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Abstract

Mask Design for Single and Double Exposure Optical Microlithography: An

Inverse Imaging Approach

by

Amyn Poonawala

Optical microlithography, a technique similar to photographic printing, is

used for transferring circuit patterns onto silicon wafers. The above process intro-

duces distortions arising from optical limits and non-linear resist effects, leading to

unacceptable pattern fidelity and yield loss. The input to the above system is a photo-

mask (or reticle), which can be controlled (and engineered) such that it cancels out

(or pre-compensates) for the process losses to come. This forms the basis of optical

proximity correction (OPC) and phase shift masks (PSM), two commonly employed

resolution enhancement techniques (RETs) for patterning small feature sizes close to

the optical limit (low k1 values).

In this thesis, we propose a novel inverse lithography technology (ILT) frame-

work to synthesize OPC and PSM for high-fidelity patterning of random logic 2-D

features. ILT attempts to synthesize the input mask which leads to the desired output

wafer pattern by inverting the mathematical forward model from mask to wafer. Our

framework employs a pixel-based mask parametrization, continuous function formu-

lation, and analytic gradient-based optimization techniques to synthesize the masks.



We also introduce a regularization framework to control the tone and complexity of

the synthesized masks, and inculcate other user-defined properties. Assist bars are

automatically generated and optimally placed as part of the solution.

Another contribution of this thesis is an ILT framework for mask design

of double exposure (single development) lithography (DEL) systems. The proposed

DEL-ILT algorithm introduces a new paradigm of decomposing the gray-level target

aerial image into two complementary parts, automatically resolves the phase conflicts,

gives superior contrast aerial images, and is also robust to mask-to-mask alignment

errors. Finally, we investigate two novel materials which allow violation of the linear

superposition of the intensities from the two exposures, thereby enabling imaging

below the conventional theoretical limit (k1 < 0.25).
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Chapter 1

Introduction

Figure 1.1: The optical microlithography process (from [82])

Optical microlithography, a process similar to photographic printing, is used

for transferring circuit patterns onto silicon wafers (see Fig. 1.1) and forms a very

critical step in the IC fabrication flowchart [13]. Fig. 1.2 illustrates the steps involved
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Figure 1.2: Steps involved in optical microlithography

in a typical lithography process. The pattern to be replicated on the wafer is first

carved on a reticle (mask) composed of quartz and chrome features. Light passes

through the clear quartz areas and is blocked by the chrome region. An illuminator

(UV source) is shone through this mask producing an image of the pattern through

the lens system, which is eventually projected down onto a photoresist-coated silicon

wafer using a projection system (typical aspect ratio 4:1). The photoresist is chemically

sensitive to light and acts as the recording medium for the above imaging system. It

responds non-linearly to the incoming dose energy (commonly referred to as the aerial

image) and undergoes bleaching action. New chemical bonds are formed or existing

bonds are broken in the exposed regions (depending on whether it is a negative or

positive photoresist respectively), thereby changing their dissolution properties. The

photoresist is finally developed (washed using an appropriate chemical solution) leaving
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behind a likeliness of the mask pattern on the substrate (wafer). In an ideal world,

the output circuit pattern on the wafer will be exactly similar to the mask pattern.

Unfortunately, the band-limited imaging system introduces distortions caused by the

diffraction effects of the lens-projection system, particularly at higher resolutions. The

loss in higher order frequency components results in blurring and poor quality aerial

image. This coupled with the resist effect results in loss of pattern fidelity, and the

output pattern obtained on the wafer is generally a warped version of the input [82].

1.1 ITRS and Rayleigh Criterion

The semiconductor industry strives to adhere to the International Technology

Roadmap for Semiconductors (ITRS) [1] road-map which is driven by Moore’s law for

the past three decades. Moore’s law with regard to lithography requires the critical

dimensions (CD) 1 to shrink by thirty percent every two years (currently CD = 65nm).

This puts very stringent requirements on lithography thereby making it one of the

tightest bottlenecks faced by the semiconductor industry.

The resolution(wmin) of the lithography system in Fig. 1.2 is related to the

Rayleigh’s criterion 2 as follows,

wmin =
k1λ

NA
. (1.1)

The resolution of the imaging system can be improved by increasing the numerical
1Critical dimension is defined as the smallest dimension, typically the gate length
2The Rayleigh limit for the resolution of two sources is when the first diffraction pattern minimum

of the image of one source point falls on the central maximum of the other. This corresponds to a
separation of 0.61λ/NA.

