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Abstract

Differential Pixel Statistic Based Priors for Image Restoration

by

David Odom

The statistics of natural images play an important role in many image processing tasks. In

particular, statistical assumptions about differences between neighboring pixel values are

used extensively in the form of prior information for many diverse applications. The most

common assumption is that these pixel difference values can be described be either a Laplace

or Generalized Gaussian distribution. The statistical validity of these two assumptions is

investigated formally in this paper by means of Chi-squared goodness of fit tests. The

Laplace and Generalized Gaussian distributions are seen to deviate from real images, with

the main source of error being the large number of zero and close to zero nearby pixel

difference values. These values correspond to the relatively uniform areas of the image.

A mixture distribution is proposed to retain the edge modeling ability of the Laplace or

Generalized Gaussian distribution, and to improve the modeling of the effects introduced by

smooth image regions. The Chi-squared tests of fit indicate that the mixture distribution

offers a significant improvement in fit. A computationally efficient approximation to the

mixture model is developed for use as a prior. A denoising application is presented that

utilizes this proposed prior on pixel differences. Experiments are performed on real and

simulated images, and a comparison is made with several other methods that are based on

different statistical assumptions on pixel differences. The results show improved performance

by the mixture model assumption.
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Chapter 1

Introduction

In this chapter we briefly discuss the study of image statistics. First, a background

of previous work on natural image statistics is presented. Next, we focus on the past work

in the study of derivative statistics and discuss a few applications of these statistics to image

processing problems. Finally, we present the organization of this thesis.

1.1 Natural Image Statistics

Natural images have been studied extensively from a variety of different viewpoints,

with different applications in mind. The ability to accurately model natural images pro-

vides obvious benefits to image processing tasks such as denoising, compression and texture

analysis, among others. The study of biological vision systems is also closely related to the

study of natural images. As exact physical models for natural images may not be possible or

convenient, statistical approaches may be taken to capture the variability present in these

images. The study of natural image statistics arises from efforts to find and explain patterns

that are present in natural images.
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When studying the statistics of natural images, there are many choices of which

particular aspect is under observation. Perhaps the first, most obvious choice would be to

study the intensity values of the pixels themselves. However, the pixel intensity values do

not display an obvious common structure, as shown in Figure 1.1. It is not apparent that

a simple explanation for these histograms exists. Instead of directly studying pixel values,

the pixels are often transformed by some type of projection or filtering. After undergoing

certain types of transformations, the resulting coefficients display some obvious patterns and

characteristics. A few of the most commonly studied transformations include the wavelet

transform [3], Discrete Cosine transform [4], and Fourier transform [5]. These statistics,

among others, have been studied extensively, and a survey of this work can be found in [6].

The coefficients that are the particular focus of this thesis are those that arise from taking

the difference between two neighboring pixels. The study of the marginal distributions of

pixel differences is sometimes referred to as derivative statistics [7], as pixel differences are

an approximation to the derivatives of an image.

1.1.1 Derivative Statistics

Differences between neighboring pixels in an image are of particular interest be-

cause they have been observed to have remarkably similar histograms across images, while

their histograms differ drastically from the histograms of noise images [8]. The histograms

of nearest horizontal neighbor pixel differences for the images of Figure 1.2 are shown in

Figure 1.3. Several of the commonly observed properties of pixel difference histograms are

apparent in this example. The histograms of pixel differences have been observed to display

non-gaussian behavior. The histograms have a high kurtosis, and are often said to have long,

heavy, exponential tails. Several attempts have been made to model these derivative sta-
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tistics with parametric models. Parametric models are of particular interest, because they

allow fast and intuitive implementations as priors for image processing problems. Some

explicit parametric models have been proposed, and some models have been implied by the

use of certain priors.

The derivative statistics have been modeled by the Generalized Gaussian distri-

bution in [3] and utilized in many other works, such as in [7] and in [9]. The Laplace

assumption has been proposed explicitly [10], and implicitly by applications such as total

variation denoising [11]. A Gaussian assumption also finds use in the form of Tikhonov reg-

ularization, despite the observed non-Gaussianity of the histograms. The statistical validity

of these various assumptions is thoroughly investigated in this thesis. A new set of distrib-

utions, consisting of the mixture of a Gaussian and a Laplacian or Generalized Gaussian, is

proposed as an alternate model for the pixel differences.

Another often cited property of natural images is the scale invariance of marginal

distributions. This has been noted in [12], and in particular for image gradients in [8]. Scale

invariance, in this context, is taken to mean that the marginal distributions of statistics

remain unchanged if the image is scaled by a pixel averaging and decimation operation.

A different approach is taken in this thesis, in which the pixel differences for pixels with

varying spatial distances in between are studied. The histograms appear to show some

patterns in the way they change as the distance between the different pixels is taken is

increased. This is shown in the histograms of Figures 1.4 and 1.5, where the position

of the histogram relative to each image indicates the distance between pixels. This thesis

attempts to describe this behavior in simple parametric terms to facilitate usage of the prior

information in a multiscale context.
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1.2 Thesis Contribution and Organization

Chapter 2 contains a statistical analysis of pixel differences in an image. Several

previously proposed distributions for the pixel differences are presented. A mixture dis-

tribution is proposed as an alternate model. All distributions are analyzed by statistical

goodness of fit tests, and the proposed mixture model is shown to provide a better fit.

Chapter 3 details the development of a prior from the proposed mixture model.

Several approximations must be made to develop a computationally reasonable form that

is implementable in image processing tasks. Both a single scale, and multiscale form of the

prior are developed.

Chapter 4 describes the application of the mixture model prior in a denoising

framework. Several other denoising methods that fit into the same framework are discussed,

and related to different priors on pixel differences. A comparison is made between the

denoising results of these different priors.

Chapter 5 contains conclusions and future work. The performance of the mixture

model is discussed. Potential applications of the mixture model prior are included as future

directions.

4
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Figure 1.2: Samples of images.
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Figure 1.3: Histograms of nearest horizontal neighbor pixel differences for several images.
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Figure 1.4: Histograms of pixel differences for different distances between pixels. Histogram
positioning relative to the image indicates which pixel difference is displayed.
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Figure 1.5: Histograms of pixel differences for different distances between pixels. Histogram
positioning relative to the image indicates which pixel difference is displayed.
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Chapter 2

Pixel Differences and Their Statistics

The statistics of neighboring pixel differences are often called derivative statistics,

as pixel differences approximate directional derivatives in an image. These derivative statis-

tics, in terms of differences between neighboring pixels in an image, have been described by

several parametric distributions. In this chapter, we discuss these distributions, and propose

a new distribution, consisting of the mixture of two component distributions. Goodness of fit

tests are performed for each distribution to give a quantitative evaluation of their descriptive

abilities.

2.1 Pixel Differences

To obtain the data for which the tests of goodness of fit are to be performed, a

sample set of 300 grayscale images with pixel values in the range [0,1] was used. Each image

was shifted vertically and horizontally by a maximum of three pixels, and then subtracted

from the original. No reflection was used at border regions; the areas with no overlap were

simply eliminated from the pixel difference data set. A sampling of 16 images from the test

10



set is shown in Figure 2.1.

Figure 2.1: Sample of images tested

Following the notation of [13], these pixel differences for a given image, X, can be

represented as follows

X(l,m) = X − Sl
xS

m
y X, (2.1)

where X is a column-stacked vector of the original image. Sl
x and Sm

y are matrices that

shift X by l and m pixels in horizontal and vertical directions respectively. X(l,m) is the

vector form of image X shifted horizontally by l pixels and vertically by m pixels and

subtracted from the unshifted X. For instance, an image from the test database, along

with the difference image X(1,0), are shown in Figure 2.2. The histogram of this image is

representative of the characteristics observed across a wide range of images. For increasing

values of l and m, these pixel differences can also be viewed as neighboring pixel differences

11



of successive pyramid layers, where each layer is formed by unfiltered decimation of a parent

layer.

0

0

0

0

0

0

0

0

0

a b

Figure 2.2: a: Original Image, b: X(1,0)

2.2 Distributions

The pixel differences defined above have been modeled by several different distrib-

utions in the past. We present these distributions along with a proposed alternative below.

All distributions are assumed to be zero-mean1. In what follows, we denote the pixels of the

difference images under study by the random variable x, with n samples denoted by {xi},

1 ≤ i ≤ n.

2.2.1 Laplace Distribution

The zero-mean classical Laplace distribution is given by the density function

pL(x; s) =
1
2s
e−|x|/s, −∞ < x <∞ (2.2)

1This assumption was confirmed as valid by allowing the mean to vary for each distribution and comparing
to the zero-mean case. The estimated means were indeed found to be essentially zero in all cases.
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Figure 2.3: Histograms and fits for Fig. 2.2b. a: Laplace ML estimate, b: Generalized
Gaussian ML estimate, c: L-G Mixture model ML estimate, and d: GG-G Mixture model
ML estimate

where s > 0 is the scale parameter.

The maximum likelihood2 estimate for the scale parameter is given as follows

ŝ =
1
n

n∑
i=1

|xi| (2.3)

In Figure 2.3a, the histogram of pixel difference values for the pixel difference

image of Figure 2.2b, along with the superimposed Laplace ML fit, are shown. Table 2.1
2Maximum likelihood (ML) estimators are used due to their desirable properties of consistency, asymp-

totic normality, and efficiency [14].
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contains the average ML parameter estimates for the Laplace distribution across all images

in the database.

2.2.2 Generalized Gaussian Distribution

The Generalized Gaussian (GG) Distribution is given by the following density

function

pGG(x;α, β) =
β

2αΓ( 1
β )

exp
(
−

∣∣∣x
α

∣∣∣β) (2.4)

For the special case of β = 1 the GG distribution becomes a Laplace distribution,

and for β = 2, it becomes a Gaussian distribution.

The ML estimate β̂ is the solution of the following transcendental equation

1 +
ψ(1/β̂)

β̂
−

∑n
i=1 |xi|β̂ log |xi|∑ |xi|β̂

+
log

(
β̂
n

∑n
i=1 |xi|β̂

)
β̂

= 0 (2.5)

The Newton-Raphson iterative procedure as implemented by Do and Vetterli [15]

can be used to solve this equation. With β̂ determined, α̂ is given by

α̂ =

(
β̂

n

n∑
i=1

|xi|β̂
)1/β̂

(2.6)

In Figure 2.3b, the histogram of pixel difference values for the pixel difference image

of Figure 2.2b along with the superimposed Generalized Gaussian ML fit are shown. Table

2.2 contains the average ML parameter estimates for the Generalized Gaussian distribution

across all images in the database.
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2.2.3 Mixture Distributions

Several observations can be made about the pixel difference data and the ML fits

for the Laplace and Generalized Gaussian distributions shown above. It appears that the

tails of the distributions describe the data well, but the center region is not described well by

either distribution. In other words, the detail or edge regions of the image are well described,

but the relatively uniform areas are not. On first inspection of the histograms, the pixel

differences appear to be impulsive at the origin. However, this is not exactly the case.

The center histogram bins contain both zero and close to zero pixel differences, and these

small nonzero value pixel differences contribute significantly to the center bin. Motivated by

these observations, we suggest a new set of distributions which consist of the mixture of a

tail-modeling distribution, and a Gaussian distribution to model the more uniform regions.

