these images approximately followed the translational

model, we only needed to estimate the motion between the luminance components of these

images [72]. We used the method described in [48] to compute the motion vectors. In the re-

constructed images there are some effects of wrong motion estimation, seen as periodic teeth

along the vertical bars. We assume that these errors correspond to the small deviations from the

pure translational model.

In the third experiment, we used 74 uncompressed, raw CFA images from a video

camera (based on Zoran 2MP CMOS Sensors) 4. We applied the method of [3] to demosaic

each of these low-resolution frames, individually. Figure 4.10(a) shows frame #1 of this se-

quence.

4We would like to thank Lior Zimet and Erez Galil from Zoran Corp. for providing the camera used to produce
the raw CFA images of experiment 3 in Fig. 4.10.
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Figure 4.8: PSNR values in dB for the synthesized 250 frames sequence of the experiment in Figure 4.5.

To increase the spatial resolution by a factor of three, we applied the proposed for-

ward data fusion method of Section 4.2.2 on the raw CFA data. Figure 4.10(b) shows the

forward Shift-and-Add result. This frame were further deblurred-demosaiced by the method

explained in Section 4.4 and the result is shown in Figures 4.10(c). To enhance the quality

of reconstruction we applied the smoothing method of Section 4.2.3 to this sequence. Figure

4.10(d) shows the smoothed data fusion results for frames #1 (Smoothed Shift-and-Add). The

deblurred-demosaiced result of applying the method explained in Section 4.4 is shown in Figure

4.10(e).

Figure 4.10(f) shows the frame #69 of this sequence, demosaiced by the method in [3].

Figure 4.10.g shows the result of applying the method of Section 4.2.3 to form the smoothed

Shift-and-Add image. This frame is further deblurred-demosaiced by the method explained in

Section 4.4 and the result is shown in Figure 4.10(h).

The parameters used for this experiment are as follows: β = 0.04, α = 0.9, λ
′

=

0.001, λ
′′

= 50, λ
′′′

= .1. The (unknown) camera PSF was assumed to be a tapered 5 × 5 disk

PSF 5.
5MATLAB command fspecial(‘disk’,2) creates such a blurring kernel.
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Figure 4.9: A sequence of 60 real-world low-resolution compressed color frames (a & d of size [141 ×
71 × 3]) are recursively fused (Section 4.2), increasing their resolution by the factor of four in each
direction (b & e of size [564× 284× 3]). They were further deblurred (Section 4.4), resulting in images
with much higher-quality than the input low-resolution frames (c & f).
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Figure 4.10: A sequence of 74 real-world low-resolution uncompressed color filtered frames of size
[76 × 65 × 3] (a & f show frames #1 and #69, respectively) are recursively fused (Forward data fusion
method of Section 4.2.2), increasing their resolution by the factor of three in each direction (b & g of size
[228×195×3]). They were further deblurred (Section 4.4), resulting in images with much higher-quality
than the input low-resolution frames (c & h). The smoothed data fusion method of Section 4.2.3 further
improves the quality of reconstruction. The smoothed Shift-and-Add result for frame #1 is shown in (d).
This image was further deblurred-demosaiced (Section 4.4) and the result is shown in (e).
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4.6 Summary and Discussion

In this chapter, we presented algorithms to enhance the quality of a set of noisy,

blurred, and possibly color filtered images to produce a set of monochromatic or color high-

resolution images with less noise, aliasing, and blur effects. We used MAP estimation technique

to derive a hybrid method of dynamic SR and multi-frame demosaicing. Our method is also

applicable to the case of color SR.

For the case of translational motion and common space-invariant motion we justified

a two-step algorithm. In the first step, we used the KF framework for fusing low-resolution

images recursively in a fast and memory efficient way. In the second step, while deblurring and

interpolating the missing values, we reduced luminance and color artifacts by using appropriate

penalty terms. These terms were based on our prior knowledge of the statistics of natural images

and the properties of the human visual system. All matrix-vector operations in the proposed

method are implemented as simple image operators.
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Chapter 5

Constrained, Globally Optimal

Multi-Frame Motion Estimation

5.1 Introduction

So far in this thesis, we assumed that the system matrix M in (1.1), is known before

hand or given from a separate estimation process. The system matrix is usually modeled as

a combination of three separate matrices; namely warp, blur, and down-sampling (2.4). Of

these three terms, accurate estimation of the warping matrix is of greatest importance [4]. Note

that, errors in motion estimation might even result in reconstruction of HR frames which have

lower quality than the input LR frames. Besides, motion estimation with subpixel accuracy is

of great importance to many other image processing and computer vision applications, such as

mosaicing [47].

Numerous image registration techniques have been developed throughout the years

[80]. Of these, optical flow [81] [82], and correlation-based methods [83] are among the most

popular. These methods are mainly developed to estimate the relative motion between a pair

of frames. For cases where several images are to be registered with respect to each other (e.g.

super-resolution applications), two simple strategies are commonly used. The first is to regis-
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(a) (b)

Figure 5.1: Common strategies used for registering frames of a video sequence. (a) Fixed reference
(“anchored”) estimation. (b) Pairwise (“progressive”) estimation.

ter all frames with respect to a single reference frame [4]. This may be called the anchoring

approach, as illustrated in Figure 5.1(a). The choice of a reference or anchor frame is rather

arbitrary, and can have a severe effect on the overall accuracy of the resulting estimates. This

caveat aside, overall, this strategy is effective in cases where the camera motion is small and

random (e.g. small vibrations of a gazing camera).

The other popular strategy is the progressive registration method [21] [84], where

images in the sequence are registered in pairs, with one image in each pair acting as the reference

frame. For instance, taking a causal view with increasing index denoting time, the ith frame

of the sequence is registered with respect to the (i + 1)th frame and the (i + 1)th frame is

registered with respect to the (i + 2)th frame, and so on, as illustrated in Figure 5.1(b). The

motion between an arbitrary pair of frames is computed as the combined motion of the above

incremental estimates. This method works best when the camera motion is smooth. However, in

this method, the registration error between two “nearby” frames is accumulated and propagated

when such values are used to compute motion between “far away” frames.

Neither of the above approaches take advantage of the important prior information

available for the multi-frame motion estimation problem. This prior information constrains the

estimated motion vector fields between any pair of frames to lie in a space whose geometry and

structure, as we shall see in the next section, is conveniently described.
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In this chapter, we study such priors and propose an optimal method for exploiting

them, to achieve very accurate estimation of the relative motion in a sequence. This chapter is

organized as follows. Section 5.2 introduces the consistency constraints in an image sequence

and reviews the previous work on this subject. Section 5.3 describes the main contribution of

this chapter, which is an optimal framework for exploiting these consistency constraints. Using

this framework, we introduce a highly accurate robust multi-frame motion estimation method,

which is resilient to outliers in an image sequence. experiments based on both real and synthetic

data sequences are presented in Section 5.4, and Section 5.5 concludes this chapter.

5.2 Constrained Motion Estimation

To begin, let us define Fi,j as the operator which maps (registers) frames indexed i

and j as follows:

Y i = Fi,j{Y j},

where Y i and Y j are the lexicographic reordered vector representations of frames i and j.

Now given a sequence of N frames, precisely N(N − 1) such operators can be con-

sidered. Regardless of considerations related to noise, sampling, and the finite dimensions of

the data, there are inherent intuitive relationships between these pair-wise registration opera-

tors. In particular, the first condition dictates that the operator describing the motion between

any pair of frames must be the composition of the operators between two other pairs of frames.

More specifically, as illustrated in Figure 5.2(a), taking any triplet of frames i, j, and k, we have

the first motion consistency condition as:

∀i, j, k ∈ {1, ..., N}, Fi,k = Fi,j ◦ Fj,k. (5.1)

The second rather obvious (but hardly ever used) consistency condition states that the compo-

sition of the operator mapping frame i to j with the operator mapping frame j to i should yield

the identity operator. This is illustrated in Figure 5.2(b). Put another way,

∀i, j ∈ {1, ..., N}, Fj,i = F−1
i,j . (5.2)
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These natural conditions define an algebraic group structure (a Lie algebra) in which

the operators reside. Therefore, any estimation of motion between frames of a (N � 2) image

sequence could take these conditions into account. In particular, the optimal motion estimation

strategy can be described as an estimation problem over a group structure, which has been

studied before in other contexts [85].

The above properties describe what is known as the Jacobi condition, and the skew

anti-symmetry relations [86]. For some practical motion models (e.g. constant motion or the

affine model), the relevant operators could be further simplified. For example, in the case of

translational (constant) motion, the above conditions can be described by simple linear equa-

tions relating the (single) motion vectors between the frames:

∀i, j, k ∈ {1, ..., N}, δi,k = δi,j + δj,k, (5.3)

where δi,j is the motion vector between the frames i and j. Note that δi,i = 0, and therefore the

skew anti-symmetry condition is represented by (5.3), when k = i.

For the sake of completeness, we should note that the above ideas have been already

studied to some extent in the computer vision community. In particular, the Bundle Adjust-

ment (BA) [87] technique is a general, yet computationally expensive method for producing a

jointly optimal 3D structure and viewing parameters, which bares close resemblance to what is

proposed here. It is important to note that BA is not intended for motion estimation in 2-D im-

ages, and does not specifically take the algebraic group structure into account. Instead, it relies

on an iterative method, which is largely based on the motivating 3-D application. On another

front, to solve mosaicing problems, [88] adapted the BA method to a 2-D framework, where the

estimated motion vectors are refined in a feedback loop, penalizing the global inconsistencies

between frames. Also, the importance of consistent motion estimation for the Super-Resolution

problem is discussed in [82].

In [89] the Group structure is directly exploited to define a one step multi-frame mo-

tion estimation method, where the motion model is limited to rotation and translation. The very

recent approach in [86] exploits the Lie Group structure indirectly. The motions are estimated
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(a) (b)

Figure 5.2: The consistent flow properties: (a) Jacobi Identity and (b) Skew Anti-Symmetry.

in an unconstrained framework, then “projected” to the set of valid motions by what the au-

thor calls Lie-algebraic averaging. While the framework of this approach is close to what we

suggest, the algorithm presented there is suboptimal in that it uses the constraints only as a

mechanism for post-processing already-estimated motion fields, resulting in a suboptimal over-

all procedure. Finally, in a similar way, another recent paper, [90], computes the motion vectors

between a new frame and a set of frames for which relative motion vectors has been previously

computed. Then, the motion vectors computed for the new image are used to refine the pairwise

estimated motion of other frames. This two-step algorithm is iterated until convergence.

The framework we propose in this chapter unifies the earlier approaches and presents

an optimal framework where the constraints are used directly in the solution of the problem,

and not simply as a space onto which the estimates are projected.
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5.3 Precise Estimation of Translational Motion with Constraints

We now describe our proposed methodology, and compare it against two other com-

peting approaches. To simplify the notation, we define the vectors Y , δ, and δ(i) as follows:

Y =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Y (1)

Y (2)
...

Y (N)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, δ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

δ(1)

δ(2)
...

δ(N)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, δ(i) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δi,1

...

δi,j(i�=j)

...

δi,N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (5.4)

where Y (i) is the ith image in this sequence rearranged in the lexicographic order. The vector

δ(i) contains the set of motion vector fields computed with respect to the reference frame i.