3



Year Node (CD) Wavelength used

1990 800nm 435 nm (g-line)

1993 500nm 365 nm (i-line)

1995 350nm 200-300nm (DUV)

1997 250nm DUV

1999 180nm DUV

2001 130nm DUV

2003 90nm 193nm (ArF laser)

2005 65nm 193nm

2007 45nm 193nm

2009 32nm 193nm

2011 22nm 193nm or EUV

2013 16nm 193nm or EUV??

Figure 1.3: International Technology Roadmap for Semiconductors

aperture of the imaging system (NA) or decreasing the wavelength (λ). Fig. 1.3 is part

of the ITRS and it is interesting to note that the CD size dived below the wavelength of

the source around 1997. There were many attempts to reduce the wavelength by using

a 157nm laser. However they were all futile due to the cost, risk, and immaturity of

the technology (see [4] for a review). EUV, a next generation lithography technology

employs 13nm wavelength thereby having an immense potential to be useful for many

more generations [10]. Unfortunately, it faces serious technical issues like lack of

adequate power source, lack of resists, and mask-inspection difficulties. EUV was

initially planned for high volume manufacturing in 2007, but it has now been pushed

beyond 2011. Thus, we have no choice but to use 193nm lithography until the 22nm

technology node or maybe even beyond.
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The second option to increase the resolution is by increasing the NA of the

imaging system. This has an adverse effect of decreasing the depth of focus making

the process extremely sensitive to the deviations from the optimal process conditions.

The currently employed NA values are 0.93 and the upper-bound for dry lithography

systems (using air as the medium) is 1. Note that NA = n sin(θ) where n is the

refractive index of the medium, and θ is the half angle of the maximum cone of light

that can enter the lens. Dry lithography uses air which has a refractive index of 1.

Immersion lithography uses water (n = 1.44 at 193nm) or other transparent fluid

with high refractive index values (n ≈ 1.6) in order to increase the NA of the system

beyond 1. It was inserted into the ITRS road-map and is being currently employed

for mass-production of 45nm node by IBM [57] and many other foundries.

The third and most commonly employed way to decrease the minimum

feature-size is by employing very low values of k1. At this point, we would like to

highlight that the resolution limits for pattern periodicity and pattern dimensions are

different [93, 53]. A pitch is defined as the sum of a line and space width pair and

determines the packing density of the transistors. The process constant in this context

is referred to as kpitch and is lower bounded by 0.5 [11] corresponding to the Sparrows

limit. On the other hand, k1 corresponds to the smallest printable feature size (also

known as the critical dimension or CD), which dictates the gate-length, speed, and

the power consumed by the individual transistors. There are no theoretical limits on

k1 because the feature sizes can also be manipulated using over-exposure, etching, and

other tricks like chemical shrinking [87]. Thus the limits are bound by our ability to
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faithfully and repeatedly produce a feature with small CD [93]. Unfortunately, the

lithography literature often refers to k1 as being lower bounded by 0.25 (but this is

only true if the aspect ratio is 1:1).

A typical imaging system is characterized by its modulation transfer func-

tion (MTF). However, an optical lithography system has a high contrast recording

device (the photoresist). The latter is capable of taking even a weak modulation and

converting it into a high contrast (binary) pattern. Therefore, the metric of evalua-

tion of lithography systems are the developed images and their robustness to process

variations. The lithography difficulty is inversely proportional to the k1 factor. Value

of k1 > 0.7 indicate very easy process conditions, whereas 0.7 > k1 > 0.25 becomes

increasingly difficult as k1 becomes smaller.

As the k1 values falls below 0.7, the image quality degrades noticeably. The

photoresist non-linearity is alone insufficient for production-worthy low k1 lithography

because of the poor CD control. There are two insertion points where process changes

can be made to overcome the above issue; namely, manipulating the optical wavefront

and manipulating the photoresist stack. The latter forms the domain of chemists who

are actively working on tuning the resist response system. However, the domain of

this thesis lies in the wavefront manipulation point known as resolution enhancement

techniques (RETs).