The mixture distribution is defined as follows,

p(x; θ) = ApD(x; Θ) + (1 −A)pG(x;σ2), (2.7)

where θ = [Θ, σ2, A], pD is some tail-modeling distribution, and pG is a zero mean Gaussian

distribution given by

pG(xi;σ2) =
1√

2πσ2
e

−x2

2σ2 . (2.8)

Observations made above suggest that either a Laplace distribution or a General-

ized Gaussian distribution are reasonable choices for pD.

A further conceptual motivation for the mixture model is derived from the descrip-

tive model for images that consists of a ”cartoon”, or piecewise-smooth component, and a

texture component. A detailed analysis of various cartoon/texture decompositions can be
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found in [16, 17]. These mixture distributions can be related to this model by viewing the

Gaussian component as describing the texture, and the Laplace or Generalized Gaussian

component describing the cartoon.

The parameters for the mixture distribution given by (2.7) are estimated by using

the EM algorithm [18]. Namely, the mixing parameter, A, is fixed, and the ML estimates

for the two distributions are calculated. Next, the mixing parameter is estimated with the

other distribution parameters fixed at the new estimate. This process is repeated until

convergence [18]. A derivation of the ML estimates for the mixture distribution and a

further explanation of the EM algorithm are contained in Appendix A.

In Figure 2.3c, the histogram of pixel difference values for the pixel difference

image of Figure 2.2b, along with the superimposed Laplace/Gauss (L-G) mixture ML fit,

are shown. Table 2.3 contains the average ML parameter estimates for the L-G mixture

model. Figure 2.3d contains the Generalized Gaussian/Gauss (GG-G) mixture fit. Table

2.4 contains the average ML parameter estimates for the GG-G mixture model.We observe

that these fits are qualitatively superior to the fits of the Laplace or Generalized Gaussian

distributions alone. In Section 2.4 we quantitatively verify these observations.

2.3 Parameter Behavior Across Scale

The histograms of pixel differences in natural images have been observed to remain

constant across scale, when an averaging pyramid decomposition is used [8]. However, this

is not the case for the pixel differences across scale we are describing, which can be viewed

as being derived from an unfiltered, decimated pyramid as mentioned in Section 2.1. This

choice of scale definition is motivated by a computationally efficient framework for multiscale

priors, presented later in Chapter 4.
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As the scale of the pixel difference varies from fine to coarse (increasing l and m

from Equation 2.1) the parameters of each distribution vary as well. An example of the

changes of the shape of the distributions is shown in Figures 2.4, 2.5, 2.6, and 2.7. In

order to understand the overall behavior of these distributions, it is desirable to describe

each parameter’s behavior as some simple function of scale. Empirically, each parameter

was observed to exhibit exponential, logarithmic, or linear behavior as shown in Figure 2.8

and described below.
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Figure 2.4: Histograms of pixel differences for different scales of pixel differences and
Laplace ML estimates. With l of (2.1) increasing from left to right, with m of (2.1) increasing
from top to bottom, and with the original image positioned at (l,m) = (0, 0).

In particular, the s parameter of the Laplace distribution and the Laplace compo-

nent of the mixture model was observed to grow according to the exponential relationship
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Figure 2.5: Histograms of pixel differences for different scales of pixel differences and
Generalized Gaussian ML estimates. With l of (2.1) increasing from left to right, with m of
(2.1) increasing from top to bottom, and with the original image positioned at (l,m) = (0, 0).

s(l,m) = s0 exp
(
γ(|l| + |m| − 1)

|l| + |m|
)
, |l| + |m| > 0 (2.9)

where s0 is the s value at the finest scale (|l| + |m| = 1).

The α parameter of the Generalized Gaussian distribution exhibited logarithmic

growth of the form

α(l,m) = α0
ln(ζ(|l| + |m|))

ln(ζ)
, |l| + |m| > 0 (2.10)

where α0 is the α parameter value at the finest scale.

The β parameter of the Generalized Gaussian distribution grows linearly,
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Figure 2.6: Histograms of pixel differences for different scales of pixel differences and
Laplace/Gauss mixture ML estimates. With l of (2.1) increasing from left to right, with m of
(2.1) increasing from top to bottom, and with the original image positioned at (l,m) = (0, 0).

β(l,m) = β0 + η(|l| + |m| − 1), |l| + |m| > 0 (2.11)

where β0 is the β parameter value at the finest scale.

The variance of the Gaussian component of the L-G mixture model behaves simi-

larly to α of the Generalized Gaussian distribution.

σ2(l,m) = σ2
0

ln(ζ(|l| + |m|))
ln(ζ)

, |l| + |m| > 0 (2.12)

where σ2
0 is the variance at the finest scale.

The mixing parameter, A, exhibits linear growth,

19



−0.2 −0.1 0 0.1 0.2
0

20

40

−0.2 −0.1 0 0.1 0.2
0

20

40

−0.2 −0.1 0 0.1 0.2
0

20

40

−0.2 −0.1 0 0.1 0.2
0

20

40

−0.2 −0.1 0 0.1 0.2
0

20

40

−0.2 −0.1 0 0.1 0.2
0

20

40

−0.2 −0.1 0 0.1 0.2
0

20

40

−0.2 −0.1 0 0.1 0.2
0

20

40

−0.2 −0.1 0 0.1 0.2
0

20

40

−0.2 −0.1 0 0.1 0.2
0

20

40

−0.2 −0.1 0 0.1 0.2
0

20

40

−0.2 −0.1 0 0.1 0.2
0

20

40

−0.2 −0.1 0 0.1 0.2
0

20

40

−0.2 −0.1 0 0.1 0.2
0

20

40

−0.2 −0.1 0 0.1 0.2
0

20

40

Figure 2.7: Histograms of pixel differences for different scales of pixel differences and
Generalized Gauss/Gauss mixture ML estimates. With l of (2.1) increasing from left to
right, with m of (2.1) increasing from top to bottom, and with the original image positioned
at (l,m) = (0, 0).

A(l,m) = A0 + η(|l| + |m| − 1), |l| + |m| > 0 (2.13)

where A0 is the mixing parameter value at the finest scale.

The parameters of the GG-G mixture model follow similar forms to the parameters

of the previous distributions. More specifically, the mixing parameter, A, and the two

parameters, α and β, of the Generalized Gaussian component all displayed linear behavior.

A(l,m) = A0 + η(|l| + |m| − 1), |l| + |m| > 0 (2.14)

α(l,m) = α0 + η(|l| + |m| − 1), |l| + |m| > 0 (2.15)
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β(l,m) = β0 + η(|l| + |m| − 1), |l| + |m| > 0 (2.16)

The variance of the Gaussian component of the GG-G mixture model was well

approximated by exponential growth of the form,

σ2(l,m) = σ2
0 exp

(
γ(|l|+ |m| − 1)

|l| + |m|
)
, |l| + |m| > 0 (2.17)

It is informative to observe the parameter behaviors for the average case. As such,

the ML parameter estimates were found for each individual image, and then these estimates

were averaged across images. In order to fit the models of Equations 2.9-2.17 to the average

parameter behavior, (as shown in Figure 2.8), a least-squares criterion was employed.

For the Laplace distribution, s0 = 0.0457 and the exponential growth parameter

γ was found to be 0.6731. The normalized3 average s values for each scale along with the

approximated exponential fit are shown in Figure 2.8a.

For the Generalized Gaussian distribution, α0 = 0.0219 and the parameter dic-

tating its growth is given by ζ = 4.327. β0 = 0.6022 and the associated linear slope is

η = 0.0434. The normalized average parameters for the Generalized Gaussian are shown

with their approximations in Figure 2.8b.

For the L-G mixture model, s0 = 0.0620, and the corresponding γ parameter is

0.6534. It is interesting to note that the rate of growth of the s parameter of the Laplace

component of the mixture model is very close to the rate of growth of the s component of

the Laplace distribution when it is used alone. The variance of the Gaussian component

is dictated by σ2
0 = 0.00075 and ζ = 2.0157. The mixing parameter, A, is seen to have

an η value of 0, (i.e. constant),with A0 = 0.6795. The normalized parameters for the L-G

mixture model along with their least-squares fits are shown in Figure 2.8c.
3Each parameter and its estimate are divided by the corresponding minimum parameter value for clarity

in Figures 2.8a,b, and c.
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For the GG-G mixture model, α0 = 0.0345, and the corresponding η parameter is

0.5175. The value of β0 was found to be 0.7187 with an η parameter value of 0.1073. The

variance of the Gaussian component is dictated by σ2
0 = 0.0011 and ζ = 1.3006. The mixing

parameter, A, is seen to have an η value of −0.0315,with A0 = 0.8177. The normalized

parameters for the GG-G mixture model along with their least-squares fits are shown in

Figure 2.8d.
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Figure 2.8: Parameter Behavior Across Scale. a: Laplace Distribution, b: Generalized
Gaussian Distribution, c: L-G Mixture Distribution, and d: GG-G Mixture Distribution

The results presented above give insight into the behavior of the overall model.

Several observations can be made about the average behavior of the two mixture models.

The mixing parameter can be seen to describe what percentage of the image is described by
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the Laplacian or Generalized Gaussian component, and what percentage by the Gaussian

component.

On average, for the L-G mixture model, A ≈ 0.64 with a slope of 0 across scale,

thus the Laplacian component describes approximately 64% of the image at every scale.

The Laplace component has heavier tails at coarser scales, by an amount dictated by the

relationship expressed in Equation 2.9. This reflects a loss of detail as scale becomes more

coarse. Similarly, the Gaussian component has a larger variance at coarser scales, by an

amount dictated by the relationship of Equation 2.12, reflecting an increase in local variance

of the relatively uniform image regions.

It is interesting to note that the β parameter of the GG-G mixture model is close

to 1 for |l| + |m| = 4, 5, and is increasing linearly. This indicates that the distribution that

fits the tails best at finer scales has a higher kurtosis than a Laplace distribution, while at

coarser scales, a Laplace distribution provides the best fit (bearing in mind the fact that

a Generalized Gaussian distribution is identical to a Laplace distribution when β = 1). In

other words, no improvement is made by the additional degree of freedom of the Generalized

Gaussian distribution at a certain range of scales.

2.4 Goodness of Fit Tests

Visually observing the ”quality” of fit of probabilistic distributions to pixel differ-

ence data is not sufficient to evaluate the use of each distribution as a prior. A statistical

test is needed to quantitatively evaluate the goodness of fit, and to give a means of com-

parison between distributions. The Chi-squared test of fit [14, 19] was employed to test the

goodness of fit for all distributions. Each specified distribution, F0(x), was divided into k

classes, which were taken to be successive intervals in the range of x. The probability of an
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observation coming from each class can be easily calculated from the assumed distribution

function, and is denoted by p0i, i = 1, 2, . . . , k. The observed frequency in each class is given

by ni, with n total observations. The Chi-squared test statistic follows, approximately,

a Chi-squared distribution with (k − c − 1) degrees of freedom where c is the number of

estimated parameters. The Chi-squared statistic is then given by the following formula

χ2 =
k∑

i=1

(ni − np0i)2

np0i
. (2.18)

The Chi-squared figures were calculated for every image in the test set and averaged

values are computed for each scale of pixel difference. k was set to 75 for all calculations

to facilitate comparison. The size of k is proportional to the size of the data sets and a

minimum expected frequency per bin is assured. The results are shown in Figure 2.9. A

plot of the error contribution for each of the k bins of the Chi-squared test (argument of

the summation of Equation 2.18) for the pixel difference data and fits shown in Figure 2.3

is shown in Figure 2.10. The substantially smaller errors in the center region are apparent

in the two mixture model plots.