5.3.1 Optimal Constrained Multi-Frame Registration

In a general setting, the optimal solution to the multi-frame registration problem can

be obtained by minimizing the following cost function:

δ̂ = ArgMin
δ

ρ(Y , δ) such that Υ(δ) = 0, (5.5)

where ρ represents a motion-related cost function (e.g. penalizing deviation from brightness

constancy constraint, or a phase-based penalty), and Υ captures the constraints discussed earlier.

To get a feeling for this general formulation, we address the translational motion

case, (the consistency conditions for the affine case are described in the Appendix F), with ρ

representing the Optical Flow model

ρ(Y , δ)=
N∑

i,j=1︸︷︷︸
i�=j

‖Y (x)
i δ

(x)
i,j +Y

(y)
i δ

(y)
i,j +Y

(t)
i,j )‖2

2, (5.6)

where Y
(x)
i and Y

(y)
i are the spatial derivatives (in x and y directions) of the ith frame, and

Y
(t)
i,j is the temporal derivative (e.g., the difference between frames i and j). Here the motion
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vector field δi,j is spatially constant, and it can be represented by the scalar components δ
(x)
i,j

and δ
(y)
i,j in x and y directions, respectively, and for 1 ≤ i, j ≤ N . Using this, the translational

consistency condition as in Equation (5.3) is then formulated as

Υ(δ) : Cδ = 0, (5.7)

where the unknown motion vector δ has all the 2N(N − 1) entries δ
(x)
i,j and δ

(y)
i,j stacked into a

vector. The constraint matrix C is of size [2(N − 1)2 × 2N(N − 1)]. Each row in C has only

two or three non-zero (±1) elements representing the skew anti-symmetry and Jacobi identity

conditions in (5.3), respectively. The defined problem has a quadratic programming structure,

and it can be solved using accessible optimization algorithms.

5.3.2 Two-Step Projective Multi-Frame Registration

Two-Step Projective Sub-Optimal Multi-Frame Registration

As a comparison to our proposal, we discuss a two-step approach that is in spirit

similar to what is done in [86]. In this method, for a sequence of N frames, in the first step all

N(N − 1) possible pairwise motion vector fields (δi,j) are estimated. Note that the pairwise

motion vector fields are individually estimated by optimizing the following (unconstrained) cost

function

δ̂i,j = ArgMin
δi,j

ρ(Y i,j, δi,j),

where ρ(Y i,j, δi,j) may represent any motion estimation cost function.

In the second step, these motion vectors are projected onto a consistent set of N(N −
1) pairwise motion vectors. For the case of translational motion model, with the consistency

condition in (5.7), the projection of the motion vector fields onto the constraint space is com-

puted as

δp = Ωpδ̂ = (I − C[CTC]−1CT )δ̂, (5.8)

116



where Ωp = I −C[CTC]−1CT is the projection matrix. Such a two step projection method (as

in [86]) is not optimal and would be expected to result in inferior estimates as compared to the

solution of the method posed in Equation (5.5).

Two-Step Projective Optimal Multi-Frame Registration

In cases where the motion-related cost function ρ is manifested by the L2 norm (e.g.

(5.6)), it is also possible to design an optimal two step projective method, which results in

estimates equal to the ones given by the optimal one-step method of Section 5.3.1. Note that

the optical flow equation of (5.6) can be represented as

ρ(Y , δ) = ‖Y (z)δ + Y (t)‖2
2, (5.9)

where

Y (z) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y (x)(1)

Y (y)(1)

Y (x)(2)

Y (y)(2)
...

Y (x)(N)

Y (y)(N)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Y (t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y (t)(i, 1)
...

Y (t)(i, j)(i�=j)

...

Y (t)(i,N)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.10)

Then, utilizing the Lagrangian multipliers method [91], the optimal constrained esti-

mate is given by

δop = Ωopδ̂ =
(
I − [Y T (z)Y (z)]−1C[CT [Y T (z)Y (z)]−1C]−1CT

)
δ̂, (5.11)

where Ωop is the optimal projection matrix. Of course, storing (putting aside inverting) the ma-

trix [Y T (z)Y (z)] is computationally cumbersome, and therefore for the cases involving relatively

large number of frames (or large images) the method of Section 5.3.1 is preferable.
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5.3.3 Robust Multi-Frame Registration

In many real video sequences, the practical scenarios are not well-modeled by tem-

porally stationary noise statistics, and abrupt changes or occlusions may introduce significant

outliers into the data. Note that even the presence of very small amount of outliers, which may

be unavoidable (e.g. the bordering pixel effects), heavily affects the motion estimation accuracy.

In such cases, it is prudent to modify the above approaches in two ways. First, one may replace

the hard constraints developed above with soft ones, by introducing them as Bayesian priors

which will penalize rather than constrain the optimization problem. Second, we may want to

introduce alternative norms to the standard 2-norm for both the error term and the constraint in

(5.5). Incorporating both modifications, one can consider optimizing a modified cost function

which includes a term representing the “soft” version of the constraints as

δ̂ = ArgMin
δ

ρr(Y , δ) + λΥ(δ), (5.12)

where λ represents the strength of the regularizing term. The functions ρ and Υ may use robust

measures, such as the 1-norm. For instance, to deal with outliers directly, one might use

ρr(Y , δ)=
N∑

i,j=1︸︷︷︸
i�=j

‖Y (x)
i δ

(x)
i,j +Y

(y)
i δ

(y)
i,j +Y

(t)
i,j )‖1. (5.13)

The use of such robust error terms together with the hard constraint cost function of (5.5) often

suffices to enhance the estimator performance. Note that unlike the L2 norm which reduces

the estimation error by an implicit averaging of the estimates, the robust L1 norm implements

a median estimator [40], which effectively picks the most reliable estimated motion vector for

each pair of frames. The experiments in the next section justify this claim.

5.4 Experiments

A simulated experiment was conducted by registering 5 frames of size [65× 65]. For

these frames we have the correct translational motion vectors in hand. One of these frames is
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a: Experiment 1 b:Experiment 2

Figure 5.3: One of the input frames used in the first and the second experiments (simulated motion).

shown in Figure 5.3(a).

The mean square errors (MSEs) of the computed motion vectors (against the true

motion vectors) with the single reference approach (Section 5.1), suboptimal projective (Sec-

tion 5.3.2), the L2 constrained (Section 5.3.1), and the L1 norm with hard constraints (Section

5.3.3) methods are compared in Figure 5.4. Each point in this graphs shows the average of 100

different realizations of additive noise (Monte Carlo simulation) for different SNRs.

The second simulated experiment was conducted by registering 7 frames of size [39×
39]. One of these frames is shown in Figure 5.3(b). We repeated the previous experiment on

this data set (with 30 Monte Carlo iterations for different SNRs) and compared the performance

of different methods in Figure 5.5.

A real experiment was also conducted aligning 27 color-filtered1 low-resolution (LR)

images. One of these LR frames after demosaicing 3 is shown in Figure 5.6(a). The method

of [75] was used to construct a HR image, by registering these images on a finer grid (resolution

enhancement factor of three in x and y directions). We used the method described in [48] to

compute the motion vectors in an “anchored” fashion (Section 5.1). Figure 5.6(b) shows the HR

1We would like to thank Eyal Gordon from the Technion-Israel Institute of Technology for helping us capture
the raw CFA images used in the Figure 5.6 experiment.
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Figure 5.4: MSE comparison of different registration methods in the first simulated experiment, using
the image in Figure 5.3(a).

reconstruction using this method with clear mis-registration errors. The result of applying the

two step multi-frame projective image registration of Section 5.3.2 is shown in Figure 5.6(c).

Some mis-registration errors are still visible in this result. Finally, the result of applying the

optimal multi-frame registration method (Section 5.3.1) is shown in Figure 5.6(d), with almost

no visible mis-registration error.

5.5 Summary and Discussion

In this chapter we studied several multi-frame motion estimation methods, focusing

on the methods that exploit the consistency conditions. As an alternative to existing methods,

we proposed a general framework to optimally benefit from these constraints. Such a frame-

work is flexible, and is applicable to more general motion models. Based on this framework,

we proposed a highly accurate multi-frame motion estimation method which is robust to the

outliers in image sequences. This robust method, which minimizes an L1 norm cost func-
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Figure 5.5: MSE comparison of different registration methods in the second simulated experiment, using
the image in Figure 5.3(b).

tion, often provides more accurate estimation than the common least square approaches. Our

experiments show that the high accuracy and reliability of the proposed multi-frame motion es-

timation method is especially useful for the multi-frame super-resolution applications in which

very accurate motion estimation is essential for effective image reconstruction.
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(a) (b)

(c) (d)

Figure 5.6: Experimental registration results for a real sequence. (a) One input LR frame after demosaic-
ing.(b) Single Reference HR registration. (c) Projective HR registration. (d) Optimal HR registration.
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Chapter 6

Conclusion and Future work

This chapter summarizes the contributions of this thesis in the field of multi-frame image fusion

and enhancement. We also detail several open questions related to this thesis as well as map out

future research direction.

6.1 Contributions

In this thesis, we proposed a general Maximum A-Posteriori framework for solving

multi-frame image fusion problems. This framework helped us construct a well-defined de-

scription of several aspects of this problem from an estimation theoretic point of view, allowing

us to make fundamental contributions to both the methodology and the science of image fusion,

reconstruction, and enhancement.

• In Chapter 2, we described a general theory regarding robust estimation of a high-quality

image from a set of low-quality images. In particular, we focused on the grayscale super-

resolution problem of constructing a high-resolution image from a set of low-resolution

noisy and blurred images. We showed that the reconstruction errors induced due to mo-

tion estimation follow the Laplacian model and often play a critical role in the overall

performance of any multi-frame super-resolution method. Unlike classic SR methods,
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we advocated the use of the L1 norm to fuse low-resolution images which significantly

reduced the effects of the outliers. To further enhance the quality of reconstruction, we in-

troduced an adaptive regularization method called Bilateral Total Variation which resulted

in high-resolution images with sharp edges. Furthermore, for the case of translational mo-

tion, and common space invariant blur, we justified an effective two step “Shift-and-Add”

SR method which is very fast to implement.

• In Chapter 3, we showed that the multi-frame super-resolution of color images and a com-

mon technique in commercial digital cameras called demosaicing are the special cases of

a general problem called multi-frame demosaicing. Based on the general MAP estima-

tion framework of the Chapter 2, we addressed these problems optimally under a unified

context. By minimizing a multi-term cost function, we proposed a fast and robust hy-

brid method of super-resolution and demosaicing. The L1 norm was used for measur-

ing the difference between the projected estimate of the high-resolution image and each

low-resolution image, removing outliers in the data and errors due to possibly inaccurate

motion estimation. Bilateral Total Variation regularization was used for spatially regular-

izing the luminance component, resulting in sharp edges and forcing interpolation along

the edges and not across them. Simultaneously, Tikhonov regularization was used to

smooth the chrominance components. Finally, an additional regularization term was used

to force similar edge location and orientation in different color channels. We showed that

the minimization of the total cost function is relatively easy and fast.

• In Chapter 4, we addressed the dynamic super-resolution problem of reconstructing a

high-quality set of monochromatic or color super-resolved images from low-quality monochro-

matic, color, or mosaiced frames. Our approach includes a joint method for simultaneous

SR, deblurring, and demosaicing, this way taking into account practical color measure-

ments encountered in video sequences. For the case of translational motion and common

space-invariant blur, the proposed method was based on a very fast and memory efficient
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approximation of the Kalman Filter, and the Shift-and-Add process studied in the previ-

ous chapters. We presented two closely related implementations of our proposed method.