Resolution Enhancement is defined by Frank Schellenberg as “manipulating

the wavefront at the mask to make structures in a high contrast medium that are

finer than those possible under conventional exposure conditions” [83]. RETs have
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become an integral part of the IC manufacturing flow for the past several generations

due to the lack of flexibility of any other wavelength besides 193nm. The k1 values are

continuously falling (current values in the range of 0.29-0.35) requiring very aggressive

lithography strategies. Indeed RET have and will continue to play a huge part in our

effort to stay abreast with Moores’s law.

1.2 Resolution Enhancement Techniques

RETs are based on exploring three properties of the wavefront; namely, its

amplitude, phase, and direction. These are respectively referred to as optical and

process correction, phase-shift method and off-axis illumination [94]. In what follows,

we provide a brief introduction to these methods.

1.2.1 Optical and Process Correction (OPC)

In low k1 imaging, the high spatial frequency components carry sizable frac-

tion of the light energy. The lens pupil cannot capture higher order components,

thereby introducing distortions. The three types of distortions typically arising are

1) feature with the same nominal CD, printing differently under environmental differ-

ences (like dense, semi-dense, or isolated), 2) line-end pull back (or line shortening),

and 3) corner rounding. The above are also referred to as optical proximity effects.

OPC was initially an acronym for optical proximity correction. But nowa-

days it implies optical and process correction since it also accounts for resist and etch

effects in addition to the optical ones. OPC works by manipulating the first property,

7



Figure 1.4: Optical and Process Correction (from [82])

namely the amplitude of the wavefront to counteract the imaging effects that distort

the reproduced patterns on the wafer. The amplitude of the light-wave can be ad-

justed by changing the sizes of the openings thereby allowing more or less amount of

light through as shown in Fig. 1.4. More specifically, OPC consists of adding sub-

resolution features (very small features whose dimensions are below the resolution of

the imaging system) to the original layout, a process also known as micromanipula-

tion. Typical modification involves lengthening of a feature, displacing the edge of

a pattern (edge-biasing), or creating serifs to reduce corner rounding. In addition to

layout modifications, new features called assist-bars can also be added (more on this

in Chapter 2). Thus the idea is to pre-compensate for the process losses by modifying

the original layout, which eventually leads to a better pattern fidelity and improved
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resolution [81].

OPC has been traditionally carried out using two approaches; namely rule-

based, or model-based. As the name suggests, in the rule-based OPC scheme, empirical

rules are developed to counteract the commonly occurring problems around corners,

edges, local interactions, etc. These are then applied throughout the pattern to provide

a general improvement in pattern fidelity. Rule-based OPC is very simple to imple-

ment but it only compensates for the local features and does not optimize the global

performance depending on the overall layout. Hence it has limited scope, effectiveness

and applications [94].

Model-based methods on the other hand use a mathematical description to

represent the pattern transfer process (forward model). As such, they are more uni-

versal and represent a more aggressive OPC strategy. The success of these methods

relies heavily on accurate modeling of the distortion process which has been studied

carefully by physicists, chemists, and other researchers in the lithography community

[24] (more on this in Chapter 2).

Model-based OPC itself has two flavors. The forward model-based OPC

techniques employed by Cobb and Zakhor [15] parameterize (or fragment) the pattern

into edges and corners. The algorithm proceeds by locally moving the edges, using a

forward model simulator to determine if the new locations are better, moving them

somewhere else, and iteratively repeating this process until certain error criteria are

satisfied. Fig. 1.5 illustrates the model simulation feedback optimization loop pro-

posed by them. The above technique is suboptimal because the edge movements are
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Figure 1.5: Feedback optimization loop for model-based edge-based OPC (from [17])

local and trial-and-error based. Furthermore, the number of fragments are becoming

unmanageable for 45nm node making it computationally very demanding and there is

also no built-in provision for sub-resolution assist features (see Chapter 3). Edge-based

OPC is also referred to as sparse OPC.

Backward (or inverse) model-based techniques on the other hand attempt to

synthesize the optimized OPC pattern by directly inverting the mathematical model

from mask to wafer [94]. They are also referred to as inverse lithography technology

which forms the focus of this thesis. The pioneering work in this area was done

by Sherif, [84], et al. in the 1980s at the University of Wisconsin, who employed

branch and bound algorithms to synthesize pixel-based OPC masks. A more formal

introduction of inverse lithography is presented in Chapter 2.
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1.2.2 Phase Shift Masks

Phase Shift Masks (PSM) exploit the second property of the wavefront,

namely its phase, to achieve higher resolution and were originally introduced by Lev-

enson, et al. [42] at IBM in 1982. Fig. 1.6 illustrates the pattern transfer process for a

binary mask comprising of only quartz and chrome features. Note that there is some

unwanted energy in the opaque (chrome) regions due to the close proximity of the

neighboring transmitting (quartz) features. This unwanted energy affects the resist

profile and the achievable resolution. In this section, we introduce three widely used

flavors of PSM and provide some intuitive understanding on how phase manipulation

can help us improve the resist profile and pattern fidelity.