Lower Chi-squared figures indicate a better fit. The Chi-squared values confirm

what Figures 2.3a, b, c, and d suggested earlier. The mixture models offer the best fit at

all scales tested, even with the additional degrees of freedom over the Generalized Gaussian

distribution taken into account. The test statistic follows a Chi-squared distribution with

73 degrees of freedom for the Laplace distribution, 72 for the GG, 71 for the L-G mixture,

and 70 for the GG-G mixture for the specific test formulation presented above. The GG-G

mixture model provides a slightly better fit than the L-G mixture model at finer scales.

Tables 2.1, 2.2, 2.3, and 2.4 contain the average Chi-squared figures for each distribution

across the set of test images. All Chi-squared figures indicate that on average, for the
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l=0 l=1 l=2 l=3
m=0 s=0.0445 s=0.0630 s=0.0705

χ2=13058 χ2=13230 χ2=12282
m=1 s=0.0469 s=0.0567 s=0.0671 s=0.0738

χ2=12019 χ2=11626 χ2=11691 χ2=11160
m=2 s=0.0670 s=0.0694 s=0.0742 s=0.0792

χ2=11991 χ2=11363 χ2=11083 χ2=10307
m=3 s=0.0758 s=0.0779 s=0.0813 s=0.0849

χ2=11178 χ2=10526 χ2=10122 χ2=9511

Table 2.1: Average Laplace Parameters

degrees of freedom used in the test, the hypothesis that the data is derived from any of the

proposed distribution is rejected, even at a significance level of 0.01. This lack of statistical

significance, however, does not imply that these distributions are not useful as priors, only

that they are not perfect statistical descriptors of the data. However, the relative fit of each

distribution is apparent in Figure 2.9.

Several image features contribute to the large chi-squared figures. Long, high

contrast edges lead to significant error in the extremities of the tail region. These occur

frequently in a wide range of image types, resulting from the borders of dark shadows,

skylines, or other similar region boundaries. In the example image of Figure 2.2a, one such

boundary occurs between the breaking surf and the surrounding darker water and land. This

causes an unexpectedly high frequency in the bin of the Chi-squared test corresponding to

pixel differences near 1, and can be seen most clearly in the errors of the less heavy-tailed

Laplace and L-G mixture models shown in Figure 2.10a and c. If we limited the test set to

a specific class of images that does not contain these type of boundaries, the fits would be

substantially better, but the tests would then not be representative of the quality of fit to

a large portion of the images that are encountered in practice.

25



1 2 3 4 5 6
10

2

10
3

10
4

10
5

Goodness of Fit

|l|+|m|

lo
g(

χ2 ) 
V

al
ue

Laplace Distribution
Generalized Gaussian
Laplace/Gauss Mixture
GG/Gauss Mixture

Figure 2.9: Average Chi-squared figures.

l=0 l=1 l=2 l=3
α=0.0205 α=0.0303 α=0.0353

m=0 β=0.5790 β=0.6052 β=0.6315
χ2=786.1 χ2=888.8 χ2=1005.6

α=0.0234 α=0.0286 α=0.0341 α=0.0390
m=1 β=0.6254 β=0.6318 β=0.6377 β=0.6510

χ2=947.1 χ2= 868.6 χ2= 953.2 χ2= 1053.0
α=0.0355 α=0.0376 α=0.0410 α=0.0450

m=2 β=0.6529 β=0.6660 β=0.6758 β=0.6897
χ2=1037.1 χ2=1066.2 χ2=1125.2 χ2=1232.1
α=0.0440 α=0.0463 α=0.0491 α=0.0524

m=3 β=0.6973 β=0.7099 β=0.7186 β=0.7296
χ2=1324.0 χ2=1478.4 χ2=1473.9 χ2=1478.9

Table 2.2: Average Generalized Gaussian Parameters
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l=0 l=1 l=2 l=3
s=0.0599 s=0.0854 s=0.0949

m=0 σ2=7e-4 σ2=1.6e-3 σ2=1.9e-3
A=0.6908 A=0.6774 A=0.6756
χ2=609.74 χ2=515.07 χ2=496.46

s=0.0642 s=0.0770 s=0.0911 s=0.0987
m=1 σ2=8e-4 σ2=1.3e-3 σ2=1.7e-3 σ2=2.1e-3

A=0.6683 A=0.6743 A=0.6718 A=0.6763
χ2=575.75 χ2=508.56 χ2=486.67 χ2=482.75
s=0.0919 s=0.0944 s=0.0997 s=0.1050

m=2 σ2=1.7e-3 σ2=1.8e-3 σ2=2.0e-3 σ2=2.4e-3
A=0.6641 A=0.6656 A=0.6734 A=0.6758
χ2=597.73 χ2=548.23 χ2=537.97 χ2=541.86
s=0.1006 s=0.1037 s=0.1073 s=0.1110

m=3 σ2=2.2e-3 σ2=2.5e-3 σ2=2.6e-3 σ2=2.9e-3
A=0.6710 A=0.6702 A=0.6765 A=0.6780
χ2=734.86 χ2=683.79 χ2=685.94 χ2=680.6

Table 2.3: Average L-G Mixture Model Parameters

l=0 l=1 l=2 l=3
α=0.0308 α=0.0511 α=0.0672
β=0.6817 β=0.7439 β=0.8578

m=0 σ2=1.1e-3 σ2=2.4e-3 σ2=2.7e-3
A=0.8378 A=0.8080 A=0.7857
χ2=339.21 χ2=349.82 χ2=417.11

α=0.0381 α=0.0485 α=0.0642 α=0.0802
β=0.7557 β=0.7822 β=0.8278 β=0.9072

m=1 σ2=1e-3 σ2=1.6e-3 σ2=2.2e-3 σ2=2.5e-3
A=0.7977 A=0.7858 A=0.7706 A=0.7538
χ2=394.58 χ2=350.44 χ2=358.08 χ2=393.99
α=0.0652 α=0.0722 α=0.0835 α=0.0985
β=0.8445 β=0.8752 β=0.9308 β=0.9974

m=2 σ2=2.4e-3 σ2=2.3e-3 σ2=2.6e-3 σ2=3.0e-3
A=0.7566 A=0.7468 A=0.7381 A=0.7288
χ2=540.60 χ2=498.84 χ2=518.29 χ2=535.63
α=0.0911 α=0.0992 α=0.1086 α=0.1192
β=0.9667 β=1.0031 β=1.0554 β=1.0869

m=3 σ2=2.7e-3 σ2=2.7e-3 σ2=3.2e-3 σ2=3.1e-3
A=0.7262 A=0.7219 A=0.7180 A=0.7118
χ2=731.41 χ2=680.13 χ2=682.42 χ2=680.11

Table 2.4: Average GG-G Mixture Model Parameters
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Figure 2.10: Chi-squared error. a: Laplace Distribution, b: Generalized Gaussian Distri-
bution, c: L-G Mixture Distribution, and d: GG-G Mixture Distribution
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Chapter 3

Mixture Model Prior

The statistical study of the behavior of pixel differences discussed in Chapter 2

suggests that the mixture model of (2.7) could prove useful as a prior for image processing

tasks. The density function can not be efficiently used as a prior in its current form, and

must be adapted for efficient implementation. We choose to focus on the Laplace-Gauss

(L-G) form of the mixture model given by

pMM (x; θ) = ApL(x; s) + (1 −A)pG(x;σ2), (3.1)

where θ = [A, s, σ2], A ∈ (0, 1) is the mixing paramater, pL(x; s) is the zero-mean classical

Laplace density function of Equation 2.2, and pG(x;σ2) is the zero-mean Gaussian density

function of Equation 2.8. Priors based on density functions often find use in the form of

log-likelihood functions, in which the log of the joint density function is taken. These log-

likelihood functions allow computationally efficient implementations in the case of densities

from the exponential family. Simply taking the log of Equation 3.1 does not afford an easily

implementable solution; several approximations must be made. These approximations, along
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with a discussion of the final version of the prior are discussed in this chapter.

3.1 Approximation to Log-Likelihood Function

The log-likelihood function for the L-G mixture model with pixel differences rep-

resented by the random variable x, and n samples denoted by {xi}, 1 ≤ i ≤ n is given

by

L(x; θ) =
k∑

i=1

log(ApL(xi; s) + (1 −A)pG(xi;σ2)). (3.2)

In order to make an approximation to this log-likelihood function, several obser-

vations can be made about the L-G mixture model, and its average parameter values. The

function pMM (x; θ) of Equation 3.1 can be seen to have two distinct parts: the tail region,

and the center region. As a result, the approximation to the log-density function will consist

of two distinct parts,

log pMM (x; θ) ≈ l̂(x; θ) =

⎧⎪⎪⎨
⎪⎪⎩

l̂c(x; θ) |x| < ρ(θ)

l̂t(x; θ) |x| ≥ ρ(θ)
, (3.3)

where l̂t(x; θ) is an approximation to the tail region, l̂c(x; θ) is an approximation to the

center region, and ρ(θ) is some threshold determining when the center or tail approximation

is applied.

The tail behavior of the distribution can be assumed to be approximated well by the

Laplacian component of the mixture model alone. This can be seen by observing the typical

values that the average variance of the Gaussian component takes on, presented in Table

2.3. Four standard deviations of pG(x;σ2), containing 99.99% of the area of the Gaussian

component, includes the range of pixel difference values from ±0.11 to ±0.2 for different
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scales of pixel differences observed. This leaves a significant tail region which can therefore

be seen to be drawn from the Laplacian component of the L-G mixture distribution. The

tail approximation is then given by

l̂t(x; θ) = −|x|
s

+ log
A

2s
. (3.4)

However, the behavior of the mixture model near the origin is not described accu-

rately by either component in isolation. Both the Laplacian component and the Gaussian

component are necessary to accurately describe the behavior. An approximation to the re-

gion near the origin was made by formulating the log-density of the L-G mixture as follows,

with h = 1/(2σ2) for the Gaussian component, and f = 1
s for the Laplacian component.

log pMM (x; θ) = log
[
A
f

2
exp(−f |x|) +(1 −A)

√
h

π
exp(−hx2)

]

= log

⎡
⎣A f

2 exp(−f |x|) + (1 −A)
√

h
π exp(−hx2)

A f
2 + (1 −A)

√
h
π

⎤
⎦ + log

[
A
f

2
+ (1 −A)

√
h

π

]

= log
[
B exp(−f |x|) + C exp(−hx2)

B + C

]
+ log [B + C] , (3.5)

where B = A f
2 and C = (1 −A)

√
h/π.

The first logarithmic term in the above equation was expanded about 1 into its

Taylor series. Note that the argument of the logarithm is always greater than zero and less

than or equal to one, with equality only when x = 0.

log pMM (x; θ) ≈ B(exp(−f |x|) − 1) + C(exp(−hx2) − 1)
B + C

− [B(exp(−f |x|) − 1) + C(exp(−hx2) − 1)]2

2(B + C)2

+
[B(exp(−f |x|) − 1) + C(exp(−hx2) − 1)]3

3(B + C)3

+ · · · + log[B + C] (3.6)

31



Each exponential is then approximated by the first two terms of its Maclaurin

series expansion.

exp(−f |x|) − 1 ≈ −f |x|

exp(−hx2) − 1 ≈ −hx2

(exp(−f |x|) − 1)2 = exp(−2f |x|) − 2 exp(−f |x|) + 1

≈ 0

(exp(−f |x|) − 1)a(exp(−hx2) − 1)b ≈ 0 ∀(a+ b) > 1 (3.7)

Substituting the above expansion of the exponentials into the Taylor series of

Equation 3.6 results in all terms of the expansion approximated by zero, except for the first.