The first technique is an extremely fast and memory efficient causal method suitable for

realtime (on-line processing) applications. The second more accurate non-causal method,

which is suitable for off-line processing applications, is still much more time and memory

efficient than the corresponding static super-resolution methods.

• In Chapter 5, we studied several multi-frame motion estimation methods, focusing on

the methods that exploit the motion consistency conditions. As an alternative to existing

methods, we proposed a general framework to optimally benefit from these constraints.

Such framework is flexible, and is applicable to more general motion models. Based on

this framework, we proposed a highly accurate multi-frame motion estimation method

which is robust to outliers in image sequences. This robust method, which minimizes an

L1 norm cost function, often provides more accurate estimation than the common least

square approaches. Our experiments showed that the high accuracy and reliability of the

proposed multi-frame motion estimation method is especially useful for the multi-frame

super-resolution/demosaicing applications in which very accurate motion estimation is

essential for effective image reconstruction.

• Based on the material presented in this thesis, we have developed a Matlab-based soft-

ware package, called “MDSP Resolution Enhancement Software Package”. The main

objective of this software tool is the implementation and comparison of several super-

resolution, demosaicing, and motion estimation techniques. In particular, the techniques

described in this thesis, and several references therein are included.

Some specific features of the software package are:

– As part of this software package, motion estimation is done automatically by the

program (pairwise anchoring, pairwise progressive, multi-frame projective, or multi-

frame robust iterative) or independently estimated motion vectors may be provided
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by the user.

– The user is able to specify the region of interest to be processed.

– A basic tracking algorithm is incorporated in the program so that if only a certain

part of the input images are important for the user (a car moving in a crowded street),

this region can be tracked and another data sequence containing only that particular

object is produced.

– The parameters of the imaging system (such as the point-spread function) may be

specified by the user.

– The input image files (as well as the output files) may be given as .mat (Matlab data

file) or .avi format.

– Producing color or grayscale output images are optional, given color (or raw CFA)

input frames.

– For purposes of experimentation, the software package is capable of producing sim-

ulated video data for different imaging scenarios from a single high resolution input

image, with user-controlled parameters.

This software is currently licensed and used in tens of academic and industrial institutes.

Figure 6.1 illustrates a screenshot of the MDSP software. More information on this soft-

ware tool is available at http://www.ee.ucsc.edu/∼milanfar/SR-Software.htm .

6.2 Future Work

• One important extension for our algorithms is the incorporation of blur identification

algorithms in the super-resolution methods. Many single-frame blind deconvolution al-

gorithms have been suggested in the last 30 years [92, 93]; and recently, [27, 94] incor-

porated a single parameter blur identification algorithm in their super-resolution method.
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Figure 6.1: Screenshot of the software package that is based on the material presented in this thesis.

Still, there is need for more research to provide a super-resolution method along with a

more general blur estimation algorithm.

• In Section 2.2.5, we proposed and mathematically justified a very fast two-step “Shift-

and-Add” super-resolution method when relative motion is pure translational, and PSF

is common and space-invariant in all low-resolution images. Empirical results show that

this computationally efficient two-step method can be also applied to the cases with more

complicated motion. The quality of reconstruction depends on the validity of the com-

muting property for the motion and blur matrices,

HFk − FkH ≈ 0 . (6.1)
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There is need for more research on defining the conditions under which (6.1) is valid.

• One of the most apparent effects of DCT based compression methods, such as MPEG for

video and JPEG for still images, is the blocking artifact. The quantization noise variance

of each pixel in a block is space-varying. For a block located in a low-frequency content

area, pixels near boundaries contain more quantization noise than the interior pixels. On

the other hand, for the blocks located in the high-frequency area, pixels near boundaries

contain less quantization noise than the interior pixels [95]. This space-variant noise

property of the blocks may be exploited to reduce the quantization noise. Because of

the presence of motion in video sequences, pixel locations in the blocks change from one

frame to the other. So two corresponding pixels from two different frames may be located

on and off the boundaries of the DCT blocks in which they are located. Based on the

discussion that was presented in the previous chapters, it is relatively easy to determine

which pixel has less quantization noise. It is reasonable to assign a higher weight to those

pixels which suffer less from quantization noise in the data fusion step, as explained in

Section 2.2.5. The relative magnitude of the weight assigned because of quantization and

the weight that was explained in Section 2.2.5 will depend on the compression ratio.

• Few papers [34, 35] have addressed resolution enhancement of compressed video se-

quences. Compression artifacts can dramatically decrease the performance of any super-

resolution system. Considering compression color artifacts in designing novel multi-

frame demosaicing algorithms is part of our ongoing work.

• Study of different compression techniques and their effects on the quality of reconstruc-

tion is not only essential for the optimal reconstruction of super-resolved images from

compressed data, but also it is very important for designing novel compression tech-

niques. A very interesting extension to our research is to focus on the design of a novel

compression method which results in compressed low-quality images ideal for recon-

struction by its matching super-resolution technique. Such method is of great importance
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for the design of efficient HD-TV video streams.

• Accurate subpixel motion estimation is an essential part of any image fusion process such

as multi-frame super-resolution or demosaicing. To the best of our knowledge, no paper

has properly addressed the problem of estimating motion between Bayer filtered images

(an ad-hoc registration method for color filtered images is suggested in [69]). However, a

few papers have addressed related issues. A general method for aligning images from sen-

sors of different modalities based on local-normalized-correlation technique is proposed

in [96], however no experiment is offered to attest to its subpixel accuracy. Ref. [72]

has addressed the problem of color motion estimation, where information from different

color channels are incorporated by simply using alternative color representations such

as HSV or normalized RGB. More work remains to be done to fully analyze subpixel

motion estimation from color-filtered images. Moreover, a few papers have suggested

different methods of concurrent motion estimation and [35, 50, 51, 97–99]. Simulation

results show the effectiveness of these methods. Therefore an important extension of our

research includes incorporation of motion estimation algorithms in the proposed multi-

frame demosaicing method of Chapter 3.

• While the proposed static super-resolution and demosaicing methods are applicable to a

very wide range of data and motion models, our dynamic SR method is developed for the

case of translational motion and common space-invariant blur. A fast and robust recursive

data fusion algorithm based on the L1 norm minimization applicable to general motion

models is a promising extension to this work.

• In the previous chapter we studied several multi-frame motion estimation techniques and

presented a robust optimal framework for addressing this problem. We showed that in

some cases using multi-frame motion estimation techniques are very useful and helps

improve the results of the associating multi-frame image fusion methods. However, in

general, any multi-frame image fusion technique is computationally much more complex
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than the corresponding single-frame method. Therefore, it is reasonable to use such meth-

ods only in cases for which one expects significant improvement in estimation accuracy.

The performance of the single-frame motion estimation methods are studied in many

previous works, including [80, 100–104]. However, beside the very recent works of [105,

106] which study the fundamental performance limits (Cramér-Rao Bounds [41]) of the

non-constrained multi-frame image registration problems, to the best of our knowledge

there is not much work on the performance of the multi-frame constrained motion esti-

mation method. As a part of future work, by thoroughly analyzing the the performance

of the multi-frame motion estimation methods, we can define the cases for which such

methods can be useful.

• Recently, the challenge of simultaneous resolution enhancement in time as well as space

has received growing attention [107–109]. A problem worthy of further research is to

apply features such as motion consistency, robustness, and computational efficiency to

this unified space-time resolution enhancement model.

6.3 Closing

In this thesis, theory, analysis, and justification for a novel framework of fast and

robust algorithms, applicable to a variety of multi-frame image fusion problems are developed.

Experiments on both simulated and real data demonstrate the effectiveness of the presented

method, and its practicality for real applications. The author hopes that the work presented here

serves as a stepping stone for the future scholars in this exciting field of research.
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Appendix A

The Bilateral Filter

The idea of the bilateral filter was first proposed in [110] as a very effective one-pass filter

for denoising purposes, while keeping edges sharp. Unlike conventional filters, the bilateral

filter defines the closeness of two pixels not only based on geometric distance but also based

on photometric distance. Considering the 1-D case (to simplify the notations), the result of

applying the bilateral filter for the kth sample in the estimated (1-D) signal X̂ is

[X̂ ]k =
∑M

m=−M W [k,m][Y ]k−m∑M
m=−M W [k,m]

, (A.1)

where Y = X + V is the noisy image (vector), and 2M + 1 is the size of 1-D bilateral kernel.

The weight W [k,m] = WS[k,m]WP [k,m] considers both photometric and spatial difference

between sample k in the noisy vector Y and its neighbors to define the value of sample k in the

estimated vector X̂ . The spatial and photometric difference weights were arbitrarily defined

in [110] as

WS[k,m] = exp
{
− m2

2σ2
S

}
,

WP [k,m] = exp

{
−([Y ]k − [Y ]k−m)2

2σ2
R

}
, (A.2)

where parameters σ2
S and σ2

R control the strength of spatial and photometric property of the

filter respectively.
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In [111], Elad proved that such filter is a single Jacobi iteration of the following

weighted least-squares minimization

X̂ = ArgMin
X

[
‖X − Y ‖2

2 + λ

M∑
m=−M

‖X − SmX‖2
Wm

]

= ArgMin
X

[
[X − Y ]T [X − Y ] + λ

M∑
m=−M

[X − SmX]T Wm [X − SmX]

]
, (A.3)

where Sm implies a shift to the right of m samples, and Wm is defined from (A.2). He also

showed that using more iterations will enhance the performance of this filter.

Note that if we define the (i, i)th element of the diagonal weight matrix Wm as

Wm(i, i) =
αm

|X(i) − SmX(i)| 0 < α < 1 ,

that is, weighting the estimate with respect to both photometric distance |X(i) − SmX(i)| and

geometric distance αm, then (A.3) will become

X̂ = ArgMin
X

[
‖X − Y ‖2

2 + λ

M∑
m=−M

αm‖X − SmX‖1

]
,

which is the 1-D version of the B-TV criterion in (2.16).
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Appendix B

The Limitations and Improvement of

the Zomet Method [1]

A robust super-resolution method was recently proposed by Zomet et al. in [1], where robust-

ness is achieved by modifying the gradient of the L2 norm cost function (2.7):

G2=
N∑

k=1

B(k) =
N∑

k=1

F T (k)HT (k)DT (k) (D(k)H(k)F (k)X − Y (k))

=
N∑

k=1

F T (k)HT (k)DT (k)U (k), (B.1)

in which B(k) is the gradient resulted from frame k and U(k) represents the residual vector.

They substituted (B.1) with the following

Ĝ2 = MED{B(k)}N
k=1 = MED{F T (k)HT (k)DT (k)U (k)}N

k=1, (B.2)

where MED is a pixelwise median operator (instead of the mean operator in (B.1)). Then

steepest descent minimization was used to calculateX̂

X̂n+1 = X̂n + λ
′′
Ĝ2, (B.3)

where λ
′′

is the step size in the direction of the gradient.

We show that for certain imaging scenarios the approximated gradient (B.2) is zero in
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all iterations, which means estimated high-resolution frame of the nth iteration (Xn) is the same

as the initial guess (X0) and the method “stalls” and fails. To appreciate this fact, let us start

with a square case in which the blurring effect is negligible (i.e. Hk is an identity matrix re-

sulting in B(k) = FT (k)DT (k)U (k)). A quick consultation with Figure 2.3 suggests that only

one of every r2 elements in DT (k)U (k) has a non-zero value. Moreover, recall that FT (k) just

registers the vector DT (k)U (k) with respect to the estimated relative motion without chang-

ing its value. According to (B.2), ĝ(i) (the ith element of the gradient vector Ĝ2) is equal to1

MED{bi(k)}N
k=1 . As N − 1 elements in {bi(k)}N

k=1 have zero value, their median will also

be zero. Therefore every element of the approximated gradient vector will be zero. Even for

a more general case in which the effect of blur is not negligible (H(k) is a matrix form of the

m × n blur kernel), the same approach may be employed to show that unless (m × n > r2

2 ),

the gradient will remain zero for all iterations.

The (m × n > r2

2 ) condition is also valid for the over-determined cases where the

distribution of motion vectors is uniform (that is the number of available low-resolution mea-

surements for each pixel in the high-resolution grid is equal). Therefore this condition does not

depend on the number of available low-resolution frames. In particular, consider the identity

blur matrix case, where the addition of any new frame Y (ϑ) is equivalent to the addition of a

new gradient vector B(ϑ) with r2 − 1 times more zero elements (resulting from upsampling)

than non-zero elements to the stack of gradient vectors. Therefore if

ĝ(i) = MED{bi(k)}N
k=1 = 0,

even after addition of r2 uniformly spread low-resolution frames ĝ′(i) = MED{bi(k)}N+r2

k=1

will still be zero (as r2 − 1 values of r2 newly added elements are zeros). Generalization of this

property to the case of arbitrary number of low-resolution frames with uniform motion distri-

bution is straight forward.

This limitation can be overcome by modifying the MED operator in (B.2). This modi-

fied median operator would not consider those elements of bi(k) which are the result of zero fill-

1bi(k) is the ith element of the vector B(k).
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ing. It is interesting to note that such an assumption will result in estimating the high-resolution

frame as the median of registered low-resolution frames after zero filling, which is the exact

interpretation of using L1 norm minimization discussed in Section 2.2.2. In essence, we can

say that this “corrected” version of the algorithm in [1] is a special case of our more general

robust formulation.
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Appendix C

Noise Modeling Based on GLRT Test

In this appendix we explain our approach of deciding which statistical model better

describes the probability density function (PDF) of the noise. Gaussian and Laplacian distribu-

tions, the two major candidates for modeling the noise PDF, are defined as

PG(V ) =
1

(2πσ2
G)Q/2

exp(−
∑Q

i=1([V ]i − mG)2

2σ2
G

), (C.1)

PL(V ) =
1

(2σL)Q
exp(−

∑Q
i=1 |[V ]i − mL|

σL
), (C.2)

where [V ]i is the ith element of the noise vector V (of size [1 × Q]) and σG, mG are the

unknown parameters of the Gaussian PDF (PG) and σL, mL are the unknown parameters of the

of the Laplacian PDF (PL) which are estimated from data. Noting that logarithm is a monotonic

function and

ln PL(V ) = −Q ln 2 − Q ln σL −
∑Q

i=1 |[V ]i − mL|
σL

, (C.3)

then the ML estimates of σL and mL are calculated as

σ̂L, m̂L = ArgMax
σL,mL

(PL(V )) = ArgMax
σL,mL

(− ln PL(V )), (C.4)

so

−∂ lnPL(V )
∂mL

=
Q∑

i=1

|[V ]i − mL| = 0 =⇒ m̂L = MEDIAN(V ), (C.5)
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and

−∂ ln PL(V )
∂σL

= − Q

σL
+

∑Q
i=1 |[V ]i − mL|

σ2
L

= 0 =⇒ σ̂L =
∑Q

i=1 |[V ]i − m̂L|
Q

. (C.6)

The same scheme can be used to estimate the Gaussian model parameters as:

m̂G = MEAN(V ) and δ̂G =

√∑Q
i=1([V ]i − m̂G)2

Q
. (C.7)

We use the generalized likelihood ratio test (GLRT) [112] to decide between the two hypotheses

about the noise model:
PG(V ; σ̂G, m̂G)
PL(V ; σ̂L, m̂L)

> γ, (C.8)

where γ is the decision threshold. That is if the ratio in (C.8) is larger than γ then PG is a more

accurate PDF model for V than PL and vice versa (γ was chosen equal to 1 as it mimics a test

which minimizes the probability of error and does not a priori favor either hypothesis). So:

1
(2πσ̂2

G)Q/2 exp(−
∑Q

i=1([V ]i−m̂G)2

2σ̂2
G

)

1
(2σ̂L)Q exp(−

∑Q
i=1 |[V ]i−m̂L|

σ̂L
)

> 1 . (C.9)

Substituting m̂G, σ̂L, σ̂G, and σ̂L with their corresponding estimates from (C.5), (C.6), and

(C.7) and simplifying results in

σ̂L

σ̂G
> (

π

2e
)

1
2 � 0.7602 . (C.10)

So if (C.10) is valid for a certain vector V then the Gaussian is a better model of data than the

Laplacian model, and vice versa.
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Appendix D

Error Modeling Experiment

The Maximum Likelihood estimators of the high-resolution image developed in many previous

works [11, 113] are valid when the noise distribution follows the Gaussian model. Unfortu-

nately, the Gaussian noise assumption is not valid for many real world image sequences. To

appreciate this claim we set up the following experiments. In these experiments according to

the model in (2.4) a high-resolution [256 × 256] image was shifted, blurred, and downsampled

to create 16 low-resolution images (of size [64×64]). The effect of readout noise of CCD pixels

was simulated by adding Gaussian noise to these low-resolution frames achieving SNR equal to

25dB. We considered three common sources of error (outliers) in super-resolution reconstruc-

tion:

1. Error in motion estimation.

2. Inconsistent pixels: effect of an object which is only present in a few low-resolution

frames (e.g. the effects of a flying bird in a static scene).

3. Salt and Pepper noise.

In the first experiment, to simulate the effect of error in motion estimation, a bias

equal to 1
4 of a pixel was intentionally added to the known motion vector of only one of the

low-resolution frames. In the second experiment, a [10 × 10] block of only one of the images
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was replaced by a block from another data sequence. And finally, in the third experiment, we

added salt and pepper noise to approximately 1% of the pixels of only one of the low-resolution

frames. We used the GLRT test (Appendix C) to compare the goodness of fit of Laplacian

and Gaussian distributions for modeling the noise in these three sets of low-resolution images.

Consider the general model of (2.4), the overall noise (error residual) is defined as

V =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

V (1)

V (2)
...

V (N)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

V (k)=Y (k) − D(k)H(k)F (k)X, (D.1)

where N is the number of the frames in the sequence.

The GLRT test results for these three experiments were 0.6084, 0.6272 and 0.6081,

respectively. The test result for the original low-resolution images contaminated only with

pure Gaussian noise was 0.7991. Based on the criterion in (C.10), the distribution of the noise

with a test result smaller than 0.7602 is better modeled by the Laplacian model rather than the

Gaussian model. Note that the outlier contamination in these tests was fairly small, and more

outlier contamination (larger error in motion estimation, larger blocks of inconsistence pixels,

and higher percentage of Salt and Pepper noise) results in even smaller GLRT test results.
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Appendix E

Derivation of the Inter-Color

Dependencies Penalty Term

In this appendix, we illustrate the differentiation of the first term in (3.10), which we call L,

with respect to XG. From (3.10) we have:

L = ‖XG�Sl
xS

m
y XB−XB�Sl

xS
m
y XG‖2

2
� is−→

commutative
L = ‖Sl

xSm
y XB�XG−XB�Sl

xS
m
y XG‖2

2.

We can substitute the element by element multiplication operator “�”, with the differentiable

dot product by rearranging XB as the diagonal matrix1 XB and Sl
xS

m
y XB as Xl,m

B , which is

the diagonal form of the shifted XB by l, m pixels in horizontal and vertical directions,

L = ‖Xl,m
B XG − XBSl

xSm
y XG‖2

2. (E.1)

Using the identity:
∂‖∆C‖2

2

∂C
=

∂
(
CT∆T∆C

)
∂C

= 2∆T∆C,

1We are simply mapping a vector ∆ to its diagonal matrix representation ∆ such that:

∆ =

⎛⎜⎜⎜⎝
∆1

∆2

...
∆4r2Q1Q2

⎞⎟⎟⎟⎠−→

⎛⎜⎜⎜⎝
∆1 0 · · · 0
0 ∆2· · · 0
...

...
. . .

...
0 0 · · ·∆4r2Q1Q2

⎞⎟⎟⎟⎠ = ∆
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and noting that Xl,m
B and XB are symmetric matrices, the differentiation with respect to the

green band will be computed as follows

∂L

∂XG

= 2(Xl,m
B − S−l

x S−m
y XB)(Xl,m

B XG − XBSl
xSm

y XG).

Differentiation of the second term in (3.10), and also differentiation with respect to

the other color bands follow the same technique.
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Appendix F

Appendix: Affine Motion Constraints

In this section we review the consistency constraints for the affine motion model. The

affine transformation models a composition of rotation, translation, scaling, and shearing. This

six parameter global motion model is defined by⎡⎢⎣xi

yi

⎤⎥⎦ =

⎡⎢⎣ai,j bi,j

ci,j di,j

⎤⎥⎦
⎡⎢⎣xj

yj

⎤⎥⎦ +

⎡⎢⎣ei,j

fi,j

⎤⎥⎦ , (F.1)

where [xi, yi]T , and [xj , yj]T are the coordinates of two corresponding pixels in frames i and j.

Defining

Ξi,j =

⎡⎢⎣ai,j bi,j

ci,j di,j

⎤⎥⎦ , T i,j =

⎡⎢⎣ei,j

fi,j

⎤⎥⎦ , (F.2)

the consistency constraints for the affine case are defined by the relations

∀ 1 ≤ i, j, k ≤ N,

⎧⎪⎨⎪⎩Ξi,k= Ξi,jΞj,k

T i,k=Ξi,jT j,k + T i,j

. (F.3)

Note that Ξi,i = I and T i,i = 0, and therefore (F.3) results in a set of 6(N − 1)2 independent

nonlinear constraints.
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A more intuitive (and perhaps more practical) set of constrains can be obtained if we

consider a simplified version of the general affine model where only scale, rotation, and trans-

lation are considered. Such a simplified model is represented by replacing the first coefficient

matrix on the right side of (F.1) with

Ξ′
i,j =

⎡⎢⎣ai,j bi,j

ci,j di,j

⎤⎥⎦ = κi,j

⎡⎢⎣cos(θi,j) − sin(θi,j)

sin(θi,j) cos(θi,j)

⎤⎥⎦ , (F.4)

where κi,j , and θi,j are the scaling and rotation parameters, respectively. The consistency con-

straints for this simplified affine model are given by the following relations⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
κi,k = κi,jκj,k

θi,k = θi,j + θj,k

T i,k=Ξ′
i,jT j,k + T i,j

. (F.5)

For a set of N frames, the above relations amount to 4(N − 1)2 independent non-linear con-

straints. Non-linear programming (e.g. “fmincon” function in MATLAB) can be used to mini-

mize the cost functions with such non-linear constraints.
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