Quartz

Chrome
(opaque)

Amplitude

Intensity

Wafer Remaining resist 
after development

Mask

Figure 1.6: Pattern transfer using binary mask
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MoSi Phase = 180o

Transmission=6%

Chrome

Amplitude

Intensity

Wafer
Remaining resist 

after development

Quartz

Mask

Figure 1.7: Pattern transfer using Attenuated PSM

Attenuated Phase-Shift Mask: The features in Attenuated Phase Shift Masks

consists of quartz and molybdenum silicide (MoSi) instead of chrome. Unlike chrome,

MoSi allows a small percentage of light (typically 6% or 18%) to pass through. The

thickness of MoSi is chosen such that light which passes through is 180◦ out of phase

compared to the transmitting quartz regions. As seen from Fig. 1.7, the light pass-

ing through the MoSi areas is very weak to expose the resist. However, the phase

difference causes destructive interference thereby pushing the intensity further down

in the opaque regions. This cancels out some of the unwanted energy resulting in a

sharpened intensity profile.

Alternating Phase-Shift Mask: In this case, the opaque chrome features are

surrounded on one side by quartz of phase zero degree, and on the other side by quartz
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of phase 180 degrees. The phase shift is achieved by carefully etching the quartz region.

As seen from Fig. 1.8, the transmitted electric field amplitude is positive and negative

in the non-etched and etched quartz regions, respectively. The electric field amplitude

is forced to pass through zero as it changes from positive to negative. This transition

occurs underneath the opaque (chrome) area which now has zero energy deposition.

This leads to very dark and sharp lines on the wafer and an improved resist profile. It

is important to note that Alt-PSM, although powerful, is a very complex technology

and the resulting masks are very hard and costly to manufacture.

Mask

Amplitude

Intensity

Wafer

Quartz

Chrome
(opaque)

Etched quartz.
(180o out of phase)

Remaining resist 
after development

Figure 1.8: Pattern transfer using Alternating PSM

Chromeless Phase Lithography: Chromeless Phase Lithography is a 100% trans-

mission version of the Attenuated PSM since they have no opaque (chrome) features.

Dark lines are produced on the wafer due to the interaction of the two adjacent (180
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Etched quartz (180o)
Quartz (0o)

Chrome
Mask

Amplitude

Intensity

Wafer Remaining resist 
after development

Figure 1.9: Pattern transfer using Chromeless PSM

degree) phase-shifted quartz features. Once again by forcing the amplitude to pass

through zero, the intensity which is proportional to the square of the amplitude also

hits zero, resulting in sharp lines on the wafer (see Fig. 1.9).

In Chapter 4, we propose an ILT framework for automatically synthesizing

attenuated and strong phase shift masks for single exposure lithography. Strong PSM

also suffer from phase conflict issue which can be overcome using double exposure

lithography (see Chapter 5).

1.2.3 Off-axis Illumination

Off-axis illumination (OAI) manipulates the direction or the angle at which

the light falls on the mask thereby affecting the diffraction orders captured by the lens.

It consists of modifying the source configurations into specific geometric patterns like

14



annulus, quadrapole, etc as shown in Fig. 1.10. This is achieved by placing a light

blocking hard stop aperture or the more recently invented diffractive optical elements

(DOE) [35], between the laser and the mask. DOE have the capability of forming very

complex source shapes and smooth distribution of light across the aperture. Each

configuration can emphasize certain spatial frequencies while de-emphasizing other

ones and has its own advantages or disadvantages. DOE source design can also be

treated as an inverse problem (as observed by Granik in [30]), but is beyond the scope

of this thesis.

Figure 1.10: Commonly employed source configurations; left to right - conventional, annular,
fourfold source, separated source, quadrapole, CQUEST, QUASAR (from [83])

We would like to highlight that all the resolution enhancement techniques

increase the complexity, storage requirements, and cost of the masks (currently running

into millions). Therefore an important challenge is to implement RETs while keeping

the above factors under control.

1.2.4 Double Exposure and Double Patterning

We now provide a brief introduction to two additional lithography techniques

which are becoming increasingly popular for 45nm and smaller nodes.

Double exposure lithography (DEL) is a technique commonly employed to im-

prove the aerial image contrast. It consists of exposing the same photo-resist layer se-
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quentially using two separate exposures, typically using two different reticles. Double-

exposure can be done with existing production lithography technology, and is often

combined with other RETs discussed above. DEL enables patterning very close to

the lower bound (k1 = 0.25) by providing a very high contrast aerial image, and is

currently employed with AltPSM [28], double dipole lithography (DDL) [12], etc.

Double patterning involves splitting a dense pattern into two separate less

dense circuit patterns (also know as pitch splitting). The two relatively simple patterns

are then printed separately on a target wafer. The wafer is removed from the exposure

chuck in between the two exposures for development and etch processing. Double

patterning can theoretically double the resolution of the imaging systems and the

lower bound on kpitch becomes 0.25. Thus, it has the potential to enable 32nm and

22nm nodes using 193nm lithography. However, it requires extremely accurate overlay

between the two exposures, and has a lower throughput because of the additional

exposure and wafer processing step. The above techniques are discussed in more

detail in Chapter 5 and 6.

1.3 Thesis Organization

The thesis is organized as follows.

In Chapter 2, we start by discussing lithography modeling, formally introduce

the inverse lithography problem, and do a literature survey of the past work on ILT.

We then introduce the sigmoidal approximation of the resist behavior, and discuss
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our approximate forward lithography model for the cases of coherent, incoherent, and

partially coherent imaging systems. This is followed by the continuous function opti-

mization formulation of the ILT problem, a key difference in our approach compared

to others.

In Chapter 3, we discuss the single exposure OPC mask design framework.

We propose a cost function to minimize, and derive the analytic gradient of the cost

function. We then discuss the parametric transformation technique to reduce the

bound-constrained optimization problem to an unconstrained one. This is followed

by the motivation and introduction of the regularization framework for ILT, which

enables the user to promote certain desirable properties in the solution. The above

framework is used to restrict the tone of the OPC masks, reduce the manufacturing

complexity, and improving the aerial image contrast. The results demonstrate auto-

matic generation and placement of assist-bars for coherent imaging, and un-intuitive

feature breaking behavior for incoherent imaging systems. Finally, we also introduce

two useful and practical extensions of the mask design problem, namely, weighted

mask and selected parameter optimization.

In Chapter 4, the ILT framework is extended to single exposure phase shift

mask synthesis. In particular, we deal with the automated design of attenuated PSM,

100% transmission PSM, and strong PSM with chrome. Appropriate regularization

terms are introduced to control the tone of the estimated masks. The phase assign-

ments are automatically carried as part of the optimization, and the results indicate

a much superior contrast for strong PSM.
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Chapter 5 is dedicated to double exposure inverse lithography technology.

We start by introducing double exposure and double patterning lithography systems.

We then exclusively focus on the former technique, where the resist is developed only

once. We introduce the DEL-ILT mask design problem, and discuss the continuous

function optimization formulation employed to solve it. We propose two gradient-

based optimization algorithms to minimize the cost function. The results indicate a

new paradigm of splitting the gray-level aerial image between the two exposures and

a very superior contrast.

In Chapter 6, we propose a novel paradigm of using DEL for kpitch < 0.5 by

employing novel materials. We study reversible contrast enhancement layer (CEL) and

2-photon absorption resists as two potential candidates. We propose a mathematical

model for CEL, discuss possible ways of improving the image log-slope (ILS), and

also derive lower bounds on ILS improvement. We extend the single exposure ILT

framework to also incorporate for the CEL effects, and synthesize CPL masks to

enable patterning 2-D features with k1 = 0.185.

In Chapter 7, we review five recent bodies of work on ILT (published over

the past 1.5-2 years), and show connections of these approaches with our proposed

framework. We also present preliminary DEL-ILT results for increasing the robust-

ness of the lithography system to mask-to-mask alignment errors. We then discuss

the extension of our approach to e-beam proximity effect correction as well as other

interesting future directions emanating from this research project. Finally, we provide

conclusive remarks outlining the contribution of this thesis.
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Chapter 2

The Inverse Lