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Abstract

Image superresolution refers to image processing algorithms which produce high
quality, high-resolution (HR) images from a set of low quality, low-resolution (LR)
images. In many visual applications, both civilian and military, the imaging sensors
have poor resolution outputs. When resolution can not be improved by replacing
sensors, either because of cost or hardware physical limits, we can resort to super-
resolution algorithms. Even when superior equipment is available, superresolution
algorithms are an inexpensive alternative.

Superresolution is a computationally intensive process. Some video applications
may require superresolution to be done on-the-fly; data must be processed as they
are received. To that end, it must take advantage of inherent regularity and structure
of the problem. Superresolution algorithms must be robust with respect to various
sources of image degradations. These include unknown sensor noise, unknown or
varying camera characteristics from frame to frame, unknown modelling error, etc.
Furthermore, the algorithms must be driven only by the sensor data. No detailed
information about noise or camera characteristics is given.

The goal of this thesis is a complete superresolution algorithm which can be
applied in realistic applications. The thesis examines superresolution under two dif-
ferent frameworks: an iterative approach and an interpolation-restoration approach.
Fast and robust techniques are presented for various components of superresolution.
We develop a projection-based framework for frame-to-frame motion estimation and
image registration aspects of superresolution. For the iterative approach, the high
resolution image estimate is the solution to a regularized least squares system. We

propose new preconditioners to accelerate convergence for the conjugate gradient

iv



method applied to the regularized least squares problem. We also consider the
issue of regularizing discrete ill-posed underdetermined problems and derive new
formulas for two regularization parameter estimation techniques. Very often, the
blurring operators are unknown or reliable estimates are unavailable. We develop
new techniques to identify unknown blur from multiple low resolution frames. We
also present a novel wavelet interpolation-restoration approach to superresolution.
Numerical experimental results demonstrate the effectiveness of the proposed meth-

ods.
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Image superresolution refers to image processing algorithms that produce high
quality, high-resolution (HR) images from a set of low quality, low-resolution (LR)
images. Naturally, there is always a demand for better quality images. The level
of image detail is crucial for the performance of several computer vision algorithms.
Target recognition, detection and identification systems are some of the military ap-
plications that require the highest quality achievable. License plate readers, surveil-
lance monitors, and medical imaging applications are examples of civilian applica-
tions with the same requirement. In many visual applications, both civilian and
military, the imaging sensors have poor resolution outputs. When resolution can
not be improved by replacing sensors, either because of cost or hardware physical
limits, we can resort to superresolution algorithms. Even when superior equipment
is available, superresolution algorithms are an inexpensive alternative.

Multiframe superresolution, at its core, is a process by which one gains spatial
resolution in return for temporal bandwidth. Temporal bandwidth refers to avail-
ability of multiple frames of the same scene. Lukosz [55, 56] was first to realize this
possibility. However, superresolution can not perform miracles. Extracting subpixel
information from a single frame or a sequence of identical frames is possible only if
we have additional information about the scene. In this thesis, we assume no prior
knowledge about the given image sequence. Hence, in order to obtain superresolu-
tion, there must be nonredundant information among the frames. We must be able
to translate data temporal bandwidth into subpixel image content. Each LR frame
provides a different “look” at the same scene. Theoretically, nonredundant informa-
tion about the scene can be obtained by providing different lighting conditions or
with different sensors. This is the multichannel data fusion superresolution problem.
With just one imaging device and under the same lighting conditions, we require
that there be some relative motions from frame to frame. Frame-to-frame motion
can be a combination of camera platform motion relative to the scene, moving ob-
jects in the scene, and camera jitters. For example, in satellite imaging, images of
the ground below are captured as the camera orbits the earth, whereas in surveil-
lance and monitoring applications, the camera is placed on a fixed platform, and

observed objects move within the scene. Motion and nonredundant information are
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what make superresolution possible. Armed with this information, we are able to
extract subpixel content at a higher resolution than in each individual frame.

Superresolution is a computationally intensive process. Some video applications
may require superresolution to be done on-the-fly; data must be processed as they
are received. Imagine a superresolution integrated circuit (IC) inside the camera
processing sensor data and displaying the refined results. Even for offline appli-
cations, speed is an essential requirement of a practical superresolution algorithm.
The algorithm must manipulate hundreds of thousands pixel data efficiently. To that
end, it must take advantage of inherent regularity and structure of the problem.

But speed should not be gained at the cost of robustness. Superresolution al-
gorithms must be robust with respect to various sources of frame degradations.
These include unknown sensor noise, unknown or wvarying camera characteristics
from frame-to-frame, unknown modeling error, etc. Furthermore, the algorithms
must be driven only by the sensor data as no information about noise or camera
characteristics may be given.

The goal of this thesis is a complete superresolution algorithm which can be
applied in realistic applications. We examine superresolution under two different
frameworks. We propose fast and robust techniques for various stages of superres-
olution. Timings and quality of results will demonstrate the effectiveness of our

methods.

1.1 Problem Description

In this section, we describe a straightforward and efficient model for superresolution
which will serve as the foundation for the development of algorithms for the rest of
the thesis. Although superresolution and multichannel data fusion can both be de-
scribed with one model, for simplicity and ease of presentation, our superresolution
representation will consist of LR data from only one imaging source. We assume
consistent lighting conditions, negligible optical distortions, that objects observed

are acquired under orthographic projections, and that individual scene motions can
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Figure 1.1: Low-resolution data on a high-resolution grid.

be modeled as affine transformations. While these simplifications result in some loss
of generality, the model will be adequate for the majority of superresolution imaging
applications.

The problem can be stated as follows:

Given a set of degraded LR frames {fy}r—1

under the conditions above, and a desired enhancement factor r, reconstruct an

» each M x N pizels in dimension

.....

enhanced/restored HR image with dimensions rM x rN.

Figure 1.1 illustrates the problem setup. The figure shows three 4 x 4 pixels

LR frames on an 8 x 8 HR grid. Each symbol (square, circle, triangle) indicates
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Figure 1.2: CCD camera model.

the sampling points of a frame with respect to the HR grid. We pick an arbitrary
frame as a reference frame; in this case, the frame marked by the circular symbols.
The sampling grid for the triangular frame is just a simple translation of the refer-
ence frame grid. The motion between the sampling grid for the square frame and
the reference frame grid include translational, rotational, and magnification (zoom)
components. The goal of superresolution is to interpolate and restore values at the
HR grid points.

In order to solve for the unknown HR values, we first model the forward process
that takes the ideal HR image to a degraded LR frame. Many imaging devices today,
such as infrared and charged-coupled device (CCD) cameras, consist of arrays of light
detectors. A detector determines pixel intensity values depending upon the amount
of light detected from its assigned area in the scene [42]. Resolution of images
produced by the camera is proportional to the density of detector array. Figure 1.2
shows a simplistic model of a CCD camera.

The camera lens produces a blurred version of the object. The CCD array
turns this degraded analog signal into a discrete 2-D image with quantized intensity
values. In addition, the images are contaminated by additive noise from various
sources: quantization errors, sensor measurement errors, model errors, etc. Ideally,
we would like to have a high density CCD array placed in front of the camera lens to

capture an undegraded RH image, and this HR image is what we seek to reconstruct.
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Figure 1.3: Relationship between LR and HR pixels.

Figure 1.3 illustrates the relationship between LR and HR pixels. We model
each LR frame as a noisy, uniformly down-sampled version of the RH image which
has been shifted and blurred. Following [24], the forward relationship between a
degraded, LR frame and the ideal RH image can be described as:

fk = DCkEkX+ ng, 1 S k S D, (11)

where D is the down-sampling operator, Cy’s are the blurring/averaging operators,
E}’s are the affine transforms which map the HR grid coordinate system to the LR
grid systems, x is the unknown ideal HR image, and n;’s are the additive noise
vectors. The LR frames f;, are given, and the decimation operator D is known. The
blurring operator C and camera lens characteristics are in general unknown. How-
ever, the blurring process can be well approximated to be linear spatially invariant
(LSI). The scene motions for each frame relative to the reference frame are also gen-
erally not known. Finally, with multiple independent sources of error, the central

limit theorem allows us to assume Gaussian normal distribution for the additive
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noise vectors n; with possibly unknown variance. Each frame f;, M x N pixels in
dimension, becomes a column M N x 1 vector by columnwise reordering. Pixel (1,1)
of the 2-D frame is ordered first, pixel (1,2) is second, and so forth. The unknown
ideal image x is reshaped into a 72 M N x 1 column by the same columnwise ordering.
The matrices E}’s are square r2M N x r2M N matrices representing the affine trans-
forms applied to the ideal image. The matrices C,’s are also r2M N x r? M N square
matrices represent the blurring operators, and D is an MN x r2M N decimation

matrix. By stacking the frame equations (1.1) we get
f = Hx+n, (1.2)

where f,n are now pMN x 1 vectors and H is the complete system matrix with
dimensions pM N x r?MN. The shape of the system depends on the number of
available nonredundant LR frames. If p < 2, we have an underdetermined system.
If p = r?, the system will be square. And if p > 72, we have an overdetermined sys-
tem. All three cases are valid in practice. The matrix H is typically ill-conditioned,
very large, and sparse. The dimensions of H are directly related to the number of
data samples and unknowns, which are usually in the tens of thousands. Solving
(1.2) is a formidable computing challenge. Yet, as we will describe, there are in-
herent structures and regularity which we can exploit. We have already mentioned
above the spatial invariant property of the blur. Another useful property is the
fact that for each frame, data points are sampled in a rectangular grid. However,
if pixel values from all frames are considered together as in Figure 1.1, the data
are irregularly sampled. This special case of irregular sampling is called interlaced
sampling [77]. These two properties will be the basis of many techniques proposed
in this thesis.

In the forward process (1.1), scene motions are applied first to the ideal image.
Almost all existing superresolution algorithms estimate scene motions directly from
the LR data. Unless individual scene motions are spatially invariant, e.g. purely

translational, the motion estimates are corrupted by blur degradations. Only Shah
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Figure 1.4: Image restoration as a special case of image superresolution.

and Zakhor [76] considered resolution enhancement with a motion registration com-
ponent that accounts for the blurring and aliasing effects in the imaging process. In
this thesis, we will use the customary approach of estimating motion directly from
the LR frames since numerical experiments have shown that there is no significant

loss of image reconstruction quality.

1.2 Related Problems

Image restoration is a special case of image superresolution.

models have the form:

f =Cx+n,

Linear restoration
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where f is the noisy and blurred data image, C' is the linear blurring operator, x
is the ideal image we wish to restore, and n is the additive noise vector. Equation

(1.3) can be rewritten as
fk:DC’Ekx—i—nk, 1 §k§r2, (14)

where r is an arbitrary decimation factor, equivalent to the resolution enhancement
factor in (1.1), the LR “frames” f;’s are shifted, blurred versions of the original HR
image down-sampled by a factor of r, and E}’s represent the relative motion shifts
covering all possible vertical and horizontal motions. Thus, image restoration can
be restated as an image superresolution problem with a desired enhancement factor
of r and a set of r? LR frames with all possible horizontal and vertical HR pixel
shifts to cover the entire HR grid. Figure 1.4 illustrates this connection, where in
this example, r = 2. The noisy, blurred image is partitioned into four LR “frames”
each marked by a distinct symbol. Using the frame marked by the circle symbol as
reference, the frame marked by the square symbol contains sampling points at one
HR pixel shift in the horizontal direction. Similarly, the triangles mark sampling
points at one HR pixel shift in the vertical direction, and the diamonds sampling
points at one HR pixel shift diagonally. Image restoration is simply image super-
resolution with regularly sampled LR data completely covering the HR grid. The

importance of this connection will be further examined a little later.

1.3 Outline of Thesis

The main goal of this thesis is the development of a complete superresolution al-
gorithm that can be used in realistic applications with minimal operator/human
supervision. The input into the algorithm is a set of LR, degraded frames, and the
output is a restored HR image. The algorithm can not assume any detailed knowl-
edge about camera characteristics such as point spread function (PSF) or noise level
estimates. The algorithm must be computationally efficient to be practical for data

intensive applications such as video sequence enhancement.
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We examine superresolution under two frameworks. The first approach solves
the superresolution equation (1.1) by a total iterative process. We consider the
matrices D, C}’s, and E}’s together as a single linear operator and solve for a reg-
ularized least squares estimate by an iterative method. The connection between
superresolution and restoration suggests the second approach, which is a combina-
tion of interpolation and restoration. We first interpolate the LR values at HR grid
points with nonuniformly sampled data. This interpolation step reduces the super-
resolution problem to a deblurring/restoration problem which has been extensively
studied.

With this understanding, we can decompose superresolution into various im-
age processing components. Figure 1.5 displays the overview of the components of
superresolution. The chapters in this thesis roughly correspond to the flow chart
items. Chapter 2 deals with the frame-to-frame motion estimation and image reg-
istration aspects of superresolution. Both approaches to superresolution require
registering the relative motions between the LR frames as a preprocessing step. For
the iterative approach, the HR image estimate is the solution to a regularized least
squares system. Chapter 3 describes preconditioners to accelerate convergence for
the conjugate gradient (CG) method applied to the regularized least squares prob-
lem. Chapter 4 handles the issue of regularizing discrete ill-posed underdetermined
problems. Very often, the blurring operators C}’s are unknown or reliable estimates
are unavailable. Chapter 5 develops techniques to identify unknown blur from mul-
tiple LR frames. Our wavelet interpolation-restoration approach to superresolution
is presented in Chapter 6. Finally, we have some conclusions and remarks on future

directions of research in Chapter 7.

1.4 Previous Work

Superresolution reconstruction from multiple frames is a relatively new class of
restoration problems. Earlier approaches to superresolution were based on extrapo-

lating image spectrum from a single frame [47]. Various techniques were proposed,
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such as analytic continuation, extrapolation via prolate spheroidal wave functions by
Slepian and Pollak [80], and extrapolation by error energy reduction by Gerchberg
[29] and Papoulis [68].

Tsai and Huang [87] were first to superresolve a single HR image from several
down-sampled LR frames (without blur). They considered interpolation from p LR

frames {fy}—1 . ,, each shifted from a reference frame by some shift J;. Frame fj,

.....

can be considered as samples from a continuous signal f(z + dx), where f(x) is the

ideal continuous image. In the frequency domain,
Fyl(w) = 6% P (w), (1.5)

where Fi(w), F(w) are the continuous Fourier transforms of f(z + d;) and f(z),

respectively. The discrete Fourier transforms of the LR frames can be expressed as
F, = of;, (1.6)

where ® = (exp (—z’27r%”))j , is the discrete Fourier transform matrix. The relation-
ship between the continuous Fourier transform and the discrete Fourier transform

gives us

n

Fy, = % i . (W + mws> , (1.7)

m=—00

where Fj, = (Fjn), , T is the temporal spacing from one frame sample to the next,
and wy is the sampling frequency of each frame. Combining (1.5), (1.6), and (1.7),
they were able to calculate values of the frequency spectrum F(w) at — Lw;, —Lws +
~7s oy Lwg — 5=, with L being the integer such that F(w) = 0 for |w| > Luw;,
resulting in an improvement of 2L factor in resolution.

Sauer and Allebach [73] modelled superresolution as an interpolation problem

with nonuniformly sampled data. They used a projection onto convex sets (POCS)
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algorithm to reconstruct the unknown values:
FEY = p ... pp FO (1.8)

where F( is the Ith approximate of the ideal HR image F, and P, are projection
operators which correct for errors between F® and F and impose band-limitedness
constraints. The solution to the fixed point iteration (1.8) is their estimate to F.
Aizawa et al. [3] also modeled superresolution as an interpolation problem with
nonuniform sampling and used a formula related to Shannon’s sampling theorem to
estimate values on a HR grid. All [87, 3, 73] ignored the effect of sensor blurring.
Tekalp et al. [83] later generalized Tsai and Huang’s algorithm to include blurring
and sensor noise and proposed the additional restoration step for the interpolation
algorithms. Frieden and Aumann [28], Stark and Oskoui [81] and Irani and Peleg [46]
incorporated sensor blur into a set of linear equations, which is solved by stationary

iterative methods. Irani and Peleg proposed a back-projection method

FE = 7O L3 g, (flgl) _ fk> : (1.9)
k

where Hj, is a normalized back-projection operator containing information about
the blurring and sampling process, f; is the original kth data frame, and f,El) is the
simulated kth frame using F(®) as the HR image.

Subsequent work on superresolution falls into one of the three approaches de-
scribed above: frequency domain, interpolation-restoration, and iterative spatial
domain methods.

Under the frequency domain category, Kim et al. [51] used the aliasing rela-
tionship between the undersampled LR frames and a reference frame to solve the
problem in the wavenumber domain using a weighted recursive least squares method.
In [52], Kim and Su advanced this technique to include blurring degradations.

Ur and Gross [88] considered Papoulis’ generalized multichannel sampling theo-

rem for interpolating values on a higher resolution grid. Because the light detectors
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are not ideal lowpass filters, some high frequency information about the scene is rep-
resented in the image in aliased form. Papoulis’ theorem reconstructs this aliased
high frequency content by taking properly weighted sums of the spectral information
from the LR frames. Shekarforoush and Chellappa [77] extended Papoulis’ theorem
for merging of nonuniform samples of multiple channels into RH data.

In a similar vein to Irani and Peleg’s iterative back-projection technique, Abdou
[1] employed Kaczmarz’s method to iteratively refine the HR estimate. This row-
projection method allows the user to process the data frames in batches. As more
frames become available, the HR estimate can be updated with the new information.

Our model for the degradation process from ideal HR image to measured LR
frames follows that of Elad and Feuer [25]. They form the following system of

equations
fr = DyCpExF +my, 1<k <p, (1.10)

where D), represents the decimation operator, C} represents the time and space
varying blurring operator, Ej represents the geometric warping operator, and ng
is an additive noise vector. They proposed a hybrid approach that combines a

maximum a posteriori (MAP) constraint with additional non-quadratic constraints

~

F = argming {Z ||fx — DkaEk:F“IQ/Vk + 5”5}—”%/} )
k

st.{Fel;, 1<j<M}, (1.11)

where W is a confidence weighting matrix related to the autocorrelation of the
noise vector, S is the regularization operator, V is a weighting matrix, and 3 is
some scaling constant. The convex sets Z; represent the non-quadratic constraints
imposed on the HR estimate. An adaptive least squares method is used to solve for
the minimizer of (1.11).

More sophisticated models of superresolution have appeared in the engineer-

ing literature recently. Hardie et al. [39] proposed a joint MAP registration and



CHAPTER 1. INTRODUCTION 15

restoration algorithm using a Gibbs image prior. Schultz and Stevenson [75] used
a Huber-Markov random field model with Gibbs prior to better represent image
discontinuities, such as transitions across sharp edges. Patti et al. [69] extended the
superresolution model to include nonzero aperture time (motion blur) effect.
However, previous works have not addressed the computational challenges of
superresolution adequately. Regularization and other robustness issues are dealt

with in an ad hoc manner. These challenges are the motivations for this thesis.

1.5 Contributions of Thesis

The main contribution of this thesis is a complete, fast, and robust image superreso-
lution algorithm. We have constructed a modular framework for superresolution (see
Figure 1.5). For each stage of the algorithm, we develop techniques with potential

for real time practical applications.

e In Chapter 2, we present the projection-based approach to motion estimation.
By using properties of the Radon transform, this approach reduces the 2-D
motion estimation problem to two 1-D problems, lowering the computational
burden significantly. New motion estimation methods can be derived from
existing 2-D motion estimation methods. We show bounds on loss of accuracy
under the projection framework. Motion estimation timing and accuracy re-
sults for several simulated and real image sequences are presented. We also
examine the effect of registration accuracy on overall superresolution recon-
struction quality. Superresolution reconstruction results under various levels

of misregistration are presented.

e In Chapter 3, we describe two new preconditioners for accelerating CG conver-
gence for superresolution. These preconditioners are based on the degradation
model for each LR frame and thus, are applicable for all cases of data avail-
ability: underdetermined, square, and overdetermined. They are inexpensive
to construct and use. We show bounds on the number of preconditioned iter-

ations needed for exact convergence. We also show timing and iteration count
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results to demonstrate the effectiveness of our preconditioners.

e Chapter 4 deals with regularizing discrete ill-posed problems. Although there
is extensive literature on regularizing overdetermined and square systems, very
little has been written on underdetermined systems. In this chapter, we ex-
amine regularization and parameter selection for underdetermined systems.
We derive new formulas for two regularization parameter criteria. We em-
ploy and compare these criteria for computing regularization parameters for

superresolution.

e In Chapter 5, we consider the blur identification and the related blind su-
perresolution problems. While the blur identification problem has been well
studied, fast and robust techniques are lacking. We propose new quadrature-
based methods for the blur identification problem using generalized cross-
validation and demonstrate their effectiveness with blind superresolution and

blind restoration results.

e In Chapter 6, we describe a fast wavelet interpolation method for interlaced
sampling. This method is well-suited as an interpolation technique for super-
resolution data, which come in the form of interlaced sampling. We present
wavelet superresolution results from applying a combination of this interpola-

tion method with a restoration step.

Although algorithms in this thesis are developed with superresolution in mind, they
may be useful in other settings. We will point out other potential applications along

the way.
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Motion Estimation
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2.1 Introduction

Superresolution from multiple frames is possible only in the presence of motion. In
some superresolution applications, such as satellite remote sensing, relative motion
from frame to frame, based on the satellite orbiting velocity and path, is known
beforehand at least approximately. For others, motion must be estimated from raw
data as a preprocessing step to superresolution. In these cases, motion estimation
is an essential component of superresolution. It is also an important tool in other
imaging applications including image stabilization, video compression using motion
compensation, and motion detection.

Frame-to-frame motions provide different views of the scenes or objects of inter-
est. Frame motions may combine a global motion component as a result of camera
movement and local scene motions as observed objects move within the scene. If
these frame motions are sufficiently smooth they may be approximated by an affine
model locally. Although this model is not accurate for more complex movements
and large image regions where there may be multiple moving objects, it serves as
a good approximation for smaller regions. For recent work on the piecewise affine
model for image motion, we refer the reader to Wang and Adelson [91] and Ju et al.
[48]. In this thesis, we assume that a single set of affine parameters will suffice to
describe the motion from one frame to the next. Our image registration framework
has many similarities with optical flow calculation where a dense motion flow field
is computed for each LR frame. For optical flow calculation, a single motion vector
representing purely translational motion is computed for each region of the image.
These regions can be quite small in size (down to one pixel) whereas for motion
estimation in image superresolution, we are interested in resolving rigid moving ob-
jects occupying a larger portion of the image. We refer the reader to the survey on
optical flow techniques by Barron et al. [8] for further details.

In order to extract subpixel information content from the sequence, each frame
must be registered accurately with respect to some reference to within subpixel accu-

racy. Intuition dictates that in order to achieve an order n resolution enhancement,
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image registration must be accurate to within % pixel. As we shall see, superreso-
lution results from misregistered and misaligned frames are visually unsatisfactory.

In this chapter, we first describe the affine gradient-based model for motion es-
timation. We review two approaches for computing motion. The first technique
employs standard least squares estimation in the image domain to find the param-
eters of motion. The second uses plane-fitting algorithms in the frequency domain.
In the second part of the chapter, exploiting properties of the Radon transform, we
propose an efficient gradient-based projection framework. This framework generates
a new class of motion estimation techniques for the 2-D motion estimation problem
by reducing it to two independent 1-D problems. We give an upper bound for po-
tential performance loss as a result of this projection step. We present numerical
experimental results verifying our claims that our projected motion estimation ap-
proach is faster, without significant loss of accuracy. We also examine the effect of

registration errors on superresolution reconstruction results.

2.2 Preliminaries

Motion estimation is a common area of interest for many different computer vision
applications. The result is a large body of research with numerous proposed tech-
niques. Almost all of them can be categorized under one of four groups: correlation
or block-matching, feature-based, gradient-based, and spatiotemporal filtering [41].
We concentrate our attention on gradient-based techniques in this chapter. For a

comprehensive review on the topic, the reader is referred to the survey by Brown
[14].

2.2.1 Intensity Conservation Assumption

A fundamental assumption underlying gradient-based methods is that the total
intensity is conserved from frame to frame. This assumption holds under fairly ideal
conditions, e.g. no large motions, consistent lighting conditions, and no occlusions.

Let f(x,y,t) be the image intensity function in space and time. Then we can express
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intensity conservation as follows:

where

Si(z,y) = prov+py+ps
da(z,y) = pax+ sy + ps (2.2)

represent the affine motion flow field about the origin (0,0). By Taylor’s expansion,

the first order approximation of the right hand side of (2.1) is

61 (xa y)
where 6 = | dy(x,y) | At. Substituting into (2.1), we obtain the gradient con-

1
straint equation:

Vf(z,yt)'s = 0. (2.4)

The gradient constraint equation (2.4) was first proposed by Horn and Schunk [43]
for computing optical flow fields and is the foundation of many optical flow and

image registration algorithms.

2.2.2 The Aperture Problem

We call attention to the fact that components of motion to V f(x,y,t) can not be
computed from (2.4). This is an example fo the aperture problem, which refers
to situations in which the correct motion vectors can not be determined due to
insufficient information. There might not be enough information in a region of
interest (aperture) to solve for the correct motion vector. Consider Figure 2.1 for

example. The diagonal arrows indicate the true motion vector which coincides with
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Figure 2.1: Aperture problem: insufficient information to determine true motion
vector

the orientation of the filled-in region. Because of the one-dimensional structure of
the scene, the magnitude of the true motion vector is ambiguous. We need additional
constraints or information about the motion in order to compute the motion vector

correctly.

2.3 Motion Estimation Methods

We introduce in this section two popular motion estimation methods, the least
squares estimate and the frequency-domain, plane-fitting method. Most superres-
olution algorithms either assume that motion parameters are known or use the
gradient-based least squares estimate of motion. If the affine model describes frame-
to-frame motion well, gradient-based approaches are very accurate since only six
parameters are needed. The second method, operating in Fourier domain, is also
based on the intensity conservation assumption. The method is derived from the

interpretation of the conservation assumption in the frequency domain.
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2.3.1 Least Squares Estimate

Let us rewrite (2.2) in matrix form,

[ ou(z,9) | _ Ap, (2.5)

62(x,y)

z y 1 0 0 0 T
A= , p——( ) ) 2.6
(0 0 0z gy 1 h Ps (2.6)

The gradient constraint equation (2.4) in matrix form becomes

with f; = (fz f,)T. Summing over all pixels in the region of interest, the regularized

least squares estimate of motion is the minimizer of

argming, Y (f7Ap + £;)” + Apl3, (2.8)

Y

for some regularizing scalar A\. The purpose of the regularization term in (2.8) is

‘

to encourage “well-behaved” solutions. With A = 0, we recover the least squares
solution. Other regularization approaches, e.g., robust estimation framework [13],

have also been proposed. Differentiating with respect to p and setting to 0, we get

> (ATffAp+ AT £ ) + Ap = 0. (2.9)
T,y
Hence,
-1
p=-— (Z ATf fFA+ /\I> AT [, f. (2.10)
T,y
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Operator Horizontal Vertical
0 1 10

Roberts { 10 J { 01 |

[ -1 0 1] [ —1 —1 —1]
Smoothed -1 0 1 0O 0 O

| -1 0 1] 1 1 1

[ -1 0 1] [ -1 —2 —1]
Sobel -2 0 2 0O 0 0

| -1 0 1 | 12 1

-1 0 1 -1 —V2 -1
Isotropic V2 0 V2 0 0 0

-1 0 1 1 V2 1

Table 2.1: Some common gradient operators.

An important issue in this approach is how to compute the numerical partial deriva-
tives f;, fy, and f; at the pixel grid points. The spatial derivatives f,, f, can be
computed by filtering the image with a gradient operator. Table 2.1 lists a few
commonly used gradient operators (cf. [47, p. 349]). To approximate f;, Irani
and collaborators [46, 50] and others [39] used the intensity difference between two
consecutive frames, f(z,y,t) and f(x,y,ty + 1). This is equivalent to applying a
simple mask [ 1 -1 ] in the temporal axis. If the motion is smooth, a natural
generalization of this process would be to better approximate the temporal partial

derivative using more sophisticated masks.

2.3.2 Frequency-domain Plane-fitting Method

Uniform translating motion in the image domain has an interesting interpretation in
the Fourier domain. If the image sequence is moving uniformly with motion vector
(p3, ps), then in the Fourier domain, the energy of the image sequence considered as
a 3-D spatiotemporal function will be concentrated on a plane through the origin

whose orientation is related to the direction of motion. To see this, let 2’ = x +
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o (x,y)At, 3y =y+da(x,y)At, t' =t+ At. Equivalently,

x! 1+pilAt pAt 0 x p3 At
Y = paAt 1+ psAt 0 y | + | psAt |, (2.11)
t' 0 0 1 t At

or in vector form,
s' = Ms+d. (2.12)

Let F'(wg, wy, w;) denote the Fourier transform of f(x,y,t). Apply the Fourier trans-
form to both sides of (2.1) to get

F(meyywt):///f(x',y',t')ei2”(w$m+“yy+“’tt)dxdydt. (2.13)
D
Rewriting in vector notation
Flw) = / F(s))e 2 s s, (2.14)
D

Note that dz'dy'dt’ = |det(M)|dzdydt. The term det(M), determinant of M, rep-

resents the magnification factor of the transformation. Using (2.12) we have

1 - T —1(a/
F — - ! —12nwt M (S —d)d ! 215
) = e L/ . (2.15)
B 6i27erM—1dF T 516

When the motion is purely translational, i.e., M = I, the equation above becomes
F(W) — 6i27r(p3wg”At+p6w’v’At+tht)F(W), (2.17)
which is equivalent to

P3wy + pewy + wp = 0. (2.18)
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Equation (2.18) represents a plane through the origin in the frequency domain with
orientation directly related to the motion vector. The motion parameters can be

calculated by finding the plane with highest energy in the frequency domain.

2.4 Motion Estimation through Radon Transform

We can apply a projection-based framework to the estimation processes above [57].
Define the Radon transform of the image f(z,y) in the spatial scanning direction 6

as follows:

9(z,0) = Ryf(z,y)
— // f(x,9)8(z — x cos(0) — ysin())dzdy. (2.19)

Recall the notation from Subsection 2.2.1:

! 1
SUI _ +p P2 TP , (2.20)
Y pe 1+ps Y Pe
or in compact form,
s' = Ks+d. (2.21)
cos(f) . _
Letly = | 0 and consider the Radon transform of the warped image f(s’)
sin
Rof(s") = / f(s)o(z —1)s)ds (2.22)
= —— N6(z =K (s —d))ds'. 2.23
e o R LR G (223)

Let 2/ = 2 + 17 K'd and kg = K Tly. Then

Rof(s)) = IthK)I /D £(8)5(+ — KI's')ds’ (2.24)
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= ; ! 2 _ ko r , ,
 |Ikglf[det (K)] /pf(s )9 <||k9||2 <||k9||2) S) ds'  (2.25)
1 !

o Foldet ()1 (nkzanﬂ) , ¥ =tan™ (‘;Ei;) - (2:26)

For the special case of purely translational motion, i.e., K = I, the equation above

reduces to
Rof(s',t) = g(7,0,t), 2" =2+ p3cos(f) + pesin(h). (2.27)

This implies that as the function f(z,y,t) undergoes translational motion with ve-
locity (ps, ps) in the image domain, its Radon transform g¢(z, 8, t) shifts by ps cos(6)+
pe sin(f) in the projection domain. Using two different angles of projections, we can
solve for the unknown parameters ps and pg. Thus, a 2-D translational motion
estimation problem can be reduced to two independent 1-D problems. Since this
transformation is based on special properties of the Radon transform and is inde-
pendent of estimation techniques, we can develop new and faster motion estimation
algorithms from existing algorithms. Namely, we can consider projected versions
of the least squares estimate described in Section 2.3.1 and the frequency-domain,
plane-fitting method outlined in Section 2.3.2.

The projected least squares method first decomposes the 2-D motion problem
into the horizontal and vertical components, i.e. with § = 0, 90 degrees. We then
apply the 1-D least squares approach to each component separately, assuming the
intensity conservation holds in the projections, which, as Milanfar has shown in
[64], is implied by assuming intensity conservation in the image. Milanfar [63] origi-
nally proposed the projected frequency domain algorithm. Similar to the projected
least squares method, the algorithm decomposes the problem into its horizontal and
vertical motion components. For each subproblem, the 2-D Fourier transform is
applied to the projected sequence. A line fitting algorithm (e.g. Hough transform
(23], SLIDE [2]) is then applied to the projected image spectrum to find the best

fitting lines. The slopes of the two estimated lines then define the motion vector.
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Figure 2.2: Images from Washington DC sequence, frames 1, 14, 27, 40.

2.5 Motion Estimation Experiments

We tested the accuracy and timing of the four methods described above: least
squares estimate, frequency domain method, and their projected versions. We ran
tests on 3 image sequences. The first sequence of 40 images is a simulated over-
head view of Washington DC. Figure 2.2 shows frames 1, 14, 27, and 40 from the
sequence. Figure 2.3 contains the two projected images with the directions of pro-
jection parallel to the x- and y-axis, respectively. The slopes of the line patterns are
the desired velocity components. Each image is 60 x 60 pixels in size. The exact mo-

tion is known to be (0.5,-0.5) pixel per frame. The results presented in Table 2.2 are
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Projection parallel to the y—axis Projection parallel to the x—axis

Figure 2.3: Washington DC image sequence projected onto the x- and y-axes.

compiled by averaging computed velocities for frames 21 to 30. Since exact motion
is known, we show the error results in fractions of pixels. In this experiment, the
LS methods outperform the FD ones. As expected, there is some loss of accuracy
when the methods are applied to the projected image sequence.

The second test sequence is the well-known Hamburg sequence. This sequence
contains 21 frames each of size 190 x 256. We crop subimages of size 44 x 64 con-
taining a moving car. Ground truth velocity for this object is approximately (3,-0.5)

pixels. We computed velocity vectors for frame 6 to frame 15 of the sequence. Since

Method Mean Error (pixels) | Std Error

LS (0.019,0.013) | (0.008,0.008)
Projected LS (0.027,0.025) | (0.030,0.003)
FD (0.028,0.017) | (0.017,0.000)
Projected FD | (0.048,0.041) | (0.041,0.017)

Table 2.2: Velocity errors (pixels) for Washington DC sequence for the least squares
(LS) and Fourier-domain (FD) methods and their projected versions.
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Frame 1 of Hamburg sequence

Cropped subimages 1, 8, 15, 21 with moving car

Figure 2.4: Hamburg sequence with cropped subimages.

Projection onto y-axis

Projection onto x-axis

Figure 2.5: Hamburg image sequence projected onto the x- and y-axes.

ground truth motion values are not known exactly, we compute the mean square
error (in percent) between between consecutive frames, adjusted by the computed

motion. The mean square error (in percent) is defined as

hy — hsl|?
MSE = 100@, (2.28)
F
| 72|
Sl D) )
1% ’ '

where h1, ho denotes consecutive frames, hy the first frame warped by the computed
motion vector, and || - || the usual Frobenius norm. Table 2.3 tabulates the es-
timation error for each of the methods for the Hamburg sequence. As in the first
experiment, the LS methods are more accurate compared to the FD ones, and the
Radon transformation only slightly degrades accuracy measure.

The third test sequence consists of 50 frames of an aerial video the Pittsburgh

area. Fach frame is 60 x 64 pixels in size. As we can see from the projection images
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Frame £ | LS | Projected LS | FD | Projected FD
6 0.671 0.783 1.89 3.42
7 0.587 0.742 1.90 3.38
8 0.618 0.740 6.13 2.67
9 0.755 0.767 6.03 3.51
10 0.868 0.908 4.39 2.65
11 0.662 0.659 3.62 1.98
12 0.622 0.668 2.13 2.02
13 0.680 0.804 1.70 1.50
14 0.695 0.783 2.15 1.89
15 0.549 0.633 1.67 2.78

Table 2.3: Hamburg image sequence: mean square error (in percent) between kth
frame and interpolated (k — 1)th frame using estimated motion.

Figure 2.6: Images from Pittsburgh sequence, frames 1, 17, 33, 50.
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Projection parallel to the x—axis

Projection parallel to the y—axis

kil

50

10 20 30 40 50 60

Figure 2.7: Pittsburgh image sequence projected onto the x- and y-axes.

Frame | LS | Projected LS | FD | Projected FD
21 1.32 1.35 2.20 2.06
22 4.51 4.17 4.51 4.51
23 3.63 3.73 3.96 3.96
24 4.37 4.75 4.50 4.61
25 3.92 3.98 3.99 4.11
26 1.77 1.90 2.78 2.78
27 3.68 3.49 4.56 4.56
28 2.78 2,77 3.50 3.08
29 4.45 4.50 4.44 4.57
30 4.38 4.33 4.61 4.35

Table 2.4: Pittsburgh image sequence: mean square error (in percent) between kth
frame and interpolated (k — 1)th frame using estimated motion.
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(see Figure 2.7), the motion occuring in this sequence is not purely translational.
However, this motion can be approximated fairly well locally with just a translational
motion vector. We ran the same procedure as in the Hamburg sequence. Table 2.4
shows the computation errors for each method applied to this Pittsburgh sequence.
For this test sequence, comparable results are obtained by all methods.

For all test cases, the least squares methods tend to be more accurate than
frequency-domain ones. This makes sense, intuitively: Both approaches are de-
rived from the same underlying intensity conservation assumption. However, the
LS methods calculate motion parameters more directly from pixel intensity values,
whereas, the FD methods only use information in the Fourier domain. Furthermore,
it was shown by the experiments that projection-based methods are only slightly
less accurate than their non-projected counterparts. In the next section, we discuss

in more detail bounds on the loss of accuracy when using the Radon transformation.

2.6 Performance Analysis

We would like to assess the performance of the projection-based methods against the
original methods under high-SNR and small-motion assumptions. We summarize
here the discussion in Milanfar’s paper [63], which showed a bound on the relative
performance loss of projected-based approaches. We consider the case in which the

frames are corrupted by Gaussian white noise:

u(z,y,t) = f(z,y,t) + w(zx,y,t), (2.30)

where w(z,y,t) is spatiotemporally white noise with zero mean and variance o?.

Projections of these noisy frames along the x- and y-axes are

pu(aj, t) = p(:b‘, t) + wl(xa t)a QU(ya t) = Q(ya t) + w2(y7 t) (2'31)

where w;, and w, Gaussian white noise with zero mean and variance No?, N is the

number of pixels along each side of the image. For high SNR and small motions,



CHAPTER 2. MOTION ESTIMATION

33

the approximate error covariance matrix for the velocity estimation problem is

—1
Dyw Dy, ]

0|
Dy Dy

where

z,y,t
of of
D:v a 7
v Z ox Oy
z,y,t
af\’
by = 2(5)
z,y,t
For comparison with the 1-D case, we use the trace of @,
Dy, + D
Cn—1t _ 2 zz vy
3 T(Q) o (Dxnyy _ D%y

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

Similarly, we define the sum of variances of motion estimates from projections as a

measure of 1-D performance:

1 1
Cy = No? <—+—>,
dog — dyy

where

8 2
d = z(a—p) ,
8 2
“ - ()"

Yt

The relative performance loss is bounded by the following:

C3 - CZ < Dgy
C13 o D:v:vDyy,

(2.37)

(2.38)

(2.39)

(2.40)
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Sequence Covariance Bound
Washington DC 7.8352e-04
Hamburg 0.0025
Pittsburgh 2.1235e-04

Table 2.5: Covariance bound

Method Washington DC | Hamburg | Pittsburgh
LS 4.26 12.1 5.83
Projected LS 0.932 1.22 1.53
FD 797 355 1201
Projected FD 2.44 2.35 3.76

Table 2.6: Timing results (seconds) on a Sun UltraSparc I Model 170E workstation.

where the right hand side is the correlation coefficient between the image gradients
in the x and y directions.

For each test sequence, we compute the right hand side of (2.40) to determine
relative performance degradation. Table 2.5 shows these performance bounds on
our test sequences. These bounds are tight, agreeing with results from Tables 2.2,
2.3, and 2.4 that the projected versions are comparable to the original methods in
accuracy.

Next, we demonstrate the computational advantage of the projected versions.
Table 2.6 shows that the computing timings of the projected methods are signif-
icantly less than those of the original methods. The projected version of the LS
methods is by far the fastest of all methods. To further illustrate our point, Ta-
bles 2.7 and 2.8 display the computational complexity analysis of each method for

estimating translational motion for a sequence of p frames of N x N pixels, with

Complexity Projected LS LS
Projection pN? 0
Gradient computation O(pN) O(pN?)
Velocity computation O(pN) O(pN?)

Table 2.7: Computational complexity for LS methods
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Complexity Projected FD FD
Projection pN? 0

FFT O(pNlogN) | O(pNZ?logN)
Velocity computation O(pN) O(pN?)

Table 2.8: Computational complexity for FD methods

p < N. The computational burden of projection work needed for projected algo-
rithms is easily outweighed by the extra burden of computing for FF'T and gradient

for the non-projected versions.

2.7 Superresolution Experiments

In this section, we examine some qualitative and quantitative effects of misregis-
tration on superresolution. We start with an image of the Stanford quad shown in
Figure 2.9. We generate LR frames by applying various multiple HR pixels shift
in both vertical and horizontal directions, 4 x 4 pixel Gaussian blur with variance
1, and down-sampling by a factor of 4 in each dimension. As a result, each LR
frame has 1/16 the number of pixels as the original HR image. In the experiments
below, we examine the effects of misregistration on superresolution. We simulate
registration error by randomly perturbing the exact frame-to-frame motion measure-
ments. Three cases of data availability were considered: superresolution given 10
(underdetermined), 16 (square), and 20 (overdetermined) LR data frames. Figure
2.8 shows superresolution reconstruction error as a function of registration error.
The graph demonstrates a clear intuitive relationship between MSE reconstruction
errors, registration errors, and amount of available data. Reconstruction quality
degrades as misregistration increases. Furthermore, registration errors have more
impact on reconstruction with fewer available frames.

Subjectively, reconstruction quality degrades much more rapidly than quantita-
tive MSE measurements suggest. Figure 2.10 displays superresolution results with
10 frames and various levels of misregistration. Naturally, as the registration er-

ror increases, reconstruction quality degrades. The reconstructed image becomes
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Figure 2.8: Superresolution error in the presence of misregistration.
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Figure 2.9: Original Stanford image.

grainier, with sawtooth artifacts along straight lines. Figures 2.11 and 2.12 show
results with 16 and 20 data frames, respectively. We note that for the case with 16
frames, reconstruction quality does not degrade appreciably until registration error
level at 0.25 pixels compared to 0.15 pixels with 10 frames. For the overdetermined
data experiment with 20 frames, qualitative degradations occur at an even lower
level of registration accuracy, at 0.30 pixels misregistration. We reach the same
conclusion as we did examining the MSE graph. With more data available, the su-
perresolution is more resistant to registration errors. These figures suggest a direct

linear relationship between data availability and robustness to misregistration.

2.8 Conclusion

Image registration is an important aspect of superresolution. In this chapter, we
introduced a projection-based framework for estimating frame motion. We derived
an expression for affine motion in the projection space. For purely translational 2-D
motion, this expression allowed us to reduce the problem to two independent 1-D
translational motion problems. Registration timing results comparing the projected
and original versions of two popular motion estimation techniques illustrated the
benefits of this reduction in complexity. Accuracy results demonstrated that there
is no significant loss in performance when the problem is solved using projection.
We also presented a theoretical bound on performance loss of projected methods

compared to the original versions. In the second part of the chapter, we showed
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Figure 2.10: Superresolution result with misregistration: underdetermined.
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50 100 150 50 100 15

50 100 150 50 100 150
Reconstruction with 0.15 pixels misregistration Reconstruction with 0.25 pixels misregistration

Figure 2.11: Superresolution result with misregistration: square.
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50 100 150 50 100 150
Reconstruction with 0.2 pixels misregistration Reconstruction with 0.3 pixels misregistration

Figure 2.12: Superresolution result with misregistration: overdetermined.
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quantitative and qualitative effects of misregistration on superresolution results.
Our experiments illustrated that as expected, reconstructed image quality degrades
as registration error increases. Furthermore, given additional data, superresolution

becomes more robust to misregistration.
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3.1 Introduction

Superresolution is a computationally intensive problem, typically involving tens of
thousands of unknowns and data values. For example, superresolving a sequence
of 50 x 50 pixel LR frames by a factor of 4 in each spatial dimension involves
200 x 200 = 40000 unknown pixel values in the HR image. With 10 data frames,
the number of data samples is 10 - (50 x 50) = 25000. A practical superresolution
algorithm must be efficient in data floating point calculations. Storage and data I/O

are also a significant concern. We recall the model equation for superresolution,

f, = DCLEx+n,, 1<k<p, (31)

where p is the number of available frames, f; is an N x 1 vector representing the
kth m x n (N = mn pixels) LR image in columnwise order. If [ is the resolution
enhancement factor in each direction, x is an (>N x 1 vector representing the Im x In
HR image in columnwise order, E}, is an (2N x [?N warping matrix that represents
the relative motion between frame k£ and a reference frame, Cj is a blur matrix of
size I’N x I?N, D is the N x [?N uniform down-sampling matrix, and ny is the
N x 1 vector representing additive noise. Stacking these equations on top of one

another, we get the entire system:

f; H, n;
: = Colx+ | (3.3)
f, H, n,

f = Hx+n. (3.4)

In the example above, N = 2500, [ = 4, and p = 10. Hence, the dimensions of the
operator H are 25000 x 40000. Storing H even in sparse format is cumbersome.
A more elegant approach would treat H as a sequence of operators. Multiplica-

tion by H is done by sequentially applying these operators. Thus, we would not
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need to store H explicitly. Since we have assumed small and global frame to frame
motions and blur with local support, the operators E}’s and C}’s can be applied
locally at each image pixel. Matrix-vector operations involving the operator H can
be done very efficiently through this process. Previous work on superresolution has
not put adequate emphasis on this and other computational aspects of the prob-
lem. Many iterative approaches have been proposed. Patti et al. [69] and Stark
and Oskoui [81] proposed projection onto convex sets (POCS) algorithms, which
defined sets of closed convex constraints whose intersection contains the HR esti-
mate, and successively projected an arbitrary initial estimate onto these constraint
sets. Others [46, 59, 9] adopted a related method, the iterative back-projection
method, frequently used in computer aided tomography. Cheeseman et al. [19] used
the standard Jacobi’s method, and Hardie et al. [39] proposed a steepest descent
algorithm in combination with block matching to compute simultaneously the HR
image and the registration parameters. Although they are usually robust to noise
and allow some modeling flexibility, projection-based algorithms are also known for
their low rate of convergence. More recently, Hardie et al. [39], Connolly and Lane
[20] and Chan et al. [16] have considered CG methods for Tikhonov regularized
superresolution. However, Hardie et al. [39] and Connolly and Lane [20] did not
consider preconditioning for their CG algorithm, and Chan et al.’s [16] precondi-
tioner is only applicable for multisensor arrays. In this chapter, we present efficient
block preconditioners that take advantage of the inherent structures in the super-
resolution system matrix H to accelerate convergence for Krylov subspace methods.
The preconditioners introduced in this chapter are frame-based, consisting of com-
ponents approximating the degradation processes for the LR frames. We assume
that the frame-to-frame global motions are, or can be approximated to be, purely
translational. We also assume that the blurring process for each LR frame is spa-
tially invariant, although not necessarily temporally invariant, i.e., not the same

from one frame to the next.



CHAPTER 3. PRECONDITIONING FOR SUPERRESOLUTION 45

3.2 Regularization

This section briefly introduces regularization techniques for least squares problems,
a topic to be discussed in greater detail in Chapter 4. For simplicity, we consider only
least squares formulation for square/overdetermined systems here. This is necessary
in order to present the preconditioners in the proper context. We will present a more
general regularized least squares framework covering all underdetermined, square,
and overdetermined systems in Chapter 4.

The operators Cy, related to the point spread functions (PSF), are derived from
the discretization of a compact operator, so H is ill-conditioned [4]. Thus, even
small changes in f can result in wild oscillations in approximations to x when (3.4)
is solved directly. To obtain a reasonable estimate for x we reformulate the problem

as a regularized unconstrained minimization problem,
min ||Hx — f||5 + A|| Lx]|3, (3.5)
X

where L is a regularization matrix of full rank, and A\ is related to the Lagrange

multiplier. Equivalently, we can write (3.5) as

(i) (o)

In this formulation, L serves as a stabilization matrix, and the new system is better

2

min (3-6)

2

conditioned. While a simple and effective regularization matrix can be the iden-
tity I, L can also incorporate some prior knowledge of the problem, e.g. degree of
smoothness [37]. In Chapter 4, we show the reduction of (3.5) to standard form, i.e.
L = I. For the rest of this chapter, we assume that L is the identity. The solution
to the regularized least squares problem (3.5) with L =T is

x = (H'H + \I)"'H"f. (3.7)

In the above formulation, A is the regularization parameter. A larger A\ corresponds
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to a better conditioned system, but the new system is also farther away from the
original system we wish to solve. We adopt the generalized cross-validation (GCV)
criterion (cf. [30]) for calculating the optimum regularization parameter. One reason
why GCV is so widely used is that it does not require any a priori knowledge.
The criterion estimates the parameter directly from raw data. GCV is also known
to be relatively insensitive to large individual equation errors, i.e. outliers. For
overdetermined systems, it has been shown [30] that the asymptotically optimum

regularization parameter according to GCV is given by:

|(HHT + XI)~'f]]
tr((HH" + XI)~1)

Agov = argmin, (3.8)
In Chapter 4, we derive this same expression for underdetermined systems and
describe an inexpensive way to approximate the objective function in (3.8) using
preconditioners proposed in this chapter. Cross-validation and GCV are also de-
scribed in further detail. A more accurate and robust method to estimate (3.8)

using Gauss-type quadrature rules is described in Chapter 5.

3.3 Preconditioning for Conjugate Gradient

As we described earlier, superresolution is computationally intensive. The number of
unknowns, the same as the number of pixels in the HR image, is typically in the tens
or hundreds of thousands. The computational advantages of CG and Krylov sub-
space methods over stationary iterative methods, e.g. Jacobi, Gauss-Seidel, SOR,
Kaczmarz, etc., for solving large, sparse, symmetric positive definite linear systems
are well-known. Krylov subspace methods converge at a greater rate than stationary
iterative methods especially with proper preconditioner acceleration. Furthermore,
unlike some stationary methods, Krylov subspace methods do not have to tune free
parameters. The main computational burden of Krylov subspace methods is the
matrix-vector products with the system matrix. For our superresolution problem,
these products may be performed efficiently as we described in the introduction to

this chapter. For completeness, we include the standard CG algorithm for symmetric
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rg = AXO — b,
Po = To;
Yo = (1'0,1‘0);

for i =0:max_it
q; = Ap;;
o = %‘/(Qi, Pz‘);
Xit1 = Xj + api;
riy1 = I; — aqg,
Yig1 = (Tig1, Ti1);
if 71 < tol % ||b||3
break;
end
Bi = vir1/Vi;
Pit1 = Tip1 + Bips;
end

Table 3.1: Conjugate gradient algorithm.

positive definite systems Ax = b in Table 3.1.

The convergence rate for CG [89] is dependent on the distribution of eigenvalues
of the system matrix. The method works well on matrices that are either well-
conditioned or have just a few distinct eigenvalues; see [33, p. 525]. Preconditioning
is a technique used to transform the original system into one with the same solution,
but which can be solved by the iterative solver more efficiently [72, p. 245]. For
a symmetric positive definite matrix A, the preconditioner M can be thought of
as a symmetric positive definite matrix that approximates A in some sense. Then

instead of solving the original system
Ax = b, (3.9)
we work with the equivalent

M™'Ax = M~ 'b. (3.10)
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for i =0: max_t
q; = Ap;;
a; = v/ (i, Pi);
Xi+1 = X; + ap;;
i1 =1I; — aqg;
if ||rij1ll2 < tol = [b|2
break;
end
Ziv1 = M7'ripq;
Yirr = (Tiy1,Zit1);
Bi = %‘+1/’Yi;
Pit1 = Zit1 + BiPi;
end

Table 3.2: Preconditioned conjugate gradient algorithm.

The new preconditioned system A 'A is no longer symmetric positive definite, so
the usual Euclidean inner product (-,-) in the algorithm must be replaced by the M-
inner product. Table 3.2 contains the modified preconditioned CG (PCG) algorithm.
Note that with M = I, the identity matrix, the PCG algorithm is equivalent to the
unpreconditioned one.

In general, a preconditioner M for a matrix A should satisfy the following criteria

(5, p. 253]:

e The cost of computing M should be low.

e The computational cost of solving a linear system with matrix M should be

low.

e The iterative solver should converge much faster with A/ ~'A than with A.
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For image superresolution, we would like to precondition the inverse step,
(H"H + M)y = H'f. (3.11)

From our spatial invariance assumption of the PSF, each submatrix H; of H (in
(3.2) corresponding to a frame i has block Toeplitz-like structure. We propose
preconditioners derived from circulant approximations to H;. We demonstrate that
our preconditioners satisfy the three criteria described above. First of all, circulant
matrices have the useful property that they can be diagonalized by the discrete
Fourier transform (cf. [17]). The eigendecomposition of a circulant matrix C can be

written as follows:
C = F*AF, (3.12)

where F' is the unitary discrete Fourier transform matrix and A is a diagonal ma-
trix containing the eigenvalues of C'. We can also compute the eigenvalues of C'
by taking the FF'T of its first column. Using this special property, we do not need
to construct our preconditioners explicitly. We only need to store the entries of
their first columns. Therefore, the cost of constructing the preconditioners is neg-
ligible. Additionally, operations involving circulant matrices can be done efficiently
by FFTs. The cost of solving a linear system with a circulant coefficient matrix is
2 FFTs. For a block matrix with circulant blocks such as our preconditioners, we
need to solve a linear system with a block coefficient matrix with diagonal blocks in
addition to the 2 FFTs. To study the convergence behavior of the PCG procedure
described here, we will prove bounds on the maximum number of preconditioned
iterations required for exact convergence.

We first examine the structure of the system matrix arising from superresolution.

Submatrix H;, the block row of H associated with frame 7, has the form:

Hi=|Ty Tp - T |, (3.13)



CHAPTER 3. PRECONDITIONING FOR SUPERRESOLUTION 50

where each block T;; is an N x N ’nearly’ Toeplitz upper band matrix'. In fact, Tj;
only has nonzero entries on a few superdiagonals close to the main diagonal because
the support of the PSF is local. For example, in the simple case of superresolving a
sequence of four, 2 x 4 pixel, LR frames by a factor of 2 in each dimension, 753 has

the following structure:

(3.14)

=
|
o O O O o o o o
S O O O O O O <+
o O O O O O «+~ O
o O O O O - O O
o O O o o o o O
O O O + O O o o
O O +* O O O O O
O +* O O O O o O

The zero entry in the middle of the nonzero diagonal is the result of Dirichlet
boundary condition imposed on the LR frames. We build our preconditioners for
(3.11) with two approximation steps. We first approximate H; by a block matrix
H; = (Tij), whose blocks Tij are Toeplitz. We construct Tij from T;; by filling in the
zero entries along nonzero diagonals, so that Tij is just a low rank change from Tj;.

For example, the approximation to 753 would be:

T23 - (315)

4
o O O O o o O
o O O O O O o+
o O O O O =+ O
O O O + O o O

o O O +* O O o o
S +* O O O o O
S + O O O o o O

o O O O O =+ O O

! Almost all entries along the diagonals of T;; are constant.
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We can think of H = (H;) as a small rank change from H. We quantify this
approximation more concretely in the next section.

The second step approximates the block matrix H (with Toeplitz blocks f[i), with
circulant type preconditioners. The following section outlines two preconditioners
for upper band Toeplitz matrices. We first describe these preconditioners for point
Toeplitz matrices. Extensions of these preconditioners and their convergence prop-
erties to the block case and application to regularized least squares problem (3.11)

are then examined.

3.3.1 Circulant Preconditioner

The first preconditioner, originally developed by Strang [17], completes a Toeplitz
matrix 7' by copying the central diagonals. For an upper triangular banded Toeplitz
matrix 7" with bandwidth b,

to - 1
T = to -+ ty | (3.16)
L to |
the preconditioner Cg is simply
I to - - 1 ]
tn  eee eee
Cy = ’ " (3.17)
ty to -+ tp
I ty -ty to |

The preconditioner Cy is only a rank b change from 7" because only the last b rows

(the first b columns) of Cg are different from 7. The following lemma quantifies the



CHAPTER 3. PRECONDITIONING FOR SUPERRESOLUTION 52

quality of Cs as an approximation to 7.

Lemma 1 Let T be an upper band Toeplitz matriz with bandwidth less than or
equal to b. Let Cg be the circulant preconditioner to T as described above. If Cg is
nonsingular, then at most b eigenvalues of the preconditioned system C§1T are not

equal to 1.

Proof. From (3.16) and (3.17), we have
T =Cs— K, rank(K) < b. (3.18)

The matrix K represents the wraparound entries in the bottom left of C's. Multi-

plying both sides by Cg*,
C'T=1-Cg'K, (3.19)

with rank(CglK ) < b. Therefore, the preconditioned system contains at most b

eigenvalues not equaling to 1.

For a block matrix 7' = (7};) with Toeplitz blocks T;; with bandwidth b;;, the block

version of the preconditioner is Cs = (Cj;), where each block Cj; is Strang’s circulant

K

approximation to 7j;. We can extend the result of Lemma 1 to the block case. We
have deliberately left the range of indices 7, 7 unspecified because this construction

technique and result is applicable for rectangular block matrices as well.

Lemma 2 Let T be a matriz consisting of Toeplitz blocks T;; and Cs be the precon-
ditioner with circulant blocks Cyj. Suppose that the blocks T;; are upper banded with

bandwidths b;;. For any row block index I and column block index J, let

b[,max = max b[j; bmax,] = max biJ- (320)
j i
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Then
Cs =T — K, where rank(K) < min {Z bmax,J be,max} ) (3.21)
J I

Proof. The lemma is proved by counting the number of rows and columns in the

preconditioner C's that are different in T'. For row block index I, let

T(I) = [Tn Tn - | (3.22)

CIy) = | Cn Cn | (3.23)

For each block T7;, the corresponding preconditioner block Cy; is different from 77,
in the last b;; rows. Thus, for the whole row block, the last b; max = max; br; rows
of C(I,:) are different from 7'(/,:). Summing the number of changed rows for all
row blocks, we get >, by max as the total number of changed rows from 7" to Cs. A
similar counting argument gives > ; byax,s as the total number of changed columns.

Therefore,
Cs=T-K, (3.24)

where K has ), by max nonzero rows and ) . ; bmax,s nonzero columns. This implies
that

rank(K) < min {Z bmax, Z bI,maX} ) (3.25)
J I
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We apply this preconditioning technique to solve the regularized least squares prob-

lem (3.11). Recall that we approximated H with a block-Toeplitz matrix

Tll TIZ TIP
_ Tor Tho - Thp
a=| %7 (3.26)

with each block Tij being Toeplitz, [ the resolution enhancement factor, and p the
number of LR frames. The block-circulant preconditioner proposed is a block matrix
with NV x N circulant blocks

Cll 012 e Cllz
Cyr Cay -+ Clyp
Co=| 2 7% A (3.27)
| Cpi G o0 O

such that Cj; is the circulant approximation to sz Note that we can diagonalize
Ci; = F5xA\ijFy by the Fourier transform, where Fy is the N x N discrete Fourier

transform matrix, and A;; is a diagonal matrix of eigenvalues of C;;. Therefore,

All A12 /XIZ2
Mgt Mgy or Agp

Co=Fi | T | e, (3.28)
| Ap A A

with F, = diag(Fy, Fy, .. .,FN). The preconditioner for least squares equation

k
(3.11) is

CLOs+ A = FLH(A*A+ M) Fp, (3.29)
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where A = (A;;) is a block matrix with diagonal blocks of eigenvalues. The decompo-
sition above illustrates how our block-circulant preconditioner may be constructed
and applied efficiently with FFTs. Using Lemma 2, we now show the precondi-

tioner’s effectiveness.

Theorem 1 LetT be a block-Toeplitz matriz with Toeplitz blocks T;; and bandwidths

bij, Cs be the block-circulant preconditioner for T' as described above, and

r = min {Z bma.x,J; Z bI,ma.x} . (330)
J I

For A > 0, we have the following result:

(CTCs+ XD MTTT + ) =1—-K, (3.31)

rank(IC) < 3r. (3.32)
Proof. Since Cy is the block-circulant approximation to 7', Lemma 2 gives us
Cs=T—- K, rank(K) <r. (3.33)
Therefore,

(CLCs + ANI) HTTT +\I) = (CECs+ M)t x
(CéCs + K'Cs + C4K + KK + AI)
= [ —(CECs+ M) M K"Cs+ C{K + KTK)
= I-K. (3.34)

Because rank(K) < r,

rank(K'Cs + CTK + KTK) < 3r. (3.35)
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The implication of this theorem is that with a circulant-block preconditioner, at
most 3r + 1 PCG iterations are required to solve an upper banded Toeplitz-block
linear system exactly. The scalar r depends directly on the bandwidths of the blocks
and the number of blocks. Note that the theorem may also be used for bounding
the number of PCG iterations to solve for an upper banded point Toeplitz system
by setting the number of blocks to be 1 and r to be the bandwidth of the system.

For the case L # I, we can precondition in a similar manner if L. can be approx-
imated well by some block-circulant matrix C', that has the same block structure
as C'. That is, if

F11 F12 e Fll2
T T ..

CL=rFs| 0 F (3.36)
Fl21 Fl22 et Fl2l2

Hence, we can precondition the matrix H'H + AL L by
CiCs+\CLC, = Fi(A*A+ AT*T)Fpe, (3.37)

where I' = (I';;) is also a block matrix with diagonal blocks. In practice, aside from
the identity, operators derived from discrete approximation to the kth derivative are
also popular choices for L. With a proper arrangement of the rows, these operators
also have banded block-Toeplitz structure, and we can extend the techniques of

preconditioning as in (3.37).

3.3.2 Approximate Inverse Preconditioner

Our second preconditioner, originally developed by Hanke and Nagy [38], is an
approximate inverse preconditioner for an upper banded Toeplitz matrix Ty with

bandwidth less than or equal to b. It is constructed as follows. First we embed T
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within an (N + b) x (N + b) circulant matrix Cyy of the form:

T U
Cun = : (3.38)
V- w
where
to 4 lp—1
t N T
W= R (3.39)
Lo
0 v
U=\, ,V:[L 0],L: SN . (3.40)
t1 iy

Figure 3.1 illustrates this construction by showing the sparsity pattern of Cyy. If

. . el 1
Cry is nonsingular, we partition C' as

M

U
ch=1 - -1, 3.41
HN T (3.41)

where M is the N x N leading principal submatrix. The matrix M is the approximate
inverse preconditioner for 7'. We have similar results as Lemmas 1 and 2 for the

approximate inverse preconditioner.

Lemma 3 Let T be an upper band Toeplitz matriz with bandwidth less than or
equal to b. Let C'ygy be the circulant extension matriz as described above. If Cyy
is nonsingular and M is the leading N x N principal matriz of C;I}V, then the

preconditioned system MT has at most b eigenvalues not equal to 1.
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N b

Figure 3.1: Sparsity pattern of the circulant extension matrix.

Proof. We start with the identity

I = OpnCiy (3.42)
M Ul|T U
= |- - (3.43)
VW | VW
 MT+UV MU+ UW
= | 5 N 8 . (3.44)
VT+WV VU+WU
Therefore,
MT =1-UV. (3.45)

The dimensions of U and V are N x b and b x N respectively, so rank(UV) <b.
The preconditioned system MT is at most b eigenvalues different from the identity

matrix.
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N b

Figure 3.2: Sparsity pattern of the block circulant extension matrix.

The construction of a preconditioner for a block matrix 7" with Toeplitz blocks Tj;
is slightly more complicated. Let b = max; ; b;; be the largest bandwidth among the
blocks. We embed each N x N block T;; in a circulant (N 4 b) x (NN + b) extension
Cj;. Unlike the point matrix case, each block T;; may have to be extended by more
than its bandwidth (b > b;;). Figure 3.2 illustrates how this is done. The circulant

extension matrix Cj; may be decomposed as

Ty Uy

Cij:
Vij Wi

, (3.46)

where U;;, V;; are N x b, b x N matrices respectively with rank b;;, and W;; isa bx b

matrix with rank b. For T' = (1};)1<i<p,1<j<q, the complete block circulant extension
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matrix has the following form:

T Un - Ty Uy
‘/11 Wll ) Vvlq qu
Cun = . (3.47)
Tpl Upl Cee e qu qu
| ‘/;)1 Wpl ‘/;)q qu_

Now let P be the permutation matrix that groups blocks with the same lettering

together:
T U
PCyyPT = : (3.48)
vV w
T = (Tijh<i<pa<i<er U = (Uiili<i<pa<i<o (3.49)
V= Vih<i<pi<ize W= Wijli<icpi<i<e- (3.50)
The normal equation matrix for this extended block-circulant matrix is
't vt [T U
T _ T
ChnCun+ A = P o owr | | v P+ A (3.51)
[ TTT +UTU + M TPV +UTW
= pT N " * P. (3.52)
VT WU VIV WTW A

Now decompose the inverse of the 2 x 2 block matrix into blocks of the same size:

TI'T + UTU + \I TV + UT™W
VIT+WTU VIV +WTW + A\

M X
Y 7

. (3.53)

The matrix M is our block approximate inverse preconditioner for 777 + \I. We
have the following theorem, which bounds the number of eigenvalues of the precon-

ditioned system.
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Theorem 2 LetT be a block-Toeplitz matriz with Toeplitz blocks T;; and bandwidths
bij. Let M be the block approximate inverse preconditioner as constructed above. For

row block index I and column block index J, let

b[,max = max b[j, bmax,] = max biJ (354)
j 9
and
r = min {Z bty bLmaX} : (3.55)
J I
Then
M(TTT + \XI) =1 - K, (3.56)
rank(K) < 3r. (3.57)

Proof. From (3.53), we have
M(TT'T +UTU +AXI) + X(VIT+WTU) = I (3.58)
Hence,
M(TTT + XI) =T — (MUTU + XVIT + XWTU). (3.59)

The block matrix U consists of pg blocks U;;. Each block U;; consists mostly of
zero columns except for the last b;; rows and the first b;; columns. In fact, for a
specific block row index I, the number of nonzero columns of Uj; is by max and for
a specific block column index J, the number of nonzero rows is bmay ;. Hence, the

total number of nonzero columns is ) _; by max, and the total number of nonzero rows
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is ) bmax,s. We can conclude that
rank(U) <. (3.60)

A similar argument could be made for V. Therefore, (3.56) and (3.57) hold.
Theorem 2 gives us the same upper bound on the number of non-unit eigenvalues

as that of Theorem 1. We expect the performance of the circulant-block precon-

ditioner and the block approximate inverse preconditioner to be comparable when

applied to our Toeplitz-block system H.

3.4 Convergence Bounds for Superresolution

The previous section describes construction techniques and provides some eigenvalue
bounds for our preconditioners. This section assembles those results to bound the
number of PCG iterations necessary for exact convergence for superresolution. Re-
call that we build our preconditioners using two approximation steps. The first step
approximates the superresolution system matrix with a block matrix with Toeplitz

blocks. The following theorem bounds the rank of this update.

Theorem 3 Let H be the block system matriz representing the forward model for
superresolution and H be the Toeplitz-block matriz approzimating H as described in

the previous section. Then

H=H-K, rank(K) <p(m+n-—1), (3.61)

where m,n are the dimensions of an LR frame, and p is the number of available

frames.

Proof. Figure 3.3 gives a conceptual look at the forward model for superresolution.
Each LR pixel value is a weighted average of a box of HR pixel intensities. The
boundary LR pixels cover areas outside the HR pixel grid. The rows in the system

matrix H associated with these boundary pixels have zero entries corresponding to
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Figure 3.3: LR pixel values as a weighted average of HR pixel values.
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these areas because of Dirichlet boundary conditions. These are the zero gaps in
the nearly Toeplitz diagonals of H. The updated Toeplitz-block matrix H is just H
with these gaps filled with appropriate entries. For each frame, there are m +n — 1
boundary pixels. Thus, the number of rows that are updated from H to H is at
most p(m +n — 1).

The second step approximates the Toeplitz-block matrix with a circulant-block ma-
trix. Theorems 1 and 2 bound the rank of this approximation step for both precon-

ditioners by 3r, where

r = min {Z brmax,J Z bI,maX} , (3.62)
J I

and br max and bmay s are maximum bandwidth of row I and column J, respectively.

For superresolution, the following theorem bounds the bandwidth for each block.

Theorem 4 The superresolution system matriz H in (3.138) and its block Toeplitz
approzimate H have blocks with bandwidths bounded by min(m, n)+ 1, where m and

n are the height and width of an LR frame, respectively.

Combining results from Theorems 1-4, we obtain a convergence bound for PCG for

superresolution.

Theorem 5 Let H be the superresolution system matrixz for p LR frames each mxn
pizels in dimensions, with [ the desired enhancement factor in each dimension. PCG
based on block versions of either Strang’s or Hanke-Nagy’s preconditioner achieves

ezact solution in at most p(m +n — 1) + 3 min(p, [*)(min(m, n) + 1) + 1 iterations.

Proof. Using either preconditioner, from Theorems 1 and 2 the second step ap-
proximation update rank is bounded by 3r, with r being defined as in (3.62). The
matrix H is a block matrix with p x [? blocks each mn x mn in dimension. From

Theorem 3, we get

r < min(p, %)(min(m,n) + 1). (3.63)
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Therefore, the total rank of the difference between the preconditioners and the
original system matrix is p(m + n — 1) 4+ 3 min(p, {*)(min(m, n) + 1). CG requires

one additional iteration for exact convergence.
[

In our experience, as numerical experiments show, this bound is quite loose to
the extent that in practice, within at most 10 iterations or so, we have effective

convergence. The two preconditioners achieve practically comparable results.

3.5 Computational Complexity Issues

Here, we make a computational cost per iteration comparison between precondi-
tioned and unpreconditioned CG for superresolution. For unpreconditioned CG for
least squares, the main computational complexity per iteration involves two matrix-
vector multiplies, one with the system matrix H and one with H” [5]. We recall
from (3.4) that the matrix H is a stack of p block rows Hy = DCyE}, representing
the degradation process for the LR frames. For simplicity, we assume that relative
motions between frames are purely translational by integer multiples of one HR
pixel or have been corrected to be so. By our spatial linear invariance assumption
for the blurring kernels C}, DE,C} and DCyE} are equivalent operators allowing
us to switch the order of operations. The matrix D represents down-sampling by
some factor. Thus, DE} still represents down-sampling, but now sampling points
are shifted in multiples of one HR pixel by Ej. The computational cost of convolving
a kernel of size g x ¢, with an image of I2N x [?N (N = mn, N >> q) is O(NlogN)
independent of q. The cost of performing the combined operation DFE}, is negligible
in comparison. Therefore, the total cost per iteration of unpreconditioned CG for
the least squares superresolution problem is O(pl* Nlog(I*N)).

In the preconditioned version, for each iteration we have an additional step of
solving a linear system with the preconditioner as coefficient matrix. Because our
preconditioners are derived from circulant matrices, these linear solves are performed

efficiently using decomposition (3.29). This involves 2p FETs of N x N blocks and
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a linear solve of a p x p block matrix of N x N diagonal blocks, which is O(p?N).
Hence, the computational complexity of the preconditioner solve is O(pNlogN),
with p ~ logN.

Computational cost arguments above show that the theoretical complexity of us-
ing our preconditioners is small compare to the total complexity for CG. In the next
section, timing experiments show concrete savings achieved by using the proposed

preconditioners.

3.6 Experiments

The first test sequence consists of artificially generated LR frames. In this exper-
iment, we compare the quality of superresolution against the original image. We
shift a single 172 x 172 pixels image with various subpixel shifts, apply blurring with
a 4 x 4 Gaussian PSF with standard deviation of 1 and down-sample to produce
43 x 43 LR frames. Using 10 of these LR frames, we produce an estimate for the
original HR image. Figure 3.4 presents the results from our superresolution algo-
rithm. The top left portion displays a sample LR image, the top right the result of
bilinearly interpolating one LR frame by a factor of 4 in each dimension, the bottom
left the result from superresolution after 4 PCG iterations, and the bottom right is
the original image. We stop the algorithm when the relative residual? tolerance of
1072 is reached. We use regularization parameter A = 0.001 calculated with our ap-
proximate GCV criterion as described in Chapter 4. This experiment demonstrates
the practicality of superresolution. The quality of reconstruction is comparable to
that of the original image even though only a few LR frames are available. There
is also a marked improvement over simple bilinear interpolation. Intuitively, this is
not surprising because bilinear interpolation uses pixel values from just one frame
compared to ten frames for the superresolution result.

The next two figures 3.5 and 3.6 illustrate the effectiveness of the preconditioners

2Relative residual is defined as the ratio H:’glllz, where rg is the initial residual and rj is the

current residual after k iterations. The residual is defined as rp = b — Ax;,, where the vector xy
is the current estimate of the solution.
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Figure 3.4: Superresolution results for Stanford image sequence
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Figure 3.5: Convergence plots for Stanford sequence: A = 0.001, 0.005.
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Figure 3.6: Convergence plots for Stanford sequence: A = 0.015, 0.025.
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Underdetermined Square Overdetermined

22(99.2) 30(212.3) 33(292.1)

A =0.001 5(34.8) 5(55.8) 7(97.2)
5(34.3) 5(70.2) 7(122.4)
15(65.7) 18(132.0) 20(187.9)

A =0.005 5(34.2) 5(57.4) 7(103.0)
3(26.2) 3(41.8) 4(72.6)
10(45.8) 13(94.9) 14(128.1)

A =0.015 4(29.1) 5(55.4) 6(85.0)
3(27.1) 3(42.2) 4(69.4)
9(40.2) 11(80.9) 11(98.6)

A =0.025 3(20.6) 4(53.4) 5(71.2)
3(25.4) 3(44.2) 4(68.8)

Table 3.3: Iteration counts and timing results for preconditioned vs. unprecondi-
tioned CG for superresolution on a Sun UltraSparc-1 for the Stanford image se-
quence. Each box contains iteration count (timing in seconds) for unpreconditioned
(top), Strang’s preconditioner (middle), and Hanke-Nagy’s preconditioner (bottom).

with respect to the conditioning of the system. The experiments in each column
of each figure apply the same regularization parameter. We plot relative residuals
as functions of the number of iterations. The top plots in each figure show the
experiments for the underdetermined superresolution problem described above. In
this case, we use 10 LR frames and compare the convergence rates of preconditioned
and unpreconditioned CG. The middle plots in each figure contain results for the
square problem, i.e. with 16 LR data frames, and the bottom plots have experiments
for the overdetermined problem with 20 frames. The convergence curves for CG with
the proposed preconditioners are much steeper than without. In general, the number
of iterations required to reach the same tolerance level is reduced by a factor of 3.
Iteration counts and timing results on a Sun UltraSparc-I are assembled in Table
3.3. The savings in iteration counts translate to roughly 50% savings in overall
computation time.

The low resolution FLIR images in our second test sequence are provided cour-
tesy of Brian Yasuda and the FLIR research group in the Sensors Technology Branch,
Wright Laboratory, WPAFB, OH. Results using this data set are also shown in [39].
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Figure 3.7: Superresolution results for FLIR image sequence
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xg = 0;

B = ||b||2; u; = b/ﬂl;

Vi = ATlll; aq = ||V1||2; Vi = V1/CY1;
Wi = Vi,

o1 =B, pL= g

for i =0: max_t
W = Avi — oy B = Wil v = Wi /Bir;
Vier = AT — Biavis i = ||Vigalles Vier = Vi /@iy
[¢i, 5, pi] = givens_rot(pi, Bit1);
0; = siQiy1;  Piy1 = CiQy1;
Oi = Cidi;  Pit1 = —5iQi;
X; = Xi—1 + (0s/ pi) Wi
Wiy1 = Vigr — (Oiy1/pi) Wi
end

Table 3.4: LSQR algorithm.

Each LR image is 64 x 64 pixels, and a resolution enhancement factor of 5 is sought.
The objects in the scene are stationary, and 16 frames are acquired by controlled
movements of a FLIR imager described in [39]. Figure 3.7 has similar arrangements
as Figure 3.4 except now the bottom right shows the relative residual graphs for
the unpreconditioned and preconditioned runs. For this sequence, we again set the
relative residual tolerance to 1072 and use regularization parameter A = 0.0076.
Six iterations are required for PCG with Strang’s preconditioner and 8 iterations
for Hanke and Nagy’s approximate inverse preconditioner versus 22 for unprecondi-
tioned CG, to reach the residual threshold.
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3.7 LSQR Algorithm

Recall that our regularized least squares superresolution problem may be formulated

() (6)

This suggests LSQR, developed by Paige and Saunders [67], as an alternative to

as follows:

2

min (3.64)

2

CG for solving our regularized least squares superresolution. Although LSQR
and CG applied to (3.64) generate mathematically the same sequence of approx-
imations, LSQR has been shown to be numerically more stable than CG when
A is ill-conditioned and many iterations are needed. For completeness, we in-
clude the pseudocode for LSQR from [12, p. 308] in Table 3.4. The procedure

¢, s, p| = givens_rot(a, (3) is the Givens rotation that zeros out the second entry:

(L )0)-() -

In [66] the algorithm is extended to implicitly handle the regularization term v/A[.
LSQR can then be applied to (3.64) with A = H, b = f and A\ > 0. Similar to
CG, the main computational burden for LSQR is the matrix-vector products with
A and AT, Storage requirements are also roughly the same for both. Because the
numerical stability advantage of LSQR over CG is realized when many iterations are
required and for our superresolution experiments only a few iterations are needed

even for unpreconditioned CG, we used the slightly simpler CG algorithm.

3.8 Conclusion

In this chapter, we presented efficient preconditioners for convergence acceleration

for image superresolution. Our robust approach for superresolution reconstruction
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employed Tikhonov regularization. To calculate the regularization parameter auto-
matically, we adapted the generalized cross-validation criterion. We discuss regu-
larization in more detail in the next chapter. Using a synthetic image sequence, we
demonstrated that superresolution produces a high-quality estimate of the original
image. To accelerate CG convergence, we proposed circulant-type preconditioners
based on previous work by Strang, Hanke and Nagy. These preconditioners can be
easily constructed, operations involving these preconditioners can be done efficiently
by FFTs, and most importantly, the number of CG iterations is dramatically reduced
as a result of preconditioning. We showed upper bounds, for both preconditioners,
on the number of PCG iterations necessary for exact convergence. In practice, we
observed that PCG takes at most % the number of iterations of unpreconditioned
CG, leading to significant improvements in runtime (roughly 50%). The savings
were even better for smaller regularization parameters A. Typically, we stopped
after 5 PCG iterations because results obtained thereafter are not significantly dif-
ferent visually. By these experiments, we have demonstrated that with the use of
appropriate preconditioners, image superresolution can be made computationally

much more tractable.



Chapter 4

Regularization for Superresolution

I6)
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4.1 Introduction

Much research has been done on how to solve linear ill-posed inverse problems stably.
In particular, Fredholm integral equations of the first kind have been throughly

studied. These equations can be expressed generally as:

/ h(s, a(t)dt = f(s), s€QCRY, (4.1)

with A(-,-) € L*(Q x Q). If h(s,t) is translation invariant, then h(s,t) = h(s — t)

and equation (4.1) becomes a convolution equation with kernel h(s),

f(s) = /Q h(s — t)a(t)dt (4.2)
= h(s) = z(s), (4.3)

where * denotes the convolution operator. Let H : L*(Q2) — L*(Q) be the linear
convolution operator Hx = h * x. Then H is a compact operator with the following

singular value expansion:
HUj:O'jUj, H*UjZO'jUj, j:1,2, (44)

with H* being the adjoint operator, o; a nonincreasing sequence of positive singular
values and u;, v; the corresponding singular functions. Expanding the right-hand

side f in terms of u; we have
f= anuja ni = (ug, f), (4.5)
j=1

where (-,-) denotes the inner product. The solution x = H~'f converges only if f

satisfies the Picard condition [37]:

(%) < 19
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In practice, the right hand side f contains some amount of noise, e.g. from mea-
surement errors, modeling errors, etc. Hence, solving for x directly is fruitless, as
even small changes in f can result in wild oscillations in approximations to x. Recall

from Chapter 3 the system of equations for superresolution:

f1 D01E1 n;
. _ : . .
f, DC,E, n,
f = Hx+n. (4.7)

The operators C;’s are discretized blurring operators, (i.e. 2-D convolutions). There-
fore, H is an ill-conditioned matrix [4]. To obtain a reasonable estimate for x, we
need to “regularize”, i.e. enforce additional constraints that favor well-behaved solu-
tions. Tikhonov first introduced the regularization concept for square/overdetermined
least squares problems in his seminal paper [84]. For noisy overdetermined systems,

we search for solutions to fit to the noisy data
min ||Hx — f||2 + \||Lx][3, (4.8)

where L is a regularization operator, and X is related to the Lagrange multiplier. The
first term in (4.8) ensures that the estimated solution has small residuals, while the
second favors “well-behaved” solutions. With L being the identity, (4.8) encourages
solutions with small 2-norm. The matrix L can also incorporate prior knowledge of
the problem, e.g. degree of smoothness [37]. The scalar A serves as a balance between
two requirements. On one hand, we would like the regularized solution to have small
residual norm ||Hx — f||2. On the other hand, it should be a well-behaved solution.
The scalar A plays a delicate role. If A is chosen too large, the regularized system is
too far away from the original equation. If ) is too small, then the regularized system
would still be ill-conditioned. Figure 4.1 illustrates the importance of choosing an
appropriate regularization parameter. We show superresolution results using various

levels of regularization. The under-regularized solution is overwhelmed with noise
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Under-regularized Regularized Over-regularized

Figure 4.1: Superresolution reconstructions with various levels of regularization.

and registration artifacts. On the other hand, the over-regularized solution smoothes
out some scene details.
Differentiating the objective function in (4.8) with respect to x and setting to 0,

we get
x(A\) = (H'H + A\L*L) 'H"f. (4.9)

The regularized solution x(A) depends on the regularization parameter A. For
square or overdetermined least squares systems, regularization parameter estima-
tion is a well-studied area of research. In this chapter, we examine regularization
parameter estimation for underdetermined least squares problems, which has re-
ceived very little attention in the literature.

Our approach to regularizing the underdetermined superresolution follows the

commonly used least squares formulation for underdetermined systems:
min ofHx — f||5 + || Lx]]3. (4.10)

In this instance, the regularization parameter is in front of the residual term instead
of the penalty term as in (4.8). However, the two formulae, (4.8) and (4.10), are

equivalent with & = 1/\. As Saunders mentioned in [74], the least squares solutions
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of (4.8) and (4.10) for L = I are both solved by the augmented system

VAI  H s\ [ f
(# B e

In (4.10), L represents constraints on the solution x, so we assume it to be of full
row rank and either square or underdetermined. We first transform the general
regularization formula (4.10) into standard form, (i.e. with L = I), in the next
subsection. All regularization techniques described subsequently assume L to be
the identity for convenience. Closed-form solutions for regularized least squares for
underdetermined systems and non-Tikhonov regularization techniques are briefly

discussed in Subsections 4.1.2 and 4.1.3, respectively.

4.1.1 Transforming to Standard Form

If L is square, let X = Lx, A= HL . Then (4.10) is equivalent to:
min of| Ax — f])3 + [|X||3. (4.12)

The more complicated situation is when L is underdetermined. The following deriva-
tion closely resembles work in Haber’s thesis [36]. Suppose that the dimensions of H
are M x N, and the dimensions of L are K x N, with both M, K < N. Since both H
and L are of full rank, equation (4.10) has unique solution only if N'(H)NN (L) = 0.
This occurs only if M + K > N. Let Ly be some N x (N — K) matrix representing
the null space of L. Any vector x can be partitioned into two parts, one belonging
to null space of L and one in the space orthogonal to the null space, the so-called
active space of L:

X = X4+ Xp

(4.13)

= X, + Loig.
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Elden [26] has noted that vectors in the active space can be written as
x, = L%, (4.14)

where L = LT — Lo(ALy)T AL" is the A-weighted generalized inverse of L. Equa-

tion (4.10) can be reformulated in matrix form as the least squares solution to

A f
ve (L% + Lo%o| = val | (4.15)
L 0
Since LLy =0,
LL% = L(L* — Loy(ALy)*AL")
LL* (4.16)
= 1.
We can rewrite the equation for X, in (4.15) as
ALgky = f — ALtx. (4.17)

Note that ALy has dimensions M x (N — K), so it must be square or overdetermined.

Hence, we can solve for Xq in the equation above:
Using the expanded form for LY we get

(AL0)+AL—|A— - (ALO)+A(L+ - LU(ALO)+AL+)
(ALo)tAL* — (ALg)*tALy(ALy)tAL*
(ALo)tAL* — (ALy)*AL*
= 0.

(4.19)
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Equation (4.18) gives the solution for Xy independent of x:
Substituting this into (4.15), we obtain an equation in standard form:

JaAL®

. (4.21)

. [ Va(l — ALy(ALy)")f

X =
0

4.1.2 Closed-form Solution for Underdetermined Systems

In the previous subsection, we have transformed our problem into standard form:
min a||Ax — f])5 + [|x]|5. (4.22)
X
Differentiating with respect to x and setting to 0, we get:

(I +aAT A)x = aA™T, (4.23)

x = a(l + aATA) L ATE (4.24)
We make use of the following relation:
I— MY (MMT +c) ' M = e(M™M + cI)™* (4.25)
for any matrix M and scalar ¢ > 0. For M = A, ¢ = £,
(ATA+LID)7TAT = ol — AT(AAT + I1)71A) AT

= aAT(I — (AAT + I1)71AAT) (4.26)
= AT(AAT + 1)1

[0}
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Hence,

x = AT(AAT 4 \I)7'E, A = é (4.27)

This is the least squares solution for the Tikhonov regularized underdetermined
problem (4.22).

4.1.3 Other Regularization Techniques

In this subsection, we briefly review alternatives to Tikhonov regularization for
solving noisy linear inverse problem. These techniques fall mainly into three dis-
tinct categories: low-pass filtering techniques, iterative regularization methods, and
statistically-based regularization methods.

Low-pass filtering is based on the assumption that most of the energy of the true
solution of the system is contained in a few low frequencies, while the noise energy
is evenly distributed throughout. Low-pass filtering methods attenuate the high
frequency components, eliminating most of the noise effects and fine scale details
of the solution at the same time. Truncated SVD is a low-pass filtering example
where the components in the solution corresponding to the smallest singular values
are eliminated [12]. Iterative methods are also known to have regularization prop-
erties. Some iterative methods, such as Kaczmarz’s method [49] and CG, exhibit
semiconvergence behavior when applied to a noisy linear system, where the resid-
ual decreases for a few iterations then diverges. By choosing appropriately where
to stop the iterations, we obtain solutions minimally contaminated by noise (cf.
[37]). Statistical methods based on the maximum entropy criterion and Bayes’ rule,
e.g. distribution-entropy, maximum likelihood (ML), maximum a posteriori (MAP)
[15, 86|, are often used for regularized restoration in the engineering community.
They rely on statistical models for observed images to predict estimates for the

unperturbed image.



CHAPTER 4. REGULARIZATION FOR SUPERRESOLUTION 83

4.2 Regularization Criteria

In this section, we describe two methods for automatically calculating the regular-
ization parameter in (4.10). The regularization parameter plays an important role
in the formulation of a well-conditioned problem. If « is chosen too large, the regu-
larization penalty term will be insignificant, and the system remains ill-conditioned.
On the other hand, if « is too small, the regularized solution will have large residuals.
All methods described below are data-driven and do not need noise level estimates.
Data-driven, unsupervised algorithms are necessary in many practical applications,

where sometimes even the noise model itself is not known.

4.2.1 Quasi-optimality Criterion

The quasi-optimality criterion was first introduced by Tikhonov and Glasko [85] in
the continuous setting. The intuition behind the method is that near the optimal
regularization parameter oy, the norm of the difference between the regularized
solution x, and the exact solution Xey.; should form a plateau. We use the same
intuition to derive a new and slightly different form of the quasi-optimality criterion
for underdetermined systems. The regularization parameter is chosen to minimize

(cf. [37])

2
dX,

ada

dolar) = a> 0, (4.28)

2
where for least squares for underdetermined systems, the regularized solution x, is

given by (4.27)

1
x, = AT(AAT + a[)*lf. (4.29)

We use the following property of matrix differentiation [33]:

d

e [ =) | 2

M(a)] M (o)™ (4.30)
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Thus,
dx 1 1 1
@ = AT(AAT + =D (——=D(AA" + =D 'f 4.31
P (AAT + —D)7N (= 1)(AAT + ) (4.31)
1 1
= ——AT(AAT + = )72f. 4.32
—AT(AAT + ) (4.32)

The regularization parameter minimizes the quasi-optimality criterion

1 1 1
= fT(AAT + 1) 2AAT(AAT + =1) % 4.33
¢q(a) i (447 + 1) (AAT+ 1) (4.33)

In terms of A\ = é,
po(N) = NET(AAT + M) 2AAT(AAT +\1)°f (4.34)
= NfT(AAT 4 0173 — N3T(AAT 1 A1) (4.35)

Clearly, A = 0 is a global minimizer of (4.34). The desired local minimizer of ¢¢g(\)
is to the right of A = 0.

4.2.2 Generalized Cross-validation

Regularization parameter estimation using cross-validation was first introduced by
Wahba [90, 30]. The idea of cross-validation is simple. For some regularization
parameter estimate A\, we divide the data into two sets; one set is used to construct
an approximate solution based on A, and the other is used to measure the error of
that approximation. For example, the validation error by using the jth pixel value

as the validation set is:

OV (N) = llajx; (M) = I3, (4.36)

where the terms with crossed-out j are associated with the system without the jth

pixel, i.e.,

x;(A) = AT (A; AT + ) ' (4.37)
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is the regularized least squares solution of the original underdetermined system
without the jth pixel, A;x; = f;, with

[ a ] [ fi ]
P I B (4.38)
aji1 fit1
| Ak | L [K ]

We rotate through all pixels, using each in turn as the validation set, and sum the
validation errors. The optimal regularization parameter A\cy minimizes the total

validation error:

K
Aoy = argminy »  CV;z()). (4.39)

j=1

Generalized cross-validation (GCV) is simply cross-validation applied to the original
system after it has undergone a unitary transformation. GCV is also known to be
less sensitive to large individual equation errors (outliers) than cross-validation [61].
For overdetermined systems, it has been shown that the asymptotically optimum

regularization parameter according to GCV is given by [30]:

[(AAT + AI)~'f]),
tr((AAT + A1) 1)

Ageoy = argmin, (4.40)
GCV is well-known for calculating regularization parameters for Tikhonov-regularized
overdetermined least squares problems without accurate knowledge of the variance
of noise. Golub, Heath, and Wahba [30] suggested that GCV can be used for under-
determined problems, and McIntosh and Veronis [61] successfully implemented GCV
for their underdetermined tracer inverse problems. However, since the derivation
for the GCV formulation by Golub, Heath, and Wahba [30] applies only for overde-

termined least squares problems, we extend their derivation to the underdetermined
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case in the next section.

4.3 GCYV for Underdetermined Systems

Here we derive the closed-form for regularization parameter by GCV for underde-
termined systems Ax = f. We start by examining standard cross-validation with
the following expression for the regularized least squares solution to the underde-

termined equation above:
x = AT(AAT + XD)7'f (4.41)

A7 al | +)\I> h [ £ ] (4.42)

J

1
AT 4+ \T al :
_ [AT aT] Ap Ay + Aja B (4.43)
7 J ajAj:f aja;r + )\I fj
Let
1
Zj ajAjj-: aja]T + A fj
Then
X = A;sza + ajrzj, (4.45)
and
(A3 AT + M)z; + Aja) z; = (4.46)
ajA;jZ#' + (aja]T + )\I)Z] = f]'. (447)

From (4.47) and (4.45) we get

an + )\Zj = fj- (448)
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From (4.46) we get
(AGAT + M7 =z + (A AT + M) Azal 2 (4.49)
Recall the equation for the regularized least squares for underdetermined systems:
x; = AL(AGAT + M) 7' (4.50)
From (4.45), (4.50) and (4.49),

x; = Alz;+ AL(A;A] + M) Azal z;
= x— (I —AJ(A; AT + MI)7'Ap)a) z
= x— AATA; + ) 'a] 2. (4.51)

Next, note that
ATA; =ATA—aja;. (4.52)
So by the Sherman-Morrison-Woodbury formula [33],

(ATA; + )70 = (ATA4+ M)+ (4.53)
(ATA+ ) 'al' (1 — d;) 'ay(ATA + M), '
where d; = a;(ATA + \I)~'a]. Therefore,

a](A§A7 + )\I)_la]T = dj + d](l — dj)_ldj
- d](]_ - dj)il. (454)
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Hence from (4.51) and (4.54),

a;jX; — fj = a;X — fj - )\aj (AgA# + )\I)fla?Zj
= —)\Zj - )\a](A?A# + )\I)_la]sz
—>\(]_ — dj)*lzj
= (1—dj)(ax—f;)
Define D = diag(I — A(AT A+ XI)~"A") to be the diagonal matrix with the same di-
agonal entries as [ — A(AT A+AI)~' AT, Note that for A > 0, - A(ATA+\I)7'AT =

$(AAT + XI)7'. Then from (4.39), the optimal cross-validation regularization pa-

rameter is

K K
argmin, Z CVj(A) = argmin, Z lajx; = fill3

K
= argminy Y |[(1—d;) (ajx — f)3
7j=1
= argmin,||D ' (AAT(AAT + AI)"! — D)f||3

= argminy, \*|| D" (AAT + AI) 7' f|]5. (4.56)

We have just derived the matrix formulation of cross-validation for underdetermined
systems. Generalized cross-validation is simply a rotation-invariant form of cross-

validation. Following [30], consider the singular value decomposition of A:
A=UxVT, (4.57)

Now let W be the matrix representing the Fourier transform, that is,

]_ Tij
(W)jkzﬁewa jak:1727'--7n- (458)
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The GCV estimation for regularization parameter A can be thought of as cross-

validation on the transformed system:

f = wu't
= Wxv'ix
= Ax. (4.59)
Note that AA” + X = W(EX” + M)W is a circulant matrix. Hence, D =
Miag((AAT 4+ AI)~') is a multiple of the identity. Thus,
D = 2tr(AAT +\)HI
i )7 (4.60)
= 2r((AAT + AI)7HI
From (4.59),
(AAT £ XD~ = WUT (AAT + \I)7'f. (4.61)
Hence, from (4.56) we can formulate GCV as follows:
argminy \2|| D"H(AAT 4 AI)"f||, = argmin [(AAT + A1) ~'f],
A 2 Mr((AAT + AT)7L)
o IWUT(AAT + 2D ]
- ST (AT D))
AAT + X))~ If
= argmin/\”( A fl (4.62)

tr((AAT + XI)~1)

Not surprisingly, this formulation has the same form as that of the overdetermined

case.

4.4 Experiments

We compile here experiments for regularization parameter estimation using the

quasi-optimality criterion and GCV. We generate 10 synthetic LR frames from the
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Stanford image as before and superresolve an estimate of the original image. We
simulate typical noise conditions by imposing image registration errors and additive
white noise. Let x be the vector of pixel intensities of the original Stanford image
ordered rowwise, f be vector of pixel values of the LR frames, and the matrix H
be the system matrix representing the degradation process from HR image to LR
frames. As discussed in the beginning of Chapter 3, H is dependent on the camera
PSF and registration parameters. The experiments below regularize noisy systems

of the form
f=(H+E)x+n, (4.63)

where the error matrix F represents misregistration effects, and n is a vector of cu-
mulative system noise. We impose registration errors on all LR frames in fractions
of a pixel, and model the vector n as Gaussian white noise. Tables 4.1 and 4.2 below
tabulate the calculated regularization parameters using the quasi-optimality crite-
rion and GCV, respectively, under various noise and misregistration conditions. As
expected, with higher noise levels, both GCV and quasi-optimality criterion return
larger regularization parameters. GCV tends to give values roughly in the same
range for each fixed noise level, while quasi-optimality produces increasing values as
motion error increases. Overall, the quasi-optimality criterion results are about 3.5—
4.5 times the values calculated by GCV. Next, we compare Tikhonov regularization
with GCV and quasi-optimality criterion with a data-driven, off-the-shelf wavelet
denoising approach. Table 4.3 gives a quantitative comparison of quasi-optimality
criterion, GCV regularization, and MATLAB’s WDENCMP wavelet denoising sub-
routine. We use Daubechies’ 4-tap wavelets [22] to decompose the unregularized
approximate solution. We employ soft threshold with an adaptive thresholding
scheme using Stein’s unbiased risk estimate (cf. [45]). The table gives reconstruc-
tion MSE values for the three methods, with wavelet denoising at the top, quasi-
optimality criterion in the middle, and GCV on the bottom. In terms of MSE,
GCYV is the clear winner of the three. Qualitatively, both quasi-optimality criterion

and GCV produce excellent reconstruction results though quasi-optimality criterion
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Noise standard deviations
Motion error 0 2 4 6 8 10
0 0.0010 | 0.0074 | 0.0206 | 0.0332 | 0.0453 | 0.0574
0.05 0.0035 | 0.0092 | 0.0212 | 0.0333 | 0.0453 | 0.0575
0.10 0.0175 | 0.0139 | 0.0299 | 0.0394 | 0.0494 | 0.0599
0.15 0.0170 | 0.0192 | 0.0292 | 0.0394 | 0.0503 | 0.0617

Table 4.1: Regularization for Stanford image sequence calculated from quasi-
optimality criterion

Noise standard deviations
Motion error 0 2 4 6 8 10
0 0.0010 | 0.0019 | 0.0056 | 0.0098 | 0.0145 | 0.0196
0.05 0.0013 | 0.0020 | 0.0052 | 0.0090 | 0.0134 | 0.0183
0.10 0.0025 | 0.0036 | 0.0063 | 0.0100 | 0.0144 | 0.0193
0.15 0.0033 | 0.0049 | 0.0060 | 0.0092 | 0.0131 | 0.0174

Table 4.2: Regularization for Stanford image sequence calculated from generalized
cross-validation

tends to slightly over-regularize, i.e. the HR reconstruction oversmooths some de-
tails. Wavelet denoising with adaptive thresholding generally performs poorly with
much noise remains unfiltered. Figure 4.2 compares typical superresolution recon-
structions using GCV and quasi-optimality regularization techniques. The desired
enhancement factor is 4. Ten sample LR frames in this experiment are degraded by
0.1 pixels motion error and noise realizations of 21 dB. The regularization param-
eters used were 0.0394 as calculated by the quasi-optimality criterion and 0.01 by
GCV. We ran a similar experiment with our FLIR data sequence. Figure 4.3 com-
pares regularized superresolution reconstructions with wavelet denoising at the top
right corner, GCV regularization at the bottom left, and quasi-optimal regulariza-
tion at the bottom right. In this case, sixteen LR frames are used to superresolve a
factor of 5 enhancement. We draw similar conclusions from this experiment as with
the previous experiment. While both GCV and quasi-optimality criterion produce

excellent quality reconstruction, quasi-optimality slightly over-regularize.
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Sample LR frame Wavelet denoising

10 20 30 40 50 100 150

Figure 4.2: Stanford sequence superresolution reconstructions with wavelet denois-
ing, GCV and quasi-optimal GCV regularization.
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Sample LR frame Wavelet denoising
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GCV regularized Quasi-opt regularized
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Figure 4.3: FLIR sequence superresolution reconstructions with wavelet denoising,
GCV and quasi-optimal regularization.
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Noise standard deviations
Motion error 0 2 4 6 8 10

186.9 363.0 901.6 1755.7 2891.7 4264.2

0 186.9 309.5 430.6 533.3 626.2 714.5
186.9 288.3 397.6 483.1 559.7 631.7

252.6 424.6 980.0 1852.5 3013.5 4413.9

0.05 242.4 341.7 451.6 554.9 646.1 735.9
237.0 302.6 404.5 487.9 565.0 636.8

555.7 622.9 1309.6 2215.9 3421.9 4880.5

0.10 369.6 368.4 466.9 547.4 627.7 704.5
336.6 344.0 427.1 492.3 557.0 620.9

797.6 823.5 1543.5 2436.1 3617.8 5051.6

0.15 458.1 398.9 553.9 623.1 694.8 769.0
371.5 378.0 447.0 509.2 573.8 638.9

94

Table 4.3: Stanford image sequence reconstruction MSE for wavelet denoising (top),
quasi-optimality criterion (middle), and GCV regularization (bottom).

4.5 Conclusion

Regularization of some form is critical to finding stable solutions for linear ill-posed
inverse problems. Compared to square/overdetermined least squares problems, reg-
ularization for underdetermined least squares has received very little attention. We
examined issues in regularizing underdetermined (superresolution) problems, in-
cluding transformation to standard forms and derivation for two regularization pa-
rameter estimation methods. We derived, for underdetermined systems, a slightly
different form of the quasi-optimality criterion and the same expression for GCV.
We showed experimental results comparing the two methods on our superresolution
reconstruction problem. In general, quasi-optimality criterion is inferior to GCV in

regularizing our underdetermined superresolution problem.
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Blind Superresolution

95
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5.1 Introduction

Image restoration and image superresolution are closely related problems. In image
restoration, the goal is to reconstruct the original image given a degraded image at
the same resolution scale. Image superresolution reconstructs a higher resolution,
restored image from several aliased, degraded, low resolution frames. Restoration

problems can be modeled simply as
f=Cx+n, (5.1)

where f is the observed degraded image, x is the original image we wish to estimate,
n consists of various additive system noise sources, and C'is the convolution operator
representing the blur. In most instances, blurring is assumed to be linear shift
invariant. We recover the original image x by deconvolving the blur C' from the
degraded observed f. This classical problem has been thoroughly studied and can be
solved by several well-known techniques such as Wiener filtering, recursive Kalman
filtering, and iterative deconvolution methods (cf. [4, 92, 10]).

We described in Chapter 1 the connection between image superresolution and
restoration. Superresolution includes restoration as a special case. The restoration

equation (5.1) can be rewritten within the superresolution framework as
f, = DCEyx+n;, 1<Fk<r? (5.2)

where 7 is an arbitrary decimation/enhancement factor, the artificial LR “frames”
are generated from the degraded image by shifting and down-sampling by a fac-
tor of r, and F}’s represent the relative shifts. Clearly, techniques developed for
superresolution will be equally applicable for restoration problems.

In many practical applications, the blurring process is not known or known only
to within a set of parameters. The problem of restoring the original image from
a degraded observation and incomplete information about the blur is called blind

deconvolution. Analogously, blind superresolution is superresolving from LR data
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with incomplete information about the degradation process. There has been ex-
tensive work on blind deconvolution. A good survey on the topic can be found
in a survey paper by Kundur and Hatzinakos [53]. Existing blind deconvolution
methods can be categorized into two main classes: methods which separate blur
identification as a disjoint procedure from restoration, and methods which combine
blur identification and restoration in one procedure. Methods in the first class tend
to be computationally simpler. Blind deconvolution methods can be generalized to
handle multiple observations. Multiframe blind deconvolution is better at suppress-
ing noise and edge artifacts and preventing PSF estimates from converging to the
trivial delta function.

Intuitively, blind deconvolution is a factorization problem of two-dimensional
polynomials in the Z-transform domain. Based on this observation and the fact that
multidimensional polynomials are generally not factorizable, Lane and Bates [54]
find the blurring and original image polynomial factors by examining the roots of the
polynomial of the observed image in the Z-transform domain. Although conceptually
attractive, zero sheet separation is highly sensitive to noise. Using multiple LR
frames, Shekarforoush and Chellappa [77] proposed estimating the optical transfer
function (OTF) by finding spikes in the magnitude of the cross power spectrum of
consecutive frames. Several researchers have considered iterative blind restoration.
The most popular of these is the iterative blind deconvolution (IBD) method by
Ayers and Dainty [6]. IBD simultaneously reconstructs the blur and image values by
alternately enforcing constraints in the image and Fourier domain until estimates for
both converge. Biggs and Andrews [11] extended the IBD method to multiple frames
using the Richardson-Lucy algorithm under a maximum-likelihood (ML) framework.
Similar ML approaches were proposed by Sheppard et al. [78], Rajagopalan and
Chaudhuri [70], Harikumar and Bresler [40] and others. The simulated annealing
algorithm [60] also estimates both the blur and image values. This method tries to
find a global minimum of a cost function by randomly perturbing blur and image
estimates. Kundur and Hatzinakos [53] proposed an iterative approach based on
recursive inverse filtering using nonnegativity and support constraints. They used

CG to minimize the associated cost function. Several methods identify the blurring
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process by using special features in the blurred image, such as edges and point
sources [65].

Other approaches have simplified the identification problem by parametrizing
the PSF. With some knowledge of the imaging system and environment, we can
impose a blur degradation model with a few free parameters. Blur identification
is then reduced to finding best estimates for these parameters. We generalize this
approach to our blind superresolution problem. We enforce a parametric model

upon the blurring process. Equation (1.1) becomes

fk = DC(U)EkX+nk, 1 Skgp (53)
== Hk(a)x—i—nk. (54)

where the blurring operator C' is generated from a parameter set 0. The least

squares solution of (5.4) is the minimizer to

P
argmin, Z £, — He(o)x|5 + MxTQx (5.5)

k=1
where A\ controls the smoothness of the solution, and the stabilization (or regu-
larization) matrix ) is some symmetric positive definite matrix. Without loss of
generality, we consider () to be the identity matrix in this chapter. With known o,
(5.5) is biased toward solutions with low energy. The minimizer to (5.5) can then

be expressed as follows:

x(o,A\) = (H(o)"H(o) + XI) *H(0)"f (5.6)
f, H,

f= , H=1| : |, (5.7)
f, H,

where A is the regularization parameter.
Our approach to blind superresolution first estimates the unknown PSF param-

eter set o from raw data. Once an estimate of the PSF is available, the PCG
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algorithm described in Chapter 3 is used to solve the non-blind superresolution
problem. In the next section, we describe our parametrized blur estimation tech-
nique using generalized cross-validation. In Section 5.3, we propose a method based
on quadrature rules and the Lanczos algorithm, which bounds the GCV criterion
value accurately and efficiently. Blur estimation and blind superresolution results

are shown in Section 5.6.

5.2 Cross-validation

Generalized cross-validation is a popular method for computing the regularization
parameter [30]. In Chapter 4, we derived the formula for GCV for underdetermined

linear systems. Not surprisingly, it has the same form as in the overdetermined case:

|(HH" + XI)~'f]|
tr((HHT + XI)71)

Aoy = argmin, (5.8)
Reeves and Mersereau have used GCV for blur identification under an autoregres-
sive moving average (ARMA) model [71]. In a recent study by Chardon, Vozel,
and Chehdi [18], GCV has been shown to be an effective tool in parametric blur
estimation. Motivated by these successes, we apply GCV to estimate both the PSF

and regularization parameters for blind superresolution:

[(H (o) H(o)" + M)~
tw((H(o)H(o)T + M) 1)~

{ocov, Agov} = argming, ,, (5.9)
In [71], Reeves and Mersereau greatly simplified the minimization problem above
by assuming the system matrix H (o) to be square and circulant, and hence, di-
agonalizable by the discrete Fourier transform. As a result, the numerator and
denominator of the objective function in (5.9) could be computed easily. However,
this approach is not valid for blind superresolution because the system matrix will
not typically be square or circulant. Without this circulant assumption, the nu-
merator and denominator of (5.9) are prohibitively expensive to evaluate directly.

In the later sections, we describe techniques to bound the objective function (5.9)
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efficiently and accurately.

Reeves and Mersereau simultaneously estimated the optimal blur and regular-
ization parameters while keeping the image model parameters fixed. We found,
however, that by setting the regularization parameter to some small number, the
PSF parameters can be better estimated even in the presence of noise and missing
frames. We then use the computed PSF to determine the appropriate regularization
parameter based upon the data. Our intuition is that with under-regularization, the
noise effect is exacerbated and moves the GCV criterion away from possible local
minima. Furthermore, the estimated PSF is less biased away from the actual PSF
even though the variance of the estimates can be larger. In what follows, we first
use a small value of A = )\, so that the estimated PSF parameters can be found by

solving a one-dimensional nonlinear optimization problem:

[(H (o) H(0)" + AoI)"*f]>
tr((H (o) H (o) + A)7)

ogoyv = argmin, (5.10)
In the simplest case, the parameter set o consists of one parameter describing the
smoothness of the blur, e.g. the standard deviation of a Gaussian PSF or the radius
of a pillbox (out-of-focus) blur. Once a blur estimate & is available, we compute the

regularization parameter from

[(H(6)H(5)" + \) ']l
w((H(G)H(G)T + A7)

(5.11)

A = argmin,

5.3 Quadrature Rules

For large systems, numerators and denominators in (5.10) and (5.11) are very expen-
sive to evaluate directly. We first approximate the denominator using an unbiased
trace estimator by Hutchinson [44]. Let U be a discrete random variable that takes
the values —1 and +1 each with probability %, and let u be a vector whose entries
are independent samples from U. Then the term u” (HHT + A\I)~'u is an unbiased
estimator of tr((HH™ + \I)™').

Now, in order to estimate both the numerators and denominators in (5.10) and
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(5.11), we need to estimate quadratic forms vZ f(M)v, where M is some symmetric
positive definite matrix and f(§) = €77, p = 1,2. There is extensive literature on
the application of Gauss quadrature rules to bound bilinear forms; see papers by
Golub and collaborators [7, 29, 31, 32, 35]. This chapter applies these techniques
for our blur/regularization parameters identification problem.

Let the eigendecomposition of an nxn matrix M be given by M = QTZ(Q, where
@ is an orthogonal matrix and = is a diagonal matrix of eigenvalues in increasing

order. Then

V(M) = VTQTF(E)Qv
VT F(2)v (5.12)

where v = (;) = Qv. Suppose that we have bounds on the spectrum of M, e.g. by
Gershgorin’s circle theorem, a < & < ... <&, < b. The last sum can be considered

as a Riemann-Stieltjes integral with nondecreasing piecewise constant measure [35]:
n b
> @) = [ fe)aute) (5.13)
i=1 @

where (&) is defined as:

0, if &€ <&
pE) =9 i 0%, ifG<E<&n (5.14)
> 03, i, <&

We can approximate the Riemann-Stieltjes integral (5.13) with Gauss-type quadra-

ture rules. The general form for quadrature rules is
k !
I'lf] = Zwif(gi) + Z vif(75),
i=1 j=1

/ F(©)du(e) = T[f]+RIf, (5.15)
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where the weights w; and v; and the nodes ¢; are unknown, the nodes 7; are prede-
termined, and R [f] is the error term. The Gauss-type quadrature rules differ from
one another by the number of prescribed nodes. If there are no prescribed nodes,

then we obtain the standard Gauss quadrature:

>t (6. (5.16)

If one node is prescribed, we get the Gauss-Radau quadrature rule; with two nodes

prescribed, the Gauss-Lobatto rule:

Irlf] = sz )+ vf(r), (5.17)
I[f] = sz D)+ v f (1) + vaf (7). (5.18)

The Gauss-Radau rule is often applied with either 7 = a or 7 = b. Gauss-Lobatto
has both endpoints prescribed, 71 = a,7 = b. As will be described below, we
can compute the unknown nodes 6; and weights w;, v; for these Gauss-type rules
from recurrence relations of sequences of orthogonal polynomials via the Lanczos
bidiagonalization algorithm (cf. [31, 35]). The next subsection describes quadrature

bounds on quadratic forms.

5.3.1 Quadrature Error and Bounds

The quadrature error R [f] from (5.15) can be expressed as

2k+l k

R = [ H(&—mg(&—enzdu(o, (5.19)

for some 7 € (a,b) . We have the following bound for the Gauss quadrature rule [31].
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Theorem 1 If f@H (&) >0, Vk, V¢, a < & < b, then

I6[f] < / F(€)dp(€). (5.20)

Proof. For the Gauss rule, there are no prescribed nodes, so

(2k) b k
Ralf=1 (%g’]) / [T - 0Pan(e) (5.21)

Since f®*)(n) >0, Vk, Vi, a < n < b, and f: Hle(f —0:)%du(€) > 0, Rg[f] > 0.

Therefore,

Islf] < / F(E)dp(©). (5.22)

Analogous theorems for Gauss-Radau and Gauss-Lobatto rules are presented in the

following.

Theorem 2 If fCF+D(€) <0, VE, V€, a < € < b, then

Tn [f] < / F©)dp(€) < Inaf], (5.23)

where Ir, (Igy) corresponds to Gauss-Radau rule with prescribed node at T = a (b).

Proof. Similar proof as in Theorem 1.

Theorem 3 If f@*)(€) >0, Vk, V&, a < & < b, then

/ F(E)du€) < 1L 111, (5.24)

with prescribed nodes 71 = a, 79 = b.
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Proof. Similar proof as in Theorem 1.
[ |

Recall that the bilinear terms we want to approximate have the form v’ M Pv,
p = 1,2. The function f(§) = P satisfies the hypotheses of Theorems 1-3, for
M positive definite (a > 0). Hence, we can bound fabf(g)du({) with Gauss-type

quadrature rules. Define

L[f] = max(Ig[f],Ir [[]), (5.25)
Ulf] = min(lga [f], 11 [f]), (5.26)

where I, (Igp) is the Gauss-Radau rule with the prescribed node at 7 = a (b). We
have the following bounds [31]:

HﬂéffwwwéUm- (5.27)

As the number of nodes £ increases the bounds L [f] and U [f] become tighter. To
find quadrature bounds L [f] and U [f], we need the unknown weights w;, v;, and
nodes #;. The following section describes how these quantities can be computed from

sequences of orthogonal polynomials associated with the weight measure du(§).

5.4 Orthogonal Polynomials

For the nondecreasing piecewise constant measure u(&), we can define a sequence of

orthonormal polynomials {p;}— such that

1, ifi=j,

(5.28)
0, ifi#j.

b
/m@m@wwz{
These polynomials satisfy a three-term recurrence relation,

fpk(f) = Tkpk(g) + ﬂkpk(g)ek, k= 17 - 1 (5'29)
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p—l(g) = 07 pﬂ(g) = ]-7 (530)
with
_ . - _ -
: Po(§) ;l ’
e, = 0 , Pk = : C o= | 5 (5.31)
pk—l(f) coap1 Pra
L L Br-1 o i

It can be shown that the nodes 6; of Gauss quadrature rule are the eigenvalues of
T}, which are also the zeros of the polynomial py. The weights w; are the square
of the first component of the normalized eigenvectors of Tj,. The Gauss quadrature

approximation is given by (see [34]):

I [f] = |vIPui (T + AD)uy, (5.32)

T
whereu = |1 0 --- 0 is a k-vector with one in the first entry and zeros
elsewhere. For the Gauss-Radau rule, we need to adjust the last entry «y of T} so
that the adjusted tridiagonal matrix T, has an eigenvalue at the prescribed node
[29, 7]. For the Gauss-Lobatto rule the last three nonzero entries By 1, ay, f;_1 are
adjusted to prescribe eigenvalues at a and b. Hence, for Gauss-Radau and Gauss-

Lobatto rules, the quadrature approximations have the form:
Lf]1= |IvIPPuf f(Tx + A)uy, (5.33)

where T}, is the tridiagonal matrix 7} with the last few entries adjusted accordingly.
Following [7], for the Gauss-Radau rule, in order to prescribe a node at either a

or b, we replace the last entry a4 of T by

(]5 =T+ Sk_1, (534)
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with 7 = {a, b} and s;_; being the last component of the solution s to

(Tyor —7I)s = Bi_ep_1, (5.35)
Br—1 = (V=1 + 7k)0k—1- (5.36)

For the Gauss-Lobatto rule, to prescribe nodes at a and b, the last three nonzero

entries [_1, ay, Bx_1 are replaced by v, ¢, 1), where

b — 1y b—
Qﬁ:M P? = _v-a (5.37)

b) b
Sk—1 — tp—1 Sk—1 — tp—1

where s;_; and t;_; are the last components of the solutions s and t to
(Tk—l — a[)s = €r_1 (Tk—l - b[)t = €r_1. (538)

The entries of T}, itself can be computed via the Lanczos bidiagonalization algorithm

as follows.

5.5 Lanczos Bidiagonalization

The matrix T} is the tridiagonal matrix resulting from k£ iterations of Lanczos tridi-
agonalization algorithm for M with m as the starting vector. Particularly, we
are interested in the case where M = AAT + \I. The tridiagonalization of M can
be performed more efficiently by applying Lanczos bidiagonalization algorithm to
the matrix A. In Table 5.1, we give the algorithm for the Lanczos bidiagonaliza-
tion factorization to compute the entries of Ty. After k iterations of the Lanczos

bidiagonalization algorithm, we get an orthogonal m X k matrix

Qr=[q0 " 1] (5.39)

and an n X k orthogonal matrix

Wk == [WO e ch—l] (540)
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ao = b/[|b||
so = ATqp
71 = [[soll2
Wy = So/%

for k=2:ndo
rp_1 = AWp_o — Vr—1Qk—2
Op—1 = ||I'k—1||2
Qr—1 = I‘k71/5k71
Sg—1 = Aqufl — Op—1Wk—2
V& = [ISk-1ll2
Wi—1 = Sk—l/%

end

Table 5.1: Lanczos bidiagonalization algorithm.
with the following relations

AWy, Q1B + drare;, (5.41)
ATQ, = W,B{, (5.42)

where By is a k X k lower bidiagonal matrix

gl
B | ’ (5.43)
i Ok—1 Yk
Combining (5.41) and (5.42) we get
(AAT + M)Qx = Qk(BiB{ + AI) + 70k qre; - (5.44)

The tridiagonal T}, is exactly ByB + AI.
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We choose the follow stopping criterion to terminate the Lanczos algorithm:

Ulfl=L1f]

AT 0.01. (5.45)

In practice, we use U [f] as the approximate value for fab FEdu(&) :==vT f(M)v.

5.6 Experiments

We estimate blur parameters using the GCV criterion with quadrature rules bounds
as described above. We use Matlab’s CONSTR routine [45] to solve the GCV
minimization problem (5.10). For each function evaluation, we iterate with the
Lanczos bidiagonalization algorithm until (5.45) is satisfied. For our test image
sequences, Lanczos usually terminates within 70 Lanczos iterations, equivalent to
140 matrix-vector multiplies. The iteration count is quite low compared to the
dimensions of the system matrix (usually in the tens of thousands).

Example I: In the first set of experiments, 16 LR frames are generated by blurring
a 172x172 pixels HR image with a 4 x4 Gaussian blur and down-sampling by a factor
of 4 in each dimension. We experiment with blurs of standard deviations 0.75, 1.0,
and 2.0 and estimate these parameters assuming the support of the PSF to be known.
In addition, we consider blind superresolution at 60 dB, 30 dB SNR' and without
additive Gaussian noise added to the LR frames. We simulate blind superresolution
for two cases, with all frames given and with 10 randomly choosen of the 16 available
frames. When all frames are available, superresolution is equivalent to a restoration
problem. Tables 5.2 and 5.3 display the mean square error (MSE) (see (2.28) for
precise definition) (in percent) in the PSF estimates. Figure 5.1 compares the result
of blind superresolution, using the computed PSF and regularization parameters
from (5.10) and (5.11), against non-blind superresolution. The actual blur standard
deviation is 0.75. We add white noise to the LR frames to realize an SNR of 30

dB. The resulting HR estimate is computed from 10 randomly chosen LR frames.

!Signal to noise ratio (SNR) is defined as 10log; -, where o, oy are variances of a clean frame
and noise, respectively.
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SNR

c |ocodB|60dB | 30dB
0.75 | 3.43 3.27 4.79
1.0 | 0.02 0.02 0.53
2.0 | 0.01 0.01 0.11

Table 5.2: % MSE in PSF estimates for Gaussian blur with 10 randomly chosen
frames - example 1.

Because of accurate PSF estimate, the reconstruction quality for blind and non-blind
superresolution is about the same.

In the second set of experiments, we ran tests for a pillbox (defocussed) blur.
The parameter to be estimated is the radius of the blur. Our experiments tested for
out-of-focus blurs with radii 2 and 5 in Figure 5.2. We plot GCV values for radius
taking values from 1 to 10 at 0.2 intervals. The plots show that GCV function
achieves global minimum at the correct values in all cases.

Example IT: Our final blind superresolution experiment uses the FLIR image
sequence, used earlier in Chapter 3. Recall that each image is 64 x 64 pixels and a
resolution enhancement factor of 5 is sought. The objects in the scene are stationary,
and 16 frames are acquired by controlled movements of a FLIR imager described
in [39]. The frame to frame motions are accurately known for this sequence. We
estimate the blur variance assuming a Gaussian blur with support equaling the
resolution enhancement factor. Figure 5.3 shows a sample LR frame from the FLIR
sequence and the resulting superresolved HR image using the computed variance
and blur model. The algorithm can still resolve some high resolution detail even

when nothing is known about the blurring process.

5.7 Conclusion

We propose a parametric blur and regularization estimation approach, based on

the generalized cross-validation method, for blind restoration/superresolution. We
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Sample LR frame Original image

10 20 30 40 50 100 150

Blind superresolution reconstruction

Figure 5.1: Blind superresolution for synthetic sequence - example 1.

SNR

o |oodB |60dB | 30dB
0.75 | 0.00 0.00 2.93
1.0 | 0.04 0.04 0.17
2.0 | 0.00 0.00 0.09

Table 5.3: % MSE in PSF estimates for Gaussian blur with all 16 frames available
- example I
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Figure 5.2: GCV plot for pillbox blur - example I.
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Figure 5.3: Blind superresolution for FLIR sequence - example II.
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solve a multivariate nonlinear minimization problem for these unknown parame-
ters. To efficiently and accurately estimate the numerator and denominator of the
GCV objective function, we present Gauss-type quadrature techniques for bound-
ing quadratic forms. Experimental results from a synthetic image sequence show
that blur parameters are accurately approximated from Gaussian and pillbox blurs
under various setup conditions. Image superresolution results using these computed
values are visually pleasing as well. Successful experiments with real FLIR image se-
quence illustrate that our techniques can be a foundation for completely data-driven

efficient blind restoration/superresolution algorithms.



Chapter 6

Wavelet Superresolution

114
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6.1 Introduction

This chapter introduces an approach to superresolution completely different from
that in Chapters 3 and 4. Instead of viewing superresolution as a total iterative pro-
cess, we now consider it under the interpolation-restoration framework. As shown in
the introduction chapter, the interpolation-restoration approach does exactly what
its name suggests: interpolate and then restore values at the HR grid points. We
still require motion estimation and blur identification algorithms from Chapters 2
and 5 as preprocessing steps.

We illustrated in Chapter 1 the relationship between superresolution and restora-
tion. We can reduce a superresolution problem to a restoration problem by inter-
polating values at HR grid points using the LR sample data. Sauer and Allebach
[73] were first to consider superresolution as an interpolation problem with nonuni-
formly sampled data. They used a projection onto convex sets (POCS) algorithm
to reconstruct the unknown values. Aizawa et al. [3] also modeled superresolu-
tion as an interpolation problem with nonuniform sampling and used a formula
related to Shannon sampling theorem to estimate values on an HR grid. However,
both [3, 73] ignored the effect of sensor blurring. Tekalp et al. [83] later extended
these algorithms to include blurring and sensor noise and proposed the additional
restoration step. Ur and Gross [88] considered Papoulis’ generalized multichannel
sampling theorem for interpolating values on a higher resolution grid. Because the
light detectors are not ideal lowpass filters, some high frequency information about
the scene is represented in the image in aliased form. Papoulis’ theorem reconstructs
this aliased high frequency content by taking a properly weighted sum of the spec-
tral information from the LR frames. Shekarforoush and Chellappa [77] extended
Papoulis’ theorem for merging of nonuniform samples of multiple channels into HR
data.

Reconstructing a HR estimate requires a two-step procedure. First, we interpo-
late/extrapolate for missing values at the HR grid points in Figure 1.1. Earlier work

did not fully exploit the inherent structures and regularity in the data. Namely, if
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pixel values from all frames are considered together, the data are irregularly sam-
pled. However, for each frame, data points are sampled in a rectangular grid. This
special case of irregular sampling is called interlaced sampling [77]. We develop an
efficient and elegant wavelet interpolation technique by exploiting this interlacing
structure. Having computed these interpolated values, we deblur/restore against
the known blurring kernel to obtain an HR estimate.

Previous work did not consider the implications of the 2-D interlaced sampling
structure on the computational complexity of the resulting algorithms. The com-
putational complexity for existing algorithms for 2-D data is squared that for 1-D
data. As we will show, by exploiting sampling regularity, the computational burden
for our algorithm does not drastically increase for 2-D data. In fact, computational
complexity of the algorithm for 2-D data is only twice that for 1-D problems. The
outline of the rest of the chapter is as follows. We briefly review multiresolution
analysis with orthogonal wavelets in Section 6.2. In Section 6.3, we describe our
1-D and 2-D wavelet interpolation method for interlaced data. We discuss compu-
tational cost and complexity in Section 6.4. Section 6.5 shows interpolation and
superresolution experiments demonstrating the effectiveness of our techniques. We

conclude with some comments in Section 6.6.

6.2 Multiresolution Analysis with Orthonormal

Wavelets

The fundamental concept behind wavelet theory is the decomposition of signals into
components at different scales or resolutions. The advantage of this decomposition
is that signal trends at different scales can be isolated and studied. Global trends
can be examined at coarser scales while local variations are better analyzed at fine
scales. This section presents a brief summary of orthonormal wavelet multiresolution
analysis of 1-D and 2-D signals. We briefly review essential ideas necessary for
materials in later sections. For more detailed treatments of wavelets, the reader is
referred to the excellent books by Strang and Nguyen [82] and Mallat [58].
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6.2.1 Multiresolution Analysis for 1-D Signals

Let L?(R) be the vector space of square-integrable 1-D signals f(¢). There exists a
sequence of nested approximation subspaces V;,j € Z and a scaling function ¢(¢)

satisfying the following requirements [82]:

° Vj C Vj-l—l and ﬂjez Vj = {0} and Vj = LQ(R)

Jjez
° f(t) S Vj = f(Qt) S Vj+1.

o f(t)e Vo< f(t—Fk) € V.

e V), has an orthonormal basis {¢(t — k)}.

Since the set {¢(t—k)} is an orthonormal basis for V), dilations and translations of
o(t), {d;x(t) = 22/2¢(27t — k) } ez, form an orthonormal basis for V;. Furthermore,
since Vo C 'V, the scaling function ¢(t) satisfies the following two-scale dilation

equation:
B(t) = V2> (2t — k), (6.1)

for some set of expansion coefficients cy.

For a function f(¢t) € L?(R), the projection f;(t) of f(t) onto the subspace
V; represent an approximation of that function at scale j. The approximation
becomes more accurate as j increases. The difference in successive approximations
gi(t) = fj+1(t) — f;(¢) is a detail signal which lives in a wavelet subspace W;. In

fact, we can decompose the approximation space V; ; as
Vi1=V;0W,, (6.2)

where @ denotes the direct sum. Equation (6.2) shows us one of the fundamental
reasons why wavelets have been used so successfully in signal processing. Signals can
be neatly broken down into a coarse approximation signal and a fine detail signal.

Any f(t) € L*(R) can be written as a sum of its approximate at some scale .J along
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with the subsequent detail components at scale J and higher. Hence,
I’R) = V,;6W,;®---0dW,. (6.3)

As in the approximation spaces case, the wavelet spaces W are spanned by a set of
orthonormal basis functions {1, () = 29/2¢)(27t — k) }rez, which are dilations and
translations of a single wavelet function (t). Furthermore, the wavelet function

satisfies the wavelet equation,
Y(t) = V2> dip(2t — k), (6.4)
k

for some set of expansion coefficients dj.

By equation (6.3), we can expand any function f(¢) € L?*(R) as follows:

F&) = andn(t) + > bisthi(h), (6.5)

kEZ §>J kEZ

where

ajr = /f(t)¢J,k(t)dt
big = / f@)p;x(t)dt

are the expansion coefficients for f(t).

6.2.2 Multiresolution Analysis for 2-D Images

The wavelet model in the previous section for 1-D signals can be extended to 2-
D images. We describe in this subsection a separable multiresolution analysis of
L*(R?) studied by Meyer [62] and Mallat [58]. Given a multiresolution analysis
(Vg-l))jez of L*(R), a set of nested subspaces (V](-Z))jez forms a multiresolution
approximation of L?(R?) with each vector space V§-2) being a tensor product of
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identical 1-D approximation spaces
v =vi gV, (6.6)

Furthermore, the scaling function ®(¢, s) for the 2-D multiresolution subspaces can

be decomposed as:

®(t,s) = o(t)d(s) (6.7)

where ¢(t) is the 1-D scaling function of the multiresolution analysis (V](-l)) jez- The

set, of functions

D eilt,s) = ojkt)dju(s), j,k,lE€Z (6.8)

is an orthonormal basis for V](.Z). The 2-D wavelet subspaces W](.Z) are generated by
three wavelets to capture detail information in the horizontal, vertical, and diagonal

directions

Uh(t,s) = v(t)e(s) (6.9)
v(t,s) = o(t)y(s) (6.10)
it s) = B(t)Y(s). (6.11)

Uh(tos) = wu(t)dsu(s), (6.12)
ika(tys) = @in(t)¥ji(s), (6.13)
W (ts) = Vie(t)u(s), j.kleZ. (6.14)

Analogous to the 1-D case, any image f(¢,s) € L*(R?) can be expanded as a sum

of its approximate image at some scale J in VF,Z) along with subsequent detail
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components at scale J and higher.

Fts) = D amm@upa(t,s) + Y Y b Wt s) +

k,IEZ 7>J kl€Z
DD b Wiaa(ts) + D > W Tt s), (6.15)
>J klEZ >J kIEZ

with

arkl = //f(t, $)®jj(t, s)dtds

Vi = [ [ #6500t s)avas

bz,k,z = //f(t, S)\Iﬂ},k,l(t: s)dtds

bg,k,z = //f(t, S)W‘},k,l(ta s)dtds
The first term on the right hand side of (6.15) represents the coarse scale approxima-
tion to f(t,s). The second term represents the detail component in the horizontal

direction, the third and fourth the detail components in the vertical and diagonal

directions, respectively.

6.3 Wavelet Interpolation of Interlaced Data

This section describes our interpolation technique for interlaced data. We use the
expansion formulae (6.5) and (6.15) to first estimate for the wavelet coefficients.

Using these estimates, we interpolate for the function values at the HR grid points.

6.3.1 Interpolation for Nonuniformly Sampled 1-D Signals

We first consider the case of nonuniformly sampled 1-D signals. Suppose that we
have a function f(t) for which we would like to compute M uniformly distributed
values, say, at t = 0,1, ..., M —1. We are given P nonuniformly sampled data points
of f(t) at t =tg,t1,...,tp 1,0 < t; < M, where typically, P < M.
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We take unit-time spacing grid to be resolution level V. By repeated application

of (6.2), we can decompose Vj in following fashion:

-1
Vo, = V,;oPw;, J7<-1 (6.16)

J=J

Hence, we can separate f(t) € Vj into its approximation and detail components and

further expand these components in the orthonormal bases of V; and {W,}_15,>,:
-1

F@&) = L0+ gi(t), fi(t) €V, git) € W, (6.17)
j=J

= > ands(t) + i D biwtbk(t), (6.18)

=1k
jp = /f(t)¢J,k(t)dt

b = / )5 6 ().

Substituting in the values of the sampled data we have a set of P linear equations

—1
Ft) = amsdsp(ts) + DD bistiu(ts), i=0,..,P—1. (6.19)

k j=J k

Suppose that [0, N] is the support interval for ¢(t) and let t,,,, = max;t; and
tmin = min; t;. In the first summation on the right hand side of (6.19), only finitely
many terms are nonzero because ¢;i(t;) = ¢(27t; — k) is nonzero if and only if

27t; — k is in the support interval for ¢(t), i.e.

0<2/t—k <N, (6.20)
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or equivalently,
—N + [27tin] <k < [27tmax] (6.21)

Similar arguments can be made for the wavelet basis functions v, (;). Let S; =
{=N + [27tin], -, |27 tmax |} be the set of shifts with nonzero contribution in the
right hand side of (6.19). We can now rewrite (6.19) as:

-1
Ft) = andrilt) + > > biwtbjults), i=0,..,P—1. (6.22)

keSy j=J kESj

which, in vector form, becomes

-1
f=Gja;+ Y Hb, (6.23)

Jj=J

where

.....

Gy = (a5 o 0 Hy = u(t))isy’ p_s-

.....

To construct G; and H;, we need to know basis function values at sampling points
{t;}. For most wavelet bases, there are no closed-form expressions for basis functions
{¢1k(t),¥;x(t)}. However, basis function values at dyadic points can be calculated
efficiently by recursion. At scale K and for scaling function with support on [0, N,
the set of dyadic points is defined to be DY = {0,1/2%,..., N — 1/2K}. We choose
K large enough so that the set of sampling points {2/t; — k, 27t; — k} can be well

approximated by a subset of D¥.
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From Equation (6.23), we can estimate the coarse scale approximation coeffi-

cients a; by ignoring the detail components and considering just
f~ GJa]. (624)

Ford and Etter [27] recommend that J be chosen so that the system above can be
solved in an overdetermined least squares sense, that is, P > |27t,,00 | — [27tmin | +
N + 1. The scale chosen is dependent on the total number of sample points, the
interval spanned by these points, and the support size of the scaling and wavelet
functions. Since (6.24) is an approximation, we solve for a regularized least squares

estimate in the wavelet domain
a; = argmin, |If — Ga,[3 + Alla,|[3, (6.25)
or equivalently,
a; = (G5G; + AXI)'GEf (6.26)

for some regularization parameter A. The regularization parameter A plays a bal-
ancing role in (6.25) and (6.26). If A is too large, the solution obtained will be too
far away from the original system we wish to solve. If )\ is too small, noise effects
are exacerbated in the solution of the under-regularized system. The least squares

estimate a; of the coefficients yields a coarse scale estimate of f, denoted by
f, =G4y, (6.27)

The difference between f and f; can then be used to approximate the wavelet coef-

fcients b:

g, = f—1,
= f-Gja;
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Since the number of nonzero coefficients b;,, is the same as the number of nonzero
coefficients ay,,, equation (6.28) can also be solved in the least squares sense for
a regularized estimate of b;. In general, the regularization parameter is chosen
to be small for the coarse scale approximation and large for the fine scale detail
because the signal to noise ratio tends to be smaller in the fine scale. In fact, an
estimate for A can be computed using prior information or statistical model for the
wavelet coefficients, (cf. [79, 21]). The desired values of f(¢) at the HR grid points

t=20,1,..., M — 1 can then be computed using the estimated coefficients:

FO) =Y agdu(t) + > brathp(t), t=0,1,..,M —1. (6.29)

keSy keSy
For wavelet superresolution, the data is sampled nonuniformly but in a recurring
manner. This type of sampling is called nonuniform recurring sampling or interlaced
sampling [77]. More specifically, we are given sampled data on a LR grid in terms
of “frames”, which are sets of data points separated by a uniform shift. Let r be

the resolution enhancement factor, m be the number of data points per frame, and

n be the number of given frames. The available samples are

{fl&), fr+e€), f2r+¢€),..f((m—1r+¢)}, 0<e<r, i=1,..,n.

Given these mn sample points, we would like to reconstruct values of f(¢) for the
HR grid points ¢t = 0,1, ..., mr — 1.
Following (6.24) and putting (6.30) in vector form, we get the following set of

equations to solve for the coarse scale coefficients a;
t0 ~GVa,, i=1,..,n, (6.30)
where

£ = (F(pr + )y 10 G = (aslpr + )i .

90

The vector f) contains sample values from the ith frame. We estimate the wavelet
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coefficients b; and the values of f(¢) on the HR grid in the same fashion described

previously.

6.3.2 Interpolation for Interlaced 2-D Images

In image superresolution, the data frames are LR rectangular grids of sample points.
Let h,w denote the height and width (in units of pixels) of an LR frame. The set

of available data is then

{f(pT—FGit,q?""‘ﬁis)},
0<¢, € <7, p=0,...h—1, ¢=0,...,w—1, 1=1,...,n.

From these nhw sample points on LR grids, we would like to reconstruct values of
f(t,s) on HR grid points {(¢,s)| t =0, ...,hr—1,5s =0, ...,wr—1}. Analogous to the
1-D case, we substitute in sample values of f(¢, s) to obtain a set of linear equations

and solve a least squares system for the coarse scale coefficients.

flor + e, qr+6,) =~ Z Z @z @ ((pr + €, qr + €,) (6.31)
k)ESJt lGSJS

= D > aukbuulpr + @)dslar +6,). (6.32)

]CESJt lGSJS

In matrix form, the double sum above can be written as a kronecker product of 1-D

wavelet transform matrices
0~ (@Y @ GWai=1,...,n (6.33)

where () is the vector of pixel values of the ith frame reordered rowwise, a; is the
vector of unknown coarse scale coefficients, and the entries of GS?, GS? are basis
function values at sampling points of frame 7 along the horizontal and vertical di-
rection, respectively. Proceeding as in the 1-D case, we solve (6.33) for a regularized
least squares estimate a; of a;. The difference between f () and its coarse-scale es-

timate (GS? ® GS?)QJ can next be used to estimate the horizontal detail coefficients



CHAPTER 6. WAVELET SUPERRESOLUTION 126

b’}:

gl = 0 GV ocM)a, (6.34)
~ (G o H)bh, (6.35)

Continuing as above, the residual is then used to calculate b} and b%. The choice
of scale J makes a crucial difference in reconstruction quality. We pick the finest
scale .J so that the number of sample values is more than the number of unknown
coefficients in (6.33) and (6.35). This gives the finest level of detail coefficients for
which we can solve (6.33) and (6.35) stably.

6.4 Implementation and Computational Complex-
ity

We discuss an efficient implementation and the computational complexity of our

interpolation approach for interlaced data in this section. We first consider the 1-

D interlaced frames equation (6.30). The regularized least squares estimate of the

coarse scale coefficients can be expressed as

-1

G £
a; = [[69" 6| s | ear] 60 ed” (6.36)
G\ £(r)
n -1 n
_ ZG@%?HM) S 0, (6.37)
i=1 =1

The equation above can be solved most efficiently by an iterative method such as CG
(cf. [5]). We only need to compute matrix-vector products involving  »_, GF;)TGF]i)+
Al and not its explicit inverse. Furthermore, because of finite support of ¢(¢), the
matrices Gf,i) have banded structure which may be further exploited. We can derive

similar expressions for the wavelet detail coefficients. For 2-D interlaced images,
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the regularized least squares estimate for the coarse scale wavelet coefficients from

equation (6.33) is

-1

) o )

a; = {(GS? e) (6P ect) 5 A
|l dVed
[ £
(coes) - (aeat)]| (6.39)
£(n)

Recalling the following properties of the kronecker product:
e (A B)T = AT @ BT,
e (AB)® (CD)= (A®C)(B® D),

e (A ® B)reshape(V) = reshape(AV BT) where reshape(-) reorders the entries
of a matrix in rowwise order into vector format,
and applying these properties to the equation above, we have
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where F denotes the ith frame in matrix form. Similar forms for wavelet di-
rectional detail coefficients estimates can be derived in the same manner. Analo-
gous to the 1-D case, equation (6.40) can be solved most efficiently by an iterative

T -
method. Matrix-vector products involving the system matrix 3 ., (GS? GS?) ®

T .
(GFJZ) GF,”) + Al can exploit computational properties of the kronecker product. We
quantify the computational complexity of solving (6.37) and (6.40) in more detail

in the following discussion.
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The computational burden for the method is comprised of two main compo-
nents. The first component is the cost of constructing the matrices of wavelet basis
functions evaluated at the sampling points. In the 1-D case, at scale K and with
wavelet support of size N, the cost for generating the matrices of sampled wavelet
basis functions is O(N22(K+D). Our 2-D wavelet basis is a separable basis, so the
construction of the matrices of sampled wavelet basis functions only costs twice as
much as in the 1-D case.

The second component of computational burden is the least squares solution of
(6.37) and (6.40). We use CG for an iterative solution. Complexity per iteration of
CG depends largely on the cost of a matrix-vector product with the system matrix.

In the 1-D case the system matrix is
n o
PR E NPy
i=1

with Gg), a matrix approximately m X (2‘]m7" + N + 1) in dimensions with m the
number of samples per frame. The computational complexity for this matrix-vector
product is O (nm (2] mr + N )) Analogously, the system matrix for interlaced in-

terpolation in 2-D is

n
S (696D @ (6569 +ar,
i=1
where GF,? and GF;) are approximately h x (2Jhr + N+ 1) and w X (2‘]wr + N+ 1)
in dimensions, respectively. The variables h and w denote the height and width of an
LR frame in units of samples or pixels. The computational complexity for a matrix
vector product with the system matrix is O (nh (2Jhr + N) + nw (2‘7wr + N)) By
taking advantage of the interlacing structure and the kronecker product represen-
tation, the computational cost for our interpolation approach only doubles for the

2-D case as compared to the 1-D case.
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6.5 Experiments

This section presents numerical results for interpolation experiments with 1-D sig-

nals and superresolution experiments for 2-D images.

6.5.1 Wavelet Interpolation Experiments for 1-D Signals

In this first set of experiments, we use the wavelet techniques described above to
interpolate values of a 1-D signal. We start with an original signal of length 168.
The signal is then blurred with a Gaussian point spread function with 3 x 3 pixel
support and variance 1 and down-sampled by a factor of 3 to generate 3 LR frames,
each with 56 sample points. We keep only one of those LR frames, leading to
a severely underdetermined interpolation problem. The given frame has sample
values of f(t) at t =0, 3,...,165. The algorithm attempts to reconstruct the signal
at time ¢t = 0,1, ..., 167. Figure 6.1 displays the result of wavelet reconstruction using
Daubechies DB6 filter [22].

6.5.2 Wavelet Superresolution Experiments for 2-D Images

The setup for the first 2-D superresolution experiment is similar to the experiment
for 1-D. The 172 x 172 pixels HR image shown in the upper left corner of Figure 6.2
is blurred with a Gaussian point spread function of variance 1 with 4 x 4 pixel
support and down-sampled by a factor of 4 to simulate 16 LR frames. We randomly
choose 10 of those LR frames, each of size 43 x 43 pixels, again leading to a severely
undersampled superresolution problem. The desired resolution enhancement factor
is 4. The wavelet interpolation-restoration process first interpolates at the HR grid
points using the proposed wavelet techniques. An estimate for the original HR
image is obtained by deconvolving the interpolated values with the known blur.
Figure 6.2 shows the result of wavelet superresolution for our test 2-D sequence
using Daubechies DB filter interpolation in combination with Tikhonov regularized
restoration.

As before, each low resolution FLIR image is 64 x 64 pixels and a resolution
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Figure 6.1: Top to bottom. The first plot shows the original signal. The second
contains the available data samples. The third plot displays the result of wavelet
interpolation at scale J = —2 using the available samples. The last graph plots the
error of interpolation against the original samples.
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Figure 6.2: The first (upper left) display is the original Stanford HR image. The sec-
ond (upper right) shows a sample LR frame. The middle left image is the deblurred
coarse scale approximation. The remaining images are deblurred approximations
with higher levels of wavelet detail.



CHAPTER 6. WAVELET SUPERRESOLUTION

Sample LR frame

20 40 60

Coarse scale reconstruction

100

200

300

100 200 300
+ Vertical detail

100

200

300
100 200 300

132

+ Horizontal detail

100 200 300
+ Diagonal detail

100 200 300

Figure 6.3: The first (upper left) display is a sample FLIR, LR frame. The middle
left image is the deblurred coarse scale approximation. The remaining images are
deblurred approximations with higher levels of wavelet detail.
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enhancement factor of 5 is sought. The objects in the scene are stationary, and 16
frames are acquired by controlled movements of a FLIR imager described in [39].
We applied a similar interpolation-restoration procedure as in the experiment for
the simulated Stanford sequence. Figure 6.3 contains the results of wavelet superres-
olution for the FLIR test sequence using Daubechies DB4 filter interpolation, along

with regularized restoration.

6.6 Conclusion

This chapter presents a new wavelet interpolation-restoration method for image
superresolution. In contrast to previous interpolation-restoration approaches, our
method exploits the interlacing structure of the sampling grid in superresolution.
Using a separable orthonormal wavelet basis for 2-D images, we derive a wavelet
decomposition using kronecker products. As a result, the computational properties
of the kronecker products allow efficient calculation of the wavelet coeffcients. Com-
putational complexity of our method applied to 2-D interlaced data increases only
by a factor of 2 compared to that in 1-D. Experimental results with simulated and

real FLIR data demonstrate excellent reconstruction quality as well.



Chapter 7

Contributions and Future Work

134



CHAPTER 7. CONTRIBUTIONS AND FUTURE WORK 135

7.1 Introduction

This last section of the thesis summarizes the primary contributions toward an effi-
cient data-driven superresolution algorithm and some directions for future research.
We first outline the novel developments from Chapters 2 through 6 in Section 7.2.
Topics for future work are addressed in Section 7.3. We conclude with some final

remarks in Section 7.4.

7.2 Contributions

The fundamental objective of our work is the development of efficient and robust
data-driven components of a complete superresolution algorithm. Each component
of the algorithm must be able to handle the heavy computational burden of process-
ing a large number of data and unknown variables. At the same time, the algorithm
itself must be robust with respect to various sources of degradation: noise, blur,
quantization, etc. Finally, the entire process must be largely data-driven with min-
imal human supervision. Very few assumptions about the image characteristics,
noise models, or camera models can be made. These stringent constraints allow the
most flexibility and adaptibility of the algorithm.

We considered the problem from two complementary directions: iterative ap-
proach and interpolation-restoration approach. As described in Chapter 1, both
approaches require the same preprocessing steps: measurement of relative motion
from frame to frame and blur identification from degraded, LR frames. As Fig-
ure 1.5 suggests, the goal is to have computationally inexpensive, self-containing
components under a modular framework. Toward this end, Chapter 2 is entirely de-
voted to the development of motion estimation algorithms, while Chapter 5 mainly
concerned itself with the blur identification problem. Chapter 4 considered regu-
larization techniques for obtaining robust solutions for superresolution. Chapter 3
proposed novel preconditioning acceleration for the CG iteration algorithm applied
to the regularized least squares superresolution problem. Chapter 6 developed a

multiresolution wavelet-based interpolation technique for superresolution interlaced
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data.

7.2.1 Motion Estimation

Superresolution from multiple frames is only possible in the presence of motion.
Because the accuracy of relative frame motion estimates largely determines the
quality of superresolution reconstruction, robust and efficient motion estimation
techniques are a critical component. Our motion estimation framework relies on the
fundamental assumption of intensity conservation. We presented a general affine
gradient-based model for motion estimation. We considered the framework above
under the Radon transform and derived expressions for affine motion in the projected
domain. In particular, 2-D translational motion can be expressed as a combination
of two 1-D translational components in the projected domain. This special property
of the Radon transform is independent of motion estimation techniques. Hence,
we obtain faster 1-D based translation motion estimation methods for their 2-D
counterparts. Numerical experiments show that projected estimation techniques
are indeed faster than their 2-D counterparts. Complexity analysis further validates
this claim. Furthermore, we can bound the degradation in accuracy as a result of
the Radon transformation.

The second part of Chapter 2 focused on the effect of misregistration on re-
construction quality. Although image registration is an essential component to su-
perresolution, previous work in the literature has largely ignored its importance.
Most have assumed perfect registration or not dealt with misregistration explicitly.
We studied superresolution reconstruction mean-squared error under various levels
of misregistration and data availability. Our superresolution experimental result
yields interesting, but not unexpected, observations: Reconstructed image quality
degrades as registration error increases, and with more LR data available, superres-

olution is more robust with respect to misregistration.
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7.2.2 Preconditioning

Superresolution is known to be a computationally very intensive problem. The
number of unknown and data variables is on the order of tens of thousands. A prac-
tical superresolution algorithm must be efficient in data and unknown calculations.
Dynamic superresolution places an even greater computing demand. Dynamic su-
perresolution is superresolved video, where a stream of HR images is produced from
a stream of LR frames.

In Chapter 3, we outlined a forward degradation model for LR frames. We ap-
plied Krylov subspace methods to solve the Tikhonov-regularized least squares prob-
lem based on this degradation model. To accelerate convergence of these subspace
methods, CG in particular, we proposed two circulant-type preconditioners based
on the degradation model of each LR frame. These preconditioners are applicable in
all cases of data availability: underdetermined (fewer frames than r?, where r is the
desired resolution enhancement factor in each dimension), square (r? frames), and
overdetermined (more than r? frames). The proposed block preconditioners exploit
the sparse triangular band structure of each block of the system matrix. These
preconditioners are shown to be inexpensive to construct, store and solve. Since
these block preconditioners are circulant-based, we only need to know and store the
first column of each block. Our complexity analysis showed that the cost of solving
the preconditioning step is relatively small compared to the cost of one CG itera-
tion. Furthermore, we have convergence proofs for both proposed preconditioners,
with bounds on the number of PCG iterations needed to achieve exact convergence.
Experimental results with simulated and FLIR image sequence illustrated timing

superiority of PCG using the proposed preconditioners over unpreconditioned CG.

7.2.3 Regularization

We require well-behaved superresolution solutions, robust with respect to various
sources and levels of noise. In Chapter 4, we reviewed familiar concepts of Tikhonov
regularization for stably solving ill-conditioned linear systems. We adopted a gen-

eral framework for representing regularized least squares problems derived from the
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forward degradation model. We addressed the issue of regularization parameter es-
timation for superresolution. The regularization parameter plays an important bal-
ancing role in the formulation of a well-conditioned system. Although regularization
parameter estimation is a well-studied area of research for overdetermined/square
problems, for underdetermined systems, this issue has received relatively little atten-
tion in the literature. We extended the derivation for two data-driven regularization
parameter estimation techniques to underdetermined systems. We applied the same
intuition as in the overdetermined/square case. For the quasi-optimality criterion,
our derivation yielded a slightly different formula in the underdetermined case. For
the generalized cross-validation method, we obtained the same formula as in the
overdetermined case. Numerical experiments show generalized cross-validation to
be superior quantitatively and qualitatively to quasi-optimality criterion as a reg-
ularization parameter estimation technique. Although the formulae for these pa-
rameter estimation techniques were derived in context of the image superresolution
reconstruction problem, they may be applicable in other underdetermined ill-posed

inverse problems.

7.2.4 Blur Identification and Blind Superresolution

In many practical imaging applications, camera characteristics are unknown or
known only up to a few free parameters. The blurring parameters have to be ro-
bustly estimated from raw data. In Chapter 5, we proposed the use of generalized
cross-validation method for parametrized blur estimation from multiple LR frames.
The idea is intuitively appealing: to estimate then validate for the blur parameters
that would best fit the given LR data. Previous work has shown that generalized
cross-validation provides promising results in blur parameter estimation. However,
because the generalized cross-validation objective function is prohibitively expensive
to evaluate directly, previous models assumed gross simplifications. In this work,
we presented accurate and efficient bounds for the numerator and denominator of

the objective function. These bounds are based on moments theory and Gauss
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quadrature rules. The weights and nodes of these rules are related to the recur-
rence coefficients of sequences of orthogonal polynomials, which can be generated
from the Lanczos bidiagonalization algorithm. In our numerical experiments, the
proposed technique provided accurate point spread function parameter estimates for
many types of blur and were robust to various noise and data availability conditions.
Blind superresolution experiments for simulated and FLIR image sequences demon-
strated the feasibility of our technique for practical data-driven blind superresolution
applications.

As we illustrated in Chapter 1, restoration can be considered as a special case
of superresolution. Techniques proposed for blur identification using multiple LR

frames may be used in blind restoration applications as well.

7.2.5 Wavelet Superresolution

Chapter 6 introduced a completely new algorithm for image superresolution. The
algorithm belongs to the class of interpolation-restoration methods. As the name
suggests, interpolation-restoration methods first interpolate for values on the high
resolution grid then deblur to obtain a HR image estimate. Our contribution is a
fast, efficient wavelet-based interpolation method that is tailored for superresolution
data. As noted in Chapter 1, superresolution data are in interlaced form. Pixels
from the same LR frame are periodically sampled in a regular grid. The proposed
algorithm exploits this structure and regularity in sampling.

We first reviewed wavelet multiresolution analysis for 1-D signals and 2-D im-
ages and described a separable, orthogonal representation with compactly supported
wavelet bases for images. Separability combined with the interlacing structure of
data samples allows for an efficient and compact representation for images in the
wavelet domain using kronecker products. We proposed a robust, multiscale interpo-
lation algorithm based on wavelet coefficients estimation. We presented complexity
analysis showing that the computational burden for 2-D interpolation with inter-
laced data only doubles that of the 1-D case. The accuracy and efficiency of our

proposed techniques were illustrated in numerical experiments for 1-D signals and
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2-D synthetic and FLIR images.

7.3 Future Work

In this section we outline some possible directions for future research. We start with
several generalizations of the static, scalar, single source superresolution problem
considered in this thesis: a single HR image output from a sequence of gray scale
frames captured with the same imaging system.

The first is the so-called vector (color) superresolution, where each pixel value
consists of three color components. The naive approach for this problem would be
to consider scalar (gray scale) superresolution for each component separately and
merge the HR estimates at the end. This inefficient approach ignores all structure
and correlation between components. An interesting research question would be
how best to exploit the correlation among color components for a multiframe se-
quence. Obviously, frame-to-frame motion vectors can be measured more accurately
with color vector values. A least squares or cross-validation scheme can be used to
obtain the best fitting motion vectors. Similarly, regularization and blur parame-
ters can also be better estimated from multiple color elements. Computationally,
we could take advantage of the redundancy of system information among the color
components. Since the same motion, regularization and blur parameters are applied
for all three components, we only need to solve one equation with multiple right
hand sides for the vector superresolution problem.

Vector superresolution can be considered as an extension of superresolution in
space while dynamic superresolution is an extension in time. Dynamic superreso-
lution produces a sequence of HR images from a sequence of LR frames. Dynamic
superresolution is particularly relevant in generating high resolution video sequences
from streams of low resolution video. Again, the question is how best to adapt tech-
niques developed in this thesis in dynamic superresolution applications and what are
the key insights to making this problem computationally feasible. There are many

times more the amount of data and unknowns in dynamic superresolution than in
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static superresolution. However, the redundancy and structure in data and prob-
lem characteristics can be exploited. We note that in dynamic superresolution, the
difference between two consecutive batches of LR frames is just the beginning and
ending frames. Thus, motion, regularization and blur parameters may be updated
and refined incorporating new frame information and disregarding contributions
from the oldest one. Furthermore, the HR estimate from the previous batch is likely
to be an excellent initial guess for the current batch. In context of video commu-
nications, an extremely useful topic of research that may attract much attention is
how to carry the techniques developed here into the compressed data domain. Also,
superresolution can be thought of as a compression scheme, where an HR image
can be decomposed into several low resolution approximations. The question is how
best to pick a subset of LR frames that can faithfully represent the original image.

Yet another possible generalization of superresolution is the multichannel super-
resolution problem, which combines LR data from different sources. The problem
requires separate imaging models for these sources, accounting for different con-
ditions of lighting, camera, motion, blur, noise, etc. The challenge is to extract
subpixel information from the given LR data even though they may have undergone
different degradation processes. The most promising approach would be a projection
onto convex set method, which allows the most flexibility in modeling. The method
starts with an initial guess for the desired HR image and sequentially projects and
updates the HR estimate using the degradation models as convex constraints. A
critical issue is the formation of appropriate and accurate degradation models. In-
stead of considering the most general multichannel problem, a more tractable and
useful subclass would be superresolution for single imaging source under varying
lighting, blur, and noise conditions.

The previous paragraphs outlined extensions of static, scalar, single source super-
resolution to dynamic, vector, and multichannel superresolution. In the following,

we list topics of further research within each component of superresolution.
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7.3.1 Motion Estimation

Although the motion estimation framework we adopted is found to be sufficient in
many superresolution applications, the following is a list of useful extensions and

developments for image registration in superresolution:

e Locally adaptive motion estimation - local control of motion vector estimates.
Ideally, subpixel information extraction should be done under an optical flow

framework allowing for the most general frame-to-frame motion models.

e Accounting for sensor and motion blur - more accurate motion estimation when
blur degradations are accounted for. Frame-to-frame relative motion is actual
scene motion after undergoing sensor degradations. Only purely translational
motion and linear shift invariant blurs commute. [mage registration with more
general motion or in the presence of shift varying blur must consider blurring

effects.

e [terative refinement - updating and validating motion vector parameters with
current HR image estimates. Alternatively updating motion and HR estimates

may lead to a more accurate and robust total superresolution scheme.

7.3.2 Preconditioning

Several attractive alternatives to the circulant preconditioners proposed in this thesis

deserve attention.

e Other circulant, Toeplitz, or displacement rank preconditioners. The pro-
posed preconditioners are attractive because of the available bounds on their
effectiveness. However, other circulant-related preconditioners should be em-

pirically considered as well.

e Multilevel, multigrid preconditioning ideas. Superresolution is inherently mul-
tiscale. The concepts and insights of multigrid and multilevel analysis may be

very applicable here.
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e Extensions of preconditioners to operators. The proposed preconditioners are
based on a matrix formulation of purely translational motion along with sim-
ple blurring models. More generally applicable preconditioners will consider
motion and blur processes as operators. Extensions of preconditioners to Neu-

mann boundary condition are also useful.

7.3.3 Regularization

There are several possible extensions to the Tikhonov regularization framework we
presented in Chapter 4. Tikhonov regularization with standard stabilization ma-
trix such as the identity or Laplacian operator under || - ||z is an adequate option.
However, there is an inherent conflict between standard Tikhonov regularization
and superresolution. On one hand, superresolution attempts to extract subpixel
and detail information from LR data. On the other hand, Tikhonov regularized

reconstruction tends to smooth out noise along with fine detail components.

e Tikhonov regularization with robust estimators - penalty term with total vari-
ation or other robust norms. Penalty functionals in Tikhonov regularization,
which are more forgiving to image detail and sharp transitions, should be

considered.

e Other regularization techniques - maximum a posteriori estimates with edge-
preserving prior, regularization with iterative methods. Alternate regulariza-
tion techniques successful in related image detail reconstruction areas should

be considered.

e Automatic regularization parameter estimation - completely data-driven reg-
ularization process. Ideally, superresolution is a black-box process with no
human intervention. Regularization models as well as parameter estimation

must be computed from raw data.
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7.3.4 Blur Identification

Blur identification from LR data is a computationally challenging problem. We
proposed efficient and accurate blur parameter estimation techniques in this thesis.
However, we assumed simple blur models with few free parameters. The following

lists possible extensions and avenues of further research.

e Extending the proposed technique to multiple blur parameters with unknown
blur model and support. The critical issue is computational feasibility of

multiple parameter estimation with very large linear systems.

e Theoretical foundation for nonlinear parameter estimation using generalized
cross-validation. Although numerical results have shown generalized cross-
validation to be an effective method outside regularization parameter estima-

tion, further analysis is required.

7.3.5 Wavelet Representation

Direct methods are a fast, efficient alternative to their iterative cousins. However,
direct methods are derived from compact representation of the given data in indirect
domains, e.g. Fourier and wavelets, and not the pixel domain. Hence, we expect

reconstruction quality to be inferior to pixel domain iterative techniques.

e Other separable, orthogonal representations for effective interpolation. While
the wavelet basis provides a highly compact and efficient representation for
images, other bases, which may provide more accurate description for low

resolution, blurred, decimated data, should be considered.

e Further error analysis for wavelet superresolution. A better understanding of
the relationship between wavelet coefficients reconstruction error and super-

resolution error is needed.

e Comprehensive study of superresolution approaches, direct versus iterative.
Superresolution from multiple frames is a fast growing field of research. Al-

though many methods have been proposed, the field lacks a complete survey
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and comprehensive comparison between these competing methods. Such work

would provide a great service to practitioners.

7.4 Closing

In this thesis, we have developed new techniques and analyses for a complete, effi-
cient, data-driven superresolution algorithm. We have demonstrated their feasibility
on simulated and real image sequences. While we believe that the algorithms and
numerical experiments presented here can serve as a foundation, much work remains

to be done.
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