The resulting approximation is written as follows.

l̂c(x; θ) = −K1f |x| −K2hx
2 +K3, (3.8)

where

K1 =
B

B + C
=

A f
2

A f
2 + (1 −A)

√
h
π

K2 =
C

B + C
=

(1 −A)
√

h
π

A f
2 + (1 −A)

√
h
π

K3 = log[B + C] = log

[
A
f

2
+ (1 −A)

√
h

π

]
. (3.9)

The complete approximation to the mixture model is then found by combining this

center approximation with the tail approximation made by the Laplace component. The
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point of intersection between the center approximation and the tail approximation occurs

at

ρ(θ) =
1

2K2h

(
−f(K1 − 1) +

√
f2(K1 − 1)2 − 4K2h(log(A

f

2
) −K3)

)

=
f

2h
+

√√√√√ f2

4h2
−
A f

2 + (1 −A)
√

h
π

(1 −A)h
√

h
π

log

⎛
⎝ A f

2

A f
2 + (1 −A)

√
h
π

⎞
⎠. (3.10)

Note that the approximation l̂(x; θ) is not differentiable at the point x = ρ(θ).

This does not affect the usage of the approximation in practical settings, as ρ(θ) does not

generally occur at a discrete value, and the probability of a pixel difference being exactly

equal to a continuous valued function is zero. In a practical implementation setting, the

derivative of the approximation at the discontinuity can be arbitrarily defined as equal to

the limit of the derivative as x→ ρ(θ)+.

A plot of the mixture model for the average parameter values at the finest scale,

and its approximation are shown in Figure 3.1.

3.1.1 Single Scale

The final approximation to the log-likelihood function at a single scale can then be

expressed in terms of the log-density approximation. The approximation to the log of the

L-G mixture density function can be written as follows

l̂(x; θ) =

⎧⎪⎪⎨
⎪⎪⎩

−K1f |x| −K2hx
2 +K3 if |x| ≤ ρ(θ),

−f |x| + log
(
A f

2

)
otherwise,

(3.11)

where K1, K2, and K3 are given by Equation 3.9.
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The complete log-likelihood function is then found as the summation of the approx-

imation to the log density function given in Equation 3.11 across pixel difference samples.

The pixel difference samples (x1, · · · , xn) can be divided into two subsets (xt, xc), where xc

contains all samples with a value less then ρ(θ), and xt contains all samples with a value

greater then or equal to ρ(θ). The vector xt contains the nt pixel difference samples that

fall in the tail region of the density approximation, and the vector xc contains the nc pixel

difference samples that fall in the center region, with nt + nc = n. The approximation to

the log-likelihood function can then be written as follows

L(x; θ) ≈ −K1f‖xc‖1 −K2h‖xc‖2
2 + ncK3 − f‖xt‖1 + nt log

(
A
f

2

)
(3.12)

Note that K1 +K2 = 1, and these terms reflect the relative weights of the L1 and

L2 terms in the center approximation region.

3.1.2 Multiscale

This single scale log-likelihood approximation is easily extended to a multiscale

form by utilizing the parameter scale behavior observed in Section 2.3. Note that K1, K2,

K3, f , h, and ρ are functions of the parameters A, s, and σ2 of the mixture model. The

behavior of these mixture model parameters take the simple parametric forms discussed in

Section 2.3. Following the notation of Chapter 2, X(l,m) is the vector form of image X

shifted horizontally by l pixels and vertically by m pixels and subtracted from the unshifted

X.The approximation to the L-G mixture log-density function can then be written as follows
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l̂(x(l,m); θ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−K1(l,m)f(l,m)|x(l,m)| −K2(l,m)h(l,m)x2
(l,m)

+K3(l,m) if |x(l,m)| <= ρ(θ)(l,m),

−f(l,m)|x(l,m)| + log
(
A(l,m)f(l,m)

2

)
otherwise,

(3.13)

with x(l,m) a pixel difference sample from X(l,m).

Each vector X(l,m) contains n samples, (x(l,m)1 , · · · , x(l,m)n
). With each X(l,m)

divided into two subsets (x(l,m)t
, x(l,m)c

) as above, where x(l,m)c
contains all samples with

values less than ρ(θ)(l,m), and x(l,m)t
contains all samples with values greater than or equal

to ρ. At the scale dictated by l and m, the vector x(l,m)t
contains the n(l,m)t

pixel dif-

ference samples that fall in the tail region of the density approximation, and the vector

x(l,m)c
contains the n(l,m)c

pixel difference samples that fall in the center region, with

n(l,m)t
+ n(l,m)c

= n. The log-likelihood function for pixel differences up to P pixels apart

in the horizontal and vertical direction can then be written as

L(x; θ) ≈
P∑

l=−P

P∑
m=−P

|l|+|m|>0

−K1(l,m)f(l,m)‖x(l,m)c
‖1 −K2(l,m)h(l,m)‖x(l,m)c

‖2
2

+n(l,m)c
K3(l,m) − f(l,m)‖x(l,m)t

‖1 + n(l,m)t
log

(
A(l,m)

f(l,m)
2

)

(3.14)

The total weights given to the L1 and L2 terms of the center approximation across

scale (−K1(l,m)f(l,m) and −K2(l,m)h(l,m) respectively), for the observed average para-

meter values, are shown in Figure 3.2. The L2 coefficients have significantly larger mag-

nitudes then the L1 coefficients, reflecting the influence of the Gaussian component of the

L-G mixture model near the origin.
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3.2 Approximation Error

When approximating the log of the L-G mixture model density function, some

error is introduced. In this section, we discuss the approximation error and its properties.

We will divide the approximation into its center and tail components, as in Equation 3.3,

and study the properties of each separately. Note that the log-density function, the tail

approximation, and the center approximation are all even symmetric.

As discussed above, the tail region of the log density function is approximated by

the Laplacian component of the mixture model, and is given by Equation 3.4. We will show

that the tail approximation is bounded by the log-density function, and that the log-density

function converges to the tail approximation for large |x|. We will then use these properties

to derive an expression for the maximum error of the tail approximation.

First, we will show that the tail approximation, l̂t(x; θ), is bounded by the log-

density function log pMM (x; θ) for all x,

log pMM (x; θ) > l̂t(x; θ)

log

(
A
f

2
exp(−f |x|) + (1 −A)

√
h

π
exp(−hx2)

)
> log(A

f

2
exp(−f |x|), (3.15)

where we have substituted Equations 3.1 and 3.4 for their respective terms on both sides of

the inequality. Note that the arguments of the logarithms on both sides of the inequality

of Equation 3.15 are strictly positive for all x. Using the fact that log y is a monotonically

increasing function for y > 0, we can reduce the inequality of Equation 3.15 to an inequality

of the arguments of the logarithms,
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A
f

2
exp(−f |x|) + (1 −A)

√
h

π
exp(−hx2) > A

f

2
exp(−f |x|)

exp(−hx2) > 0, (3.16)

thus proving that l̂t(x; θ), is bounded by log pMM(x;θ) for all x.

Next, we show that the log-density function converges asymptotically to the tail

approximation for large |x|. The convergence of the log-density function to the tail approx-

imation is shown by taking the limit as |x| approaches infinity of the difference of the two

functions,

lim
|x|→∞

log pMM (x; θ) − l̂t(x; θ) = lim
|x|→∞

log

(
A
f

2
exp(−f |x|) + (1 −A)

√
h

π
exp(−hx2)

)

− log
(
A
f

2
exp(−f |x|)

)

= lim
|x|→∞

log

⎛
⎝A f

2 exp(−f |x|) + (1 −A)
√

h
π exp(−hx2)

A f
2 exp(−f |x|)

⎞
⎠ ,

(3.17)

where Equations 3.1 and 3.4 have again been substituted for their respective terms in the

numerator and denominator.

The argument of the logarithm of Equation 3.17 can be shown to converge to 1 as

|x| approaches infinity by multiplying numerator and denominator by exp(f |x|),

lim
|x|→∞

A f
2 exp(−f |x|) + (1 −A)

√
h
π exp(−hx2)

A f
2 exp(−f |x|) = lim

|x|→∞

A f
2 + (1 −A)

√
h
π exp(f |x| − hx2)

A f
2

=
A f

2

A f
2

= 1. (3.18)
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Thus, the limit of Equation 3.17 approaches 0, proving that the tail approximation

converges to the log density function for large |x|.

Convergence in slope is shown in the following. The tail approximation is linear

for x �= 0, with its derivative taking the value

d

dx
l̂t(x; θ) = −fsign(x). (3.19)

The first derivative of the log of the L-G mixture density is given by

d

dx
log pMM (x; θ) =

1
pMM (x; θ)

(
d

dx
pMM (x; θ)

)

= −
A f2

2 sign(x) exp(−f |x|) + 2hx(1 −A)
√

h
π exp(−hx2)

A f
2 exp(−f |x|) + (1 −A)

√
h
π exp(−hx2)

(3.20)

Observe that the derivative is strictly positive for all x < 0, and strictly negative

for all x > 0. For sufficiently large values of x, the derivative of the log-density approaches

the derivative of the tail approximation as seen by taking the limit of Equation 3.20 as |x|

goes to infinity.

lim
|x|→∞

d

dx
log pMM (x; θ) = lim

|x|→∞
−
A f2

2 sign(x) exp(−f |x|) + 2hx(1 −A)
√

h
π exp(−hx2)

A f
2 exp(−f |x|) + (1 −A)

√
h
π exp(−hx2)

→ −fsign(x). (3.21)

Equation 3.21 is equal to Equation 3.19, showing that the log density function

converges in slope to the tail approximation for large |x|.

With the fact that the tail approximation is bounded by the log-density function

in mind, an expression for the absolute approximation error of l̂t(x; θ) is given as follows,

38



εt(x; θ) = l̂t(x; θ) − log pMM (x; θ)

= log

(
A
f

2
exp(−f |x|) + (1 −A)

√
h

π
exp(−hx2)

)
− logA

f

2
+ f |x|. (3.22)

We have already shown that the tail approximation converges to the log density

function for large |x|, indicating that the absolute error εt(x; θ) approaches 0 for large |x|.

The error begins to increase as |x| decreases from infinity (observe that εt(x; θ) takes on

positive values for x <∞). The point at which the maximum error of the tail approximation

occurs can be found by equating the first derivative of εt(x; θ) to zero. The first derivative

of the absolute error of the tail approximation of Equation 3.22 is given by

d

dx
εt(x; θ) =

d

dx
log

(
A
f

2
exp(−f |x|) + (1 −A)

√
h

π
exp(−hx2)

)
− logA

f

2
+ f |x|

= fsign(x) −
A f2

2 sign(x) exp(−f |x|) + (1 − A)2hx
√

h
π exp(−hx2)

A f
2 exp(−f |x|) + (1 −A)

√
h
π exp(−hx2)

.(3.23)

The root of Equation 3.23 is |x| = f
2h . This is the value of |x| which maximizes the

expression given by Equation 3.22. This maximum absolute error for the tail approximation

can be shown to always occur at |x| ≤ ρ(θ) (shown only for positive x below)

f

2h
≤ f

2h
+

√√√√√ f2

4h2
−
A f

2 + (1 −A)
√

h
π

(1 −A)h
√

h
π

log

⎛
⎝ A f

2

A f
2 + (1 −A)

√
h
π

⎞
⎠

0 ≤

√√√√√ f2

4h2
−
A f

2 + (1 −A)
√

h
π

(1 −A)h
√

h
π

log

⎛
⎝ A f

2

A f
2 + (1 −A)

√
h
π

⎞
⎠, (3.24)

where ρ(θ) is given by Equation 3.10.

Recall the fact that the complete approximation to the log density function con-

sists of the tail approximation, l̂t(x; θ), only for |x| > ρ(θ) (see Equation 3.3). Equation
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3.24 shows that the maximum error of the complete approximation, l̂(x; θ), due to the tail

approximation component ,l̂t(x; θ), will occur at |x| = ρ(θ).

The error can be seen to be derived from the influence of the Gaussian component

of the mixture model, as its amplitude begins to increase near the origin. A plot of εt(x; θ)

for the average parameter values at the finest scale (taken from Table 2.3) is shown in Figure

3.3.

The second part of the approximation of Equation 3.3 is the center approximation,

pc(x; θ). In a similar manner, we will show that the center approximation is bounded by the

log-density function, and then show that the approximation error increases as |x| increases.

The approximation to the center of the log-density function, and its first two

derivatives are given by

l̂c(x; θ) = −K1f |x| −K2hx
2 +K3 (3.25)

d

dx
l̂c(x; θ) = −K1fsign(x) − 2K2hx (3.26)

d2

dx2
l̂c(x; θ) = −2K2h. (3.27)

It is apparent that p̂c(x; θ) is a convex function, with the second derivative being

negative and constant for all x.

Next, we show that the center approximation is bounded by the log-density func-

tion, with increasing error as x increases. First, note that the approximation, l̂c(x; θ) is

equal to the log-density function at x = 0. Also, the limit of the first derivative of l̂c(x; θ)

as x approaches 0+ is equal to the same limit taken for the log-density function, shown as

follows
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lim
x→0+

d

dx
l̂c(x; θ) = −K1f (3.28)

lim
x→0+

d

dx
log pMM (x; θ) =

−A f2

2

A f
2 + (1 −A)

√
h
π

= −K1f (3.29)

The second derivatives of l̂c(x; θ) and log pMM (x; θ) as x approaches 0+ are given by

lim
x→0+

d2

dx2
l̂c(x; θ) = −2K2h (3.30)

lim
x→0+

d2

dx2
log pMM (x; θ) = −2K2h+ f2K1 +

2
A
K2

1 (3.31)

The second derivative of the log-density function can be seen to be greater than

the second derivative of the approximation in the limit as x approaches 0+. This fact, taken

in conjunction with the equality in the functions at x = 0 and their first derivatives in the

limit, show that the approximation is bounded by the log-density function near the origin.

As x increases, we can show that the first derivative of l̂c(x; θ) is less than the first derivative

of log pMM (x; θ) for all x > 0,

d

dx
l̂c(x; θ) <

d

dx
log pMM (x; θ)

−
A f2

2 sign(x) + 2x(1 −A)
√

h
π

A f
2 + (1 −A)

√
h
π

< −
A f2

2 sign(x) + 2x(1 −A)
√

h
π

A f
2 exp(−f |x|) + (1 −A)

√
h
π exp(−hx2)

1

A f
2 + (1 −A)

√
h
π

<
1

A f
2 exp(−f |x|) + (1 −A)

√
h
π exp(−hx2)

A
f

2
exp(−f |x|) + (1 −A)

√
h

π
exp(−hx2) < A

f

2
+ (1 −A)

√
h

π
∀x > 0, (3.32)

where we have substituted the expressions from Equation 3.20 and 3.26 for their respective

terms.
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It follows directly that the center approximation error is strictly increasing for |x|

increasing, and in terms of the complete approximation, l̂(x; θ), the maximum error will

occur at x = ρ(θ). The error is on the order of x2 due to the neglected terms of the

Maclaurin series expansion of Equation 3.7. An expression for the absolute error of the

center approximation is given as follows

εc(x; θ) = log pMM (x; θ) +K1f |x| +K2hx2 −K3. (3.33)

A plot of εc(x; θ) for the average parameter values at the finest scale (taken from

Table 2.3) is shown in Figure 3.3.

It was shown above that the error is increasing for the tail approximation as |x|

decreases with a maximum value at |x| < ρ(θ), and is increasing for the center approximation

as |x| increases. Therefore, the maximum error of the complete log-density approximation,

l̂(x; θ), occurs at the point |x| = ρ(θ), and can be computed from Equation 3.22 or 3.33.

The maximum approximation error, expressed as a percent error is given by

εmax = 100 · εt(ρ(θ); θ)
log pMM (ρ(θ); θ)

(3.34)

The integral absolute error of the approximation may also be expressed as a percent

error, and is given by

εtot = 100 ·
∫ ρ(θ)

0 εc(x; θ)dx +
∫ 1

ρ(θ) εt(x; θ)dx∫ 1

0 | log pMM (x; θ)|dx
, (3.35)

where we have used the fact that both the approximation error and the log density function

are symmetric about the origin.

The maximum approximation error (occurring at x = ρ(θ)) and the integral ab-

solute error for the average parameter values of Table 2.3 are shown in Table 3.1. We see
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l=0 l=1 l=2 l=3
m=0 εmax = 19.34% εmax = 34.85% εmax = 41.56%

εtot = 0.062% εtot = 0.137% εtot = 0.170%
m=1 εmax = 22.84% εmax = 29.85% εmax = 38.03% εmax = 46.28%

εtot = 0.077% εtot = 0.044% εtot = 0.157% εtot = 0.184%
m=2 εmax = 39.64% εmax = 41.57% εmax = 44.47% εmax = 55.15%

εtot = 0.163% εtot = 0.171% εtot = 0.187% εtot = 0.209%
m=3 εmax = 50.60% εmax = 61.73% εmax = 62.37% εmax = 76.16%

εtot = 0.194% εtot = 0.209% εtot = 0.219% εtot = 0.235%

Table 3.1: Percent error measures for the L-G mixture log-density approximation

increasing error as the scale increases (increasing l,m). As the scale increases, the value of

ρ(θ) increases, indicating that the center approximation is used in the complete approxima-

tion for larger values of |x|. We have observed that the center approximation error is on the

order of x2, explaining the increasing percent error measures.
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Figure 3.1: Log of L-G mixture density function, log pMM (x;θ), and approximation.
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Chapter 4

Image Denoising

Many image processing tasks utilize statistical assumptions about pixel differences

between neighboring pixels in an image. This chapter focuses on image denoising, in which

several standard methods can be derived from assumptions that pixel differences can be

described by the distributions presented in Chapter 2.

Many different approaches to image denoising have been taken, with the major

division being the domain in which the denoising is implemented. Wavelet domain denoising

methods have been studied extensively, and a sampling of this work can be found in [9, 20,

21, 22, 23, 24]. More relevant to the work in this thesis, direct pixel domain methods have

also been studied extensively in works such as [11, 25, 26, 27, 28].

The prior developed in Chapter 3 is adapted to fit into a pixel domain denoising

framework. Several denoising experiments are performed, and the results of denoising with

the proposed prior are compared to the methods based on different distributional assump-

tions.
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4.1 Denoising Framework

Recalling the notation of Chapter 2, pixel differences for a given image, X, can be

represented by the vector, X(l,m). The image X is shifted by l and m pixels in horizontal

and vertical directions respectively, and subtracted from the unshifted image, with the result

column-stacked into a vector as in Equation 2.1.

Image denoising is often posed in the framework of cost function minimization with

regularization. If Y is the noise-corrupted version of the original image, X , the denoised

estimate is given as follows,

X̂ = argmin
X

[‖Y −X‖2
2 + λΥ(X)

]
, (4.1)

where Υ(X) is the regularization term, and λ > 0 is the regularization weight. The

regularization term is a means of incorporating prior information about the original image

into the estimate. Many commonly used regularization terms can be derived from different

statistical assumptions about the pixel differences in an image.

The regularization terms implemented in this chapter utilize a pairwise interaction

Markov random field assumption [26, 27]. Under this assumption, the regularization term

penalizes the cost function at each pixel location according to pairwise differences between

pixels deemed to be neighbors. Taking the neighborhood to include only nearest neighbor

pixel differences results in single scale methods, while larger neighborhood sizes result in

multiscale methods.

In the following, we present several well-known regularization methods that rely

on statistical assumptions about pixel differences. Two which rely only on nearest neighbor

pixel differences are Tikhonov regularization, and Total Variation (TV) regularization. A
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method which attempts to incorporate pixel differences from more distant neighbors is

Bilateral-Total Variation (B-TV). Finally we present two regularization terms based on the

prior developed in Chapter 3, one that operates on nearest neighbor pixel differences, and

one that operates on more distant neighbors as well.

4.1.1 Tikhonov Regularization

One frequently referenced regularization term is the Tikhonov cost function. The

Tikhonov cost function can be defined as follows, where Γ is some operator, usually highpass.

ΥT (X) = ‖ΓX‖2
2 (4.2)

If Γ is chosen to be the gradient operator, the Tikhonov cost function becomes

ΥT (X) = ‖∇X‖2
2. (4.3)

The gradient can be approximated by taking neighboring pixel differences, giving

the following

ΥT (X) = ‖X(0,1)‖2
2 + ‖X(1,0)‖2

2. (4.4)

The regularization term of Equation 4.4 can be related to a Gaussian assumption

on pixel differences. If a constant term is added to the regularization term of Equation 4.1,

the argument of the maximization is not affected. The regularization term of Equation 4.4,

with regularization weight λ, can be rewritten as

λΥT (X) = λ(‖X(0,1)‖2
2 + ‖X(1,0)‖2

2) + logC,

48



where C is a constant.

If Equation 4.5 is exponentiated, it can then be equated to a joint density of an

independent, identically distributed (IID) random variable x, with each sample (x1, · · · , xn)

drawn from a zero-mean Gaussian distribution.

exp(λΥT ) = C exp
(
λ(‖X(0,1)‖2

2 + ‖X(1,0)‖2
2)
)

= C exp(λ‖x‖2
2)

=
n∏

i=1

pG(xi;σ2), (4.5)

where the above equation implies C = (2πσ2)−n/2 and σ2 = −1/2λ. The density

function pG(xi;σ2) is a zero-mean Gaussian density, with variance σ2, given by Equation

2.8. Note that all elements of X(0,1) and X(1,0) are assumed to be samples of the random

variable x. The Tikhonov regularization term of Equation 4.4 can then be seen to be the

log of the joint density of the samples of x.

4.1.2 Total Variation Regularization

Another well recognized method utilizes the Total Variation (TV) regularization

term [11]. TV can be approximated by the computationally efficient regularization term

[29]

ΥTV (X) = ‖∇X‖1, (4.6)

where ∇ is the gradient operator. If the gradient is again defined in terms of pixel differences,

ΥTV (X) = ‖X(0,1)‖1 + ‖X(1,0)‖1. (4.7)
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In a similar fashion this regularization term can be related to an assumption of a

Laplace distribution on the pixel differences. Equation 4.7 multiplied by the regularization

weight, λ, and exponentiated, can then be equated to a joint density of an IID random

variable x, with each sample drawn from a zero-mean Laplacian distribution.

exp(λΥTV ) = C exp
(
λ(‖X(0,1)‖1 + ‖X(1,0)‖1)

)

= C exp(λ‖x‖1)

=
n∏

i=1

pL(xi; s), (4.8)

where C is again a constant term that does not affect the argument of the maxi-

mization of the cost function of Equation 4.1. The above Equation implies C = 2s−n and

s = −1/λ. The density function pL(x; s) is a zero-mean Laplacian density, with scale para-

meter s, given by Equation 2.2. All elements of X(0,1) and X(1,0) are again assumed to be

samples of the random variable x. The TV regularization term of Equation 4.7 can then be

seen to be the log of the joint density of the samples of x.

4.1.3 Bilateral Total Variation Regularization

The total variation criterion has been extended to a regularizer called Bilateral-

TV [13]. This regularizer combines ideas from total variation and bilateral filtering [28, 30].

This regularization term takes the form

ΥBTV (X) =
P∑

l=−P

P∑
m=−P

α|l|+|m|‖X(l,m)‖1 (4.9)

with α being a scalar weight, 0 < α < 1.

This regularization term can be derived from the same Laplace assumption made
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for the TV regularizer with one change. Namely, the α|l|+|m| term is introduced to model

parameter changes of the Laplace distribution across scale.

exp(λΥBTV ) = C exp

(
P∑

l=−P

P∑
m=−P

λα|l|+|m|‖X(l,m)‖1

)

= C

P∏
l=−P

P∏
m=−P

exp(λα(l,m)‖x(l,m)‖1)

=
P∏

l=−P

P∏
m=−P

n∏
i=1

pL(x(l,m)i
; s(l,m)), (4.10)

where the n samples of X(l,m), (x(l,m)1 , · · · , x(l,m)n
), are drawn from the random

variable x(l,m). The density function pL(xi; s(l,m)) is a zero-mean Laplacian density, with

parameter s a function of l and m. The above Equation implies C =
P∏

l=−P

P∏
m=−P

(2s(l,m))−n

and s(l,m) = −1/λα(|l|+|m|). The introduction of the α(|l|+|m|) term has the effect of

assuming the shape of the decay of the s parameter of the Laplace distribution as scale

increases (|l| + |m| increasing). The B-TV regularization term of Equation 4.9 can then be

seen to be the log of the joint density of the samples of x(l,m) for |l| + |m| ≤ 2P .

4.1.4 Mixture Model Regularization

The statistical study of the behavior of pixel differences discussed in Chapter 2

suggests a different regularization term. The proposed mixture model offers a better fit to

real image data, and should therefore offer better denoising performance. The L-G mixture

model of Equation 3.1 offers a means to derive a computationally efficient regularization

term. The regularizer we are looking for should maximize the log-likelihood function for the

Laplace-Gauss (L-G) mixture model of Equation 3.1. An approximation to the log-likelihood

function was developed in Chapter 3, and presents a means to implement a computationally

efficient form of the L-G mixture model assumption.
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The approximation to the log-likelihood function for a single derivative scale then

takes the form of Equation 3.12. The constant terms that do not affect the cost func-

tion maximization can be removed. The vector X(l,m) can be divided into two subsets

(x(l,m)t
, x(l,m)c

), where x(l,m)c
contains all samples with a value less than ρ(θ) (given by

Equation 3.10), and x(l,m)t
contains all samples with a value greater than or equal to ρ(θ).

The L-G mixture model regularizer for a single scale is then given by

ΥMMsingle
(X) = K1f(‖x(1,0)c

‖1 + ‖x(0,1)c
‖1) +K2h(‖x(1,0)c

‖2
2 + ‖x(0,1)c

‖2
2)

+f(‖x(1,0)t
‖1 + ‖x(0,1)t

‖1), (4.11)

where K1 and K2 are given by Equation 3.9, f = 1/s, and h = 1/(2σ2). Note that

K1 +K2 = 1, and these terms reflect the relative weights of the L1 and L2 terms.

This single scale mixture model regularizer is easily extended to a multiscale form

by utilizing the parameter scale behavior discussed in Chapter 2. Note that K1 and K2 are

functions of A, s, and σ2 of the mixture model, and the behavior of these mixture model

parameters take simple parametric forms. The multiscale mixture model regularizer can

then be written in the following form

ΥMMmulti
(X) =

P∑
l=−P

P∑
m=−P

K1(l,m)f(l,m)‖x(l,m)c
‖1 +K2(l,m)h(l,m)‖x(l,m)c

‖2
2

+f(l,m)‖x(l,m)t
‖1, (4.12)

recalling that ρ is also a function of (l,m).

The regularization terms of equations 4.11 and 4.12 represent global cost functions,

where the specific weights are chosen spatially by the values of the pixel differences at

each location. If the pixel difference value is above the threshold (i.e. edge region) its
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regularization is weighted by the L1 norm, and if below (i.e. smooth region) its regularization

is weighted by the mixture of L1 and L2 terms.

The mixture of L1 and L2 terms makes intuitive sense. L1 regularization alone

tends to lead to piecewise constant images, and L2 regularization alone leads to excessively

blurry images. The mixture of L1 and L2 can reasonably be expected to perform better,

with a correct choice of the mixture. The statistical analysis of Chapter 2 is the mechanism

for making a reasonable choice of how to form the mixture.

We also note that the other regularization methods presented closely correspond to

specific parameter choices of the multiscale L-G mixture regularization term. If the neigh-

borhood size, P , is set to one, the mixing parameter A set to zero, and appropriate shape

parameters chosen to ensure only nearest neighbor pixel differences (not diagonal neighbors),

the Tikhonov regularization of Equation 4.4 is achieved. This is seen most simply from the

distribution from which the L-G mixture regularization is derived. Equation 3.1 simply be-

comes a Gaussian distribution when A = 0, which corresponds to the underlying assumption

for Tikhonov regularization. In a similar fashion, with A = 1, and a neighborhood size of

P = 1, a correspondence can be drawn to TV regularization. Likewise, with A = 1, a larger

neighborhood size, and appropriate shape parameters, a close match to B-TV can be found.

The match to B-TV is inexact due to the different shape of parameter decay with scale that

is assumed for the two methods, but can be very close for small neighborhood sizes.

4.2 Denoising Experiments

Five methods were implemented using the regularization terms discussed above:

Tikhonov, TV, Bilateral-TV, single scale LG-Mix, and multiscale LG-Mix. Each regulariza-

tion term was used in the denoising framework presented in equation 4.1. This minimization
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was carried out by means of iterative steepest descent.

X̂
(n+1)

= X̂
(n) − β

{
2(X̂

(n) − Y ) + λ
∂

∂X

∣∣∣∣
X̂

(n)
Υ(X)

}
(4.13)

Recalling the notation of Equation 2.1, where Sl
x and Sm

y are matrices that shift

image X by l and m pixels in horizontal and vertical directions respectively, the derivatives

of the first three regularization terms can be written as follows

∂

∂X

∣∣∣∣
X̂

(n)
ΥT = 2(I − S−1

x )(X̂
(n) − S1

xX̂
(n)

) + 2(I − S−1
y )(X̂

(n) − S1
yX̂

(n)
) (4.14)

∂

∂X

∣∣∣∣
X̂

(n)
ΥTV = (I − S−1

x )sign(X̂
(n) − S1

xX̂
(n)

) + (I − S−1
y )sign(X̂

(n) − S1
yX̂

(n)
)

(4.15)

∂

∂X

∣∣∣∣
X̂

(n)
ΥBTV =

P∑
l=−P

P∑
m=−P

α|l|+|m|(I − S−m
y S−l

x )sign(X̂
(n) − Sl

xS
m
y X̂

(n)
). (4.16)

The first derivative of the multiscale L-G mixture regularization term takes the

following form

∂

∂X

∣∣∣∣
X̂

(n)
ΥMMmulti

=
P∑

l=−P

P∑
m=−P

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(I − S−m
y S−l

x )(K1(l,m, )f(l,m)sign(X̂
(n)− Sl

xS
m
y X̂

(n)
)

+2K2(l,m)h(l,m)(X̂
(n) − Sl

xS
m
y X̂

(n)
))

if |X̂(n)
(i)| ≤ ρ,

f(l,m)(I − S−m
y S−l

x )sign(X̂
(n) − Sl

xS
m
y X̂

(n)
)

otherwise,

(4.17)

where X̂
(n)

(i) denotes the ith element of the vector X̂
(n)

.

The first derivative of the single scale L-G mixture regularization term takes the

same form as Equation 4.17, with (l,m) of the summation only equal to (1, 0) and (0, 1).

We first perform denoising experiments on a simple simulation image. The im-
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age shown in Figure 4.1a was corrupted by additive white Gaussian noise (AWGN) with

standard deviation σ = 10, with the noisy image shown in Figure 4.1b. The noisy ver-

sion was then denoised using the different regularization terms to illustrate their effects 1.

Note the gradation of the background of the test image. The denoising results are shown

in Figure 4.2. Tikhonov regularization can be seen to blur the image excessively, thus re-

moving edges. TV and B-TV regularization retain edges, but remove the gradation of the

background. Both single scale and multiscale L-G mixture regularization retain the sharp

edges in the image as well as recover the gradation of the background. The advantage of

the multiscale methods can be seen by observing the pixel in the center of each letter. The

light background pixels are surrounded by dark foreground pixels, and are incorporated into

the foreground by the single scale methods, with the effect most noticeable in the images

denoised by TV and Tikhnonov regularization. However, both multiscale 2 methods are

able to retain edges and correctly interpret the two light pixels surrounded by dark. This

example serves to illustrate the conceptual advantages of the L-G mixture regularization

terms. The mixture of L1 and L2 terms allows the L-G mixture regularization to both

recover edges and remove noise from the smooth regions simultaneously.

Further experiments are performed next, in which we investigate the various reg-

ularization terms’ relative abilities to reconstruct an image from a noise corrupted version

of the image. Two major criteria can be employed to evaluate these abilities: quantitative

and qualitative. Quantitative measures such as PSNR give an indication of signal recovery

ability, but are not necessarily good indicators of visual quality.

We first perform a quantitative experiment, in which we denoise an image when

the ground truth, or original image, is known. The Barbara image, shown in Figure 4.3
1Parameters were chosen to visually give the best denoising performance
2Neighborhood size, P , equals 2 for all experiments
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is corrupted by additive white Gaussian noise (AWGN) with the noise standard deviation,

σ ranging from 5 to 15. The parameters of each regularization method are optimized to

give the maximum PSNR, taking a fixed number of iterations and step size. In the case of

Tikhonov and TV regularization, the only parameter to optimize is the regularization weight

, λ, of Equation 4.1. B-TV regularization has the additional scale term, α. The single scale

L-G mixture regularization has the terms, s, σ2, and A as well as the regularization weight,

λ. The multiscale L-G mixture regularization has the same terms of the single scale version,

along with the shape parameters, γ (2.9), ζ (2.12), and η (2.13). Monte Carlo simulations

were performed, with 30 realizations at each noise level. The results of these experiments are

shown in Table 4.1. The L-G mixture model regularization method resulted in the highest

PSNR for every noise level tested. The multiscale methods (B-TV and multiscale L-G

mixture) offer only a slight improvement in PSNR over their single scale counterparts (TV

and single scale L-G mixture). It is not surprising that the L-G mixture regularization gives

the best PSNR due to the fact that the other denoising methods correspond to particular

parameter choices of the mixture model, as discussed in Section 4.1.4. The denoised images

from one realization of this experiment with WGN of standard deviation σ = 10 are shown

in Figure 4.5, and an enlarged region in Figure 4.6. It is apparent from these figures that

even though the PSNR is only marginally higher for the multiscale L-G mixture regularizer,

the visual quality has changed. The forehead region of the image has been returned more

closely to the original texture by the multiscale L-G mixture regularization than by any of

the other methods.

As discussed above, B-TV and the L-G mixture regularization terms have several

parameters that must be adjusted to give the results shown in Table 4.1. It is not practical

in most frameworks to allow this many degrees of freedom, as the complexity of any opti-

56



a b

Figure 4.1: Simulated image used for denoising a: Original, b:Noisy(σ = 10)

σ = 5 σ = 10 σ = 15
Tikhonov 34.6079 29.7668 27.4194
TV 35.8449 31.0770 28.5476
B-TV 35.8519 31.0839 28.5532
L-G Mixture (multiscale) 36.0275 31.2714 28.6684
L-G Mixture (single scale) 36.0248 31.2206 28.6522

Table 4.1: Average PSNR from denoising experiment on Barbara image using 30 Monte
Carlo runs.
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a b

c d

e

Figure 4.2: Simulation results using different regularization terms.
a:Tikhonov(MSE=566.1023), b:TV(MSE=89.1713), c:Bilateral-TV(MSE=63.6256),
d:Multiscale L-G mixture(MSE=15.9847), e:Single scale L-G mixture(MSE=25.5127)
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σ = 5 σ = 10 σ = 15
B-TV (α = 0.7) 35.6678 30.8989 28.3260
Single Scale L-G Mixture (avg. dist. parameters) 36.0043 31.2022 28.6036
Multiscale L-G Mixture (avg. shape and dist. params) 35.7990 31.1230 28.5222
Multiscale L-G Mixture (avg. shape parameters) 36.0168 31.1842 28.5319

Table 4.2: Average PSNR from denoising experiment on Barbara image using 30 Monte
Carlo runs, with degrees of freedom removed.

mization process increases significantly. To take this fact into account we also performed the

same denoising experiment as above with several degrees of freedom removed. For B-TV

regularization we fix the scale term α to a standard value of 0.7, and the neighborhood

size to P = 2, and allow only the regularization weight λ to vary. For the single scale L-G

mixture regularization, we fix the distribution parameters s, σ2, and A to the average values

presented in Table 2.3, and allow only the regularization weight to vary. In a similar fashion

we perform the denoising experiments with the shape parameters of the multiscale L-G mix-

ture regularization fixed, allowing the distribution parameters and regularization weight to

vary, and then finally for the case where all parameters except for the regularization weight

are fixed to average values. The results of these experiments are shown in Table 4.2. The

multiscale methods can be seen to be quite sensitive to the shape parameters. In fact, TV

regularization, is capable of giving a higher PSNR than all of the multiscale methods when

fine tuning of the spatial parameter decay is not allowed. However, the single scale L-G

mixture method performs quite well even with an average parameter set, outperforming all

methods with full flexibility, except for the multiscale L-G mixture method.

As apparent from Figure 4.5, maximizing PSNR does not necessarily correspond

to the best visual quality. The added Gaussian noise is still visible in the denoised images.

A second experiment was performed, in which no knowledge of the original image was

required. A corrupted image was denoised using each of the regularization terms presented
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above. Only one degree of freedom was allowed, the regularization weight λ, with all other

parameter values fixed to the average values. For each image and method, the regularization

weight was gradually increased, until noise was no longer visible. In order to give a clear view

of the effects of each regularization method, the residuals are examined. The residuals are

obtained by subtracting the denoised image from the noisy version and taking the absolute

value. The residuals from a perfect denoising method would consist solely of the noise that

was added to the original image. The appearance of image structure and content in the

residuals imply that some of the image was removed in the denoising process. If the residual

values in smooth regions are larger than the added noise in those smooth regions, image

texture has been removed.

The experiment described above was performed on the Barbara image (shown in

Figure 4.3) corrupted by AWGN noise with σ = 10. We are now denoising the same image

as in the first experiment, with a qualitative criterion determining the regularization levels

used. The denoising results are displayed in Figure 4.7. Optimizing by visual criteria leads

to a similar relationship between quantitative reconstruction error as was shown in the first

experiment. The two L-G mixture regularization terms give the maximum PSNR, with the

single scale version performing better than the average parameter multiscale form. A better

understanding of the effects of the regularization terms is seen if the residuals are examined.

The residuals for the TV, B-TV, and both L-G mixture methods are displayed in Figure

4.8. The residuals are scaled to use the full dynamic range, with each residual using the

same scaling. The noise that was added to the original image is also displayed with the same

scaling to give a reference. The L-G mixture methods residuals resemble the noise more

closely than the two L1 methods, with the single scale L-G mixture residuals resembling

the noise much more closely than the multiscale L-G mixture. Both TV and B-TV have
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significantly darker patterns present in their residuals, indicating that more image content

was removed.

The experiment described above was repeated on the Lena image (shown in Figure

4.4) corrupted by white Gaussian noise with σ = 5. The denoising results are displayed

in Figure 4.9. The two L-G mixture regularization terms again give the maximum PSNR,

with the single scale version performing better than the average parameter multiscale form.

The residuals for the TV, B-TV, and both L-G mixture methods are displayed in Figure

4.10. The residuals are scaled as before to use the full dynamic range, with each residual

using the same scaling. The noise that was added to the original image is also displayed

with the same scaling to give a reference. The L-G mixture methods residuals resemble the

noise more closely than the two L1 methods. More image content is visible in the multiscale

mixture residual, indicating that less noise was removed from the edge regions. Both TV

and B-TV residuals have significantly darker patterns when compared to the reference noise

image, indicating that more image texture was removed along with the noise.

A third experiment was performed in which a color image corrupted by unknown

noise was restored. The JFK image of Figure 4.11 is corrupted by film grain noise and

scanning process noise. The image was decomposed into YCrCb channels, with each de-

noised separately. In a similar manner to the experiment above, the regularization level

was increased until noise was no longer apparent. The results of this denoising can be seen

in Figure 4.11. A detail region is shown in Figure 4.12 to further illustrate the effects

of the different regularization terms. The ”piecewise constant” effect of L1 regularization

can be seen in the overly smooth cheek region, while, the L1/L2 combination of the L−G

mixture regularization retains a more realistic texture. The inverted residuals for several of

the denoising methods can be seen in Figure 4.13. The larger residuals (darker grayscale
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values) of the two L1 methods are apparent. Recalling the methodology of this experiment

(increasing regularization until noise was not visible), the brighter values indicate that more

content of the image was removed along with the noise.

The L-G mixture regularization terms consistently give the best denoising perfor-

mance of the methods tested. This holds for both types of experiments: maximizing PSNR,

and qualitative noise removal. The full flexibility of adjusting all underlying parameters of

the L-G mixture distribution is not required for the regularizer to provide an improvement.
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Figure 4.3: Barbara Image

Figure 4.4: Lena image
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Figure 4.5: Denoising results using different regularization terms. From left to
right and top to bottom: Noisy image, Tikhonov(MSE=68.6237), TV(MSE=50.8512),
B-TV(MSE=50.7703), Multiscale L-G mixture(MSE=49.1996), Single scale L-G
Mixture(MSE=49.2032)
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Figure 4.6: Enlarged region of denoised image. From left to right and top to bottom:
Original image, Tikhonov, TV, B-TV Multiscale L-G mixture, single scale L-G mixture
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Figure 4.7: Denoised Barbara image, AWGN σ = 10. From left to right and top to bot-
tom: Noisy Image, Tikhonov(PSNR-25.0190), TV(PSNR-29.8692), B-TV(PSNR-30.0962) ,
Multiscale L-G mixture(PSNR-30.6981), Single scale L-G mixture(PSNR-30.8475).
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Figure 4.8: Denoising experiment results from Barbara image. From left to right and top
to bottom: TV residual, B-TV residual, Multiscale L-G mixture residual, Single scale L-G
mixture residual, added noise, original image.
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Figure 4.9: Denoised Lena image, AWGN σ = 5. From left to right and top to bot-
tom: Noisy Image, Tikhonov(PSNR-33.2206), TV(PSNR-36.6980), B-TV(PSNR-36.7120) ,
Multiscale L-G mixture(PSNR-37.1114), Single scale L-G mixture(PSNR-37.3630).
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Figure 4.10: Denoising experiment results from Lena image. From left to right and top
to bottom: TV residual, B-TV residual, Multiscale L-G mixture residual, Single scale L-G
mixture residual, added noise, original image.
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Figure 4.11: JFK color denoising experiment. a: Original image, b: Tikhonov regular-
ization, c: TV regularization, d: B-TV regularization, e: single scale L-G regularization, f:
multiscale L-G regularization
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Figure 4.12: Detailed region of JFK color denoising experiment. From top to bottom:
Original image, image denoised with TV regularization, image denoised with multiscale
L-G mixture regularization.
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2 4 6 8 10 12 14

Figure 4.13: Luminance residuals from JFK color denoising experiment. From left to
right and top to bottom: TV regularization, B-TV regularization, single scale L-G mixture
regularization, multiscale L-G mixture regularization.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

The statistics of pixel differences were studied in Chapter 2. Several common

assumptions were studied, and a two component mixture model was proposed, and shown

to provide a better fit on average by means of Chi-squared tests of fit. A prior was developed

from the Laplace-Gauss (L-G) form of the mixture model in Chapter 3. The prior takes the

simple form of a mixture of L1 and L2 terms. This prior was then applied to a denoising

framework in Chapter 4 in a single scale and multiscale form.

In Chapter 4, experiments were performed under two major criteria. First denois-

ing parameters were adjusted to give maximum PSNR when an original image was known.

Second, parameters were adjusted to give the best visual results, with the original image

not necessarily known.

In both cases, where an original image was available, the L-G mixture model prior

was capable of providing the highest PSNR of the methods tested. The visual results of this
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experiment agreed with the quantitative results. Tikhonov regularization caused excessive

blurring, while TV and B-TV regularization preserved edges but removed texture from

smooth regions.

One drawback of parametric regularization methods is the sometimes difficult

process of parameter tuning. These difficulties motivated the experiments for which an

average set of parameter values was used, with the L-G mixture prior average parameters

determined from the statistical analysis of Chapter 2. Fixing average parameter values and

adjusting regularization levels by visual inspection more closely mimics the way in which

parametric regularization terms are frequently used in practice. Under these tests the L-G

mixture regularizer performed better then the other regularization methods, apparent in

the residuals of Figures 4.10 and 4.13.

The L-G mixture regularization provides an attractive option for pixel domain

denoising. As shown above, the mixture prior provides improved performance in terms

of PSNR as well as visual quality. This increase in performance is at the cost of only a

small amount of computation added on to efficient methods. Tikhonov regularization as

implemented in Equation 4.4 consists of a few simple matrix shift and addition operations

for each iteration. TV regularization, as implemented in Equation 4.7 adds only the sign

operation for each shift. The single scale L-G mixture regularization only adds an inequality

and scalar multiplication for each pixel difference value. The multiscale methods require

a more substantial increase in computational cost, with the computations increasing as

a function of neighborhood size P . B-TV takes on the order of P (P + 1) times more

computations than TV, while the multiscale L-G mixture regularizer is a simliar factor

more than the single scale L-G mixture regularizer.

The two different forms of the L-G mixture regularization term would be best ap-
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plied in different settings. In settings where computational cost is a main concern, the single

scale version provides an improvement over TV at minimal cost, even with the parameters

fixed to the average values. If better denoising performance is necessary, the additional

flexibility of adjusting parameters or increasing neighborhood size can easily be applied.

5.2 Future Work

Several interesting extensions of the ideas presented in this thesis can be considered.

The mixture model developed in Chapter 2 and the prior of Chapter 3 are not application

specific, and have been developed to describe pixel differences across a wide variety of images.

The optimal reconstruction parameters for the denoising experiments are not the

same as the parameters that best describe the original image. The optimal parameters also

change as a function of noise variance. The relationship between the model parameters

describing the original image, and those that give optimal denoising performance could

be investigated. The correlation between these parameters and noise levels could also be

studied.

The denoising application presented in Chapter 4 is only one specific use of the

prior. Many implementations of image reconstruction tasks rely on assumptions on pixel

differences for regularization. Tasks such as image deblurring or segmentation could be un-

dertaken with minimal modification to the mixture model prior. Variations on the denoising

theme such as interpolation could also be investigated.

The statistical analysis of Chapter 2 was limited to grayscale photographic images.

We applied the prior to the separate YCrCb channels of a color image in the last experiment

of Chapter 4. However, the analysis was only performed on the luminance channel. A study

of the other color channels could provide some insight into the statistics of color images,
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and provide some benefits to color image processing.

The statistical analysis could also be extended to images from different types of

sensors. For example, medical imaging, infrared sensors, or satellite imaging could be stud-

ied. Application specific priors could be developed based on the statistics of pixel differences

for the different systems.

Another area of interesting theoretical work lies in the cartoon/texture represen-

tations of images [16, 17]. There is clearly a relationship between the mixture model and

these representations. The exact manner in which they are related is not obvious however.

An in depth study of this relationship could prove to be a fruitful area of research.
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Appendix A

Expectation Maximization Algorithm

and Mixture Model Parameter

Estimation

The problem of estimating unknown parameters of mixture density functions has

been studied extensively. One particular iterative method for numerically approximating the

maximum-likelihood (ML) estimates for mixture densities is the Expectation-Maximization

(EM) algorithm. A survey of work relating to the EM algorithm, and mixture density

estimation can be found in [31]. This usage of the EM algorithm is the specialization of the

more general problem of ML estimation for incomplete data sets [32, 18].

The general EM algorithm is formulated by assuming that an observed set of

data, x, is incomplete, and that some missing (or hidden) data, y, is present. The EM

algorithm maximizes the log-likelihood function L(Θ) = log p(x|Θ), where Θ is the vector

that parameterizes the density function p, by utilizing the relationship between p(y|Θ) and
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p(x|Θ). The EM algorithm is an iterative process, where Θ(t) is a vector of parameter

estimates at the t-th iteration of the algorithm. For Θ and Θ(t) the log-likelihood function

can be written as follows

L(Θ) = Q(Θ|Θ(t)) −H(Θ|Θ(t)), (A.1)

whereQ(Θ|Θ(t)) = E(log p(y|Θ)|x,Θ(t)) andH(Θ|Θ(t)) = E(log p(y|x,Θ)|x,Θ(t)).

With a current guess, Θ(t), of the ML parameter estimate, the next approximation, Θ(t+1),

is found by an iteration of the EM algorithm [18]. First, the E-step is performed, in which

Q(Θ|Θ(t)) is determined. Next, the M-step finds Θ(t+1) = argmax
Θ

Q(Θ|Θ(t)). It has been

shown that L(Θ) is monotonically increasing on any iterative sequence of the EM algorithm

[18]. The EM algorithm is guaranteed to converge to a local maximum of the likelihood

function, and in the case of mixture density estimation problems, the solution of the likeli-

hood function is the strongly consistent ML parameter estimate [31]. (Strongly consistent

means converging to the true parameter values as the sample size approaches infinity with

probability equal to 1.)

The relevant problem to this thesis is ML estimation of finite mixture densities. A

mixture density of m components can be defined as follows

p(x|Θ) =
m∑

i=1

αipi(x|θi), (A.2)

where x is a vector of N samples {x1, · · · , xN}, and where the mixing parameters

αi are nonnegative and
∑m

i=1 αi = 1. Each pi is a density function parameterized by θi.

The parameters for the entire mixture, Θ are therefore (αi, · · · , αm, θ1, · · · , θm).

It is apparent that a direct solution for the ML parameter estimates for the mixture

densities of Equation A.2 is not viable. If x is considered to be incomplete and a hidden
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variable y = {y1, · · · , yN} is defined, the mixture density estimation problem can be posed

in the framework of the EM algorithm. Each yi indicates which mixture component gen-

erated the corresponding xi. The variable y therefore takes on the values (1, · · · ,m). The

conditional density p(y|x,Θ(t)) is given by

p(y|x,Θ(t)) =
N∏

k=1

p(yk|x,Θ(t))

=
N∏

k=1

α(t)
yk
pyk

(xk|θ(t)yk
)

p(xk|Θ(t))

=
N∏

k=1

α
(t)
yk pyk

(xk|θ(t)yk )∑m
l=1 α

(t)
l pl(xk|θ(t)l )

(A.3)

The function Q(Θ|Θ(t)) for a finite mixture density is then given by

Q(Θ|Θ(t)) =
m∑

i=1

[
N∑

k=1

α
(t)
i pi(xk|θ(t)i )
p(xk|Θ(t))

]
logαj +

m∑
i=1

N∑
k=1

log pi(xk|θi)
α

(t)
i pi(xk|θ(t)i )
p(xk|Θ(t))

=
m∑

i=1

N∑
k=1

p(yk = i|xk,Θ(t)) logαj +
m∑

i=1

N∑
k=1

log pi(xk|θi)p(yk = i|xk,Θ(t))

(A.4)

All terms of this equation can be solved for, and in general, if closed form ML

parameter estimates exist for each individual component of the mixture distribution, then

a closed form solution will exist for each iteration of the EM algorithm. The two sets of

summations of Equation A.4 can be maximized independently. The estimate for αi is given

by

α̂i =
1
N

N∑
k=1

p(yk = i|xk,Θ(t))

=
1
N

N∑
k=1

α
(t)
i pi(xk|θ(t)i )∑m

l=1 α
(t)
l pl(xk|θ(t)l )

. (A.5)
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The estimates for the other distribution parameters are found by differentiating

Q(Θ|Θ(t)) with respect to each parameter and equating to zero. The derivations for the two

mixture model forms used in this thesis follow directly from Equation A.4. The Laplace-

Gauss mixture model is defined as follows

p(xk|Θ) = α1pL(xk|µL, s) + α2pG(xk|µg, σ
2) (A.6)

= α
1
2s

exp
( |xk − µL|

s

)
+ (1 − α)

1√
2πσ2

exp
(

(xk − µG)2

2σ2

)
(A.7)

where Θ = (α, µL, s, µG, σ
2) and where α = α1 and where α2 = 1 − α. The Q function of

Equation A.4 can be written in terms of this specific mixture distribution.

Q(Θ|Θ(t)) =
2∑

i=1

N∑
k=1

p(yk = i|xk,Θ(t)) logαj

+
N∑

k=1

(
− log(2s) − |xk − µL|

s

)
p(yk = i|xk,Θ(t))

+
N∑

k=1

(
−1

2
log(2πσ2) − (xi − µG)2

2σ2

)
p(yk = i|xk,Θ(t)),

where yk = 1 indicates that the xk was derived from the Laplace distribution, and yk = 2

indicates that it is drawn from the Gaussian component.

Differentiating with respect to each parameter, equating to zero, and solving each

equation gives the following estimators
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µ̂L = argµ

N∑
k=1

sign(xk − µ)p(yk = 1|xi,Θ(t)) (A.8)

ŝ =
∑N

k=1 |xi − µL|p(yk = 1|xi,Θ(t))∑N
k=1 p(yk = 1|xi,Θ(t))

(A.9)

µ̂G =
∑N

k=1 xip(yk = 2|xi,Θ(t))∑N
k=1 p(yk = 2|xi,Θ(t))

(A.10)

σ̂2 =
∑N

k=1(xi − µ̂G)2p(yk = 2|xi,Θ(t))∑N
k=1 p(yk = 2|xi,Θ(t))

(A.11)

The corresponding estimators for the zero-mean Laplace-Gauss mixture distribu-

tion are easily shown to be

ŝ =
∑N

k=1 |xi|p(yk = 1|xi,Θ(t))∑N
k=1 p(yk = 1|xi,Θ(t))

(A.12)

σ̂2 =
∑N

k=1(xi)2p(yk = 2|xi,Θ(t))∑N
k=1 p(yk = 2|xi,Θ(t))

(A.13)

Another distribution examined is the Generalized Gauss-Gauss (GG-G) mixture

defined by the following equation

p(xk|Θ) = α1pGG(xk|µL, s) + α2pG(xk|µg, σ
2)

= α
b

2aΓ(1/b)
exp−

( |xk|
a

)b

+ (1 − α)
1√

2πσ2
exp

(
(xk − µG)2

2σ2

)
,

(A.14)

where Γ(·) denotes the gamma function. The corresponding Q function for the GG-G

mixture is given as follows
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Q(Θ|Θ(t)) =
2∑

i=1

N∑
k=1

p(yk = i|xk|Θ(t)) logαj

+
N∑

k=1

(
log b− log(2aΓ(1/b))−

( |xk|
a

)b
)
p(yk = 1|xk,Θ(t))

+
N∑

k=1

(
−1

2
log(2πσ2) − (xi − µG)2

2σ2

)
p(yk = 2|xk,Θ(t)), (A.15)

The estimator for the a parameter has a closed form expression, and can be shown

to be

â =

(
b
∑N

k=1 |xk|bp(yk = 1|xk,Θ(t))∑N
k=1 p(yk = 1|xk,Θ(t))

)1/b

. (A.16)

The estimator for the b parameter does not have a closed form solution, and can

be shown to be the solution to the following equation

1 +
Ψ(1/b)
b

−
∑N

k=1 |xk|b log |xk|p(yk = 1|xk,Θ(t))∑N
k=1 |xk|bp(yk = 1|xk,Θ(t))

+
1
b

log

(
b
∑N

k=1 |xk|bp(yk = 1|xk,Θ(t))∑N
k=1 p(yk = 2|xk,Θ(t))

)
= 0, (A.17)

where Ψ(·) denotes the digamma function, which is the first order derivative of

log Γ(·), and is given by

Ψ(τ) = −ζ +
∫ 1

0

(1 − tτ−1)(1 − t)−1dt, (A.18)

with ζ denoting the Euler constant.

As in the case of the ML estimates for the Generalized Gaussian function, the

Newton-Raphson iterative procedure provides a solution. An implementation for the Gen-

eralized Gaussian ML estimates, such as the one written by Do and Vetterli [15] can be

82



modified to estimate the parameters of the GG component of the mixture distribution. The

second partial derivative with respect to b is used by this iterative procedure, and is given

by

∂2Q(Θ|Θ(t))
∂b2

=
1 − Ψ(1/b)

b2
− Ψ′(1/b)

b3
−

∑N
k=1(|xk|b log |xk|)2p(yk = 1|xk,Θ(t))∑N

k=1 |xk|bp(yk = 1|xk,Θ(t))

+

(∑N
k=1 |xk|b log |xk|p(yk = 2|xk,Θ(t))∑N

k=1 |xk|bp(yk = 1|xk,Θ(t))

)2

+
∑N

k=1 |xk| log |xk|p(yk = 2|xk,Θ(t))

b
∑N

k=1 |xk|bp(yk = 1|xk,Θ(t))

− 1
b2

log

(
b
∑N

k=1 |xk|b
∑N

k=1∑N
i=1 p(yk = 1|xk,Θ(t))

)
. (A.19)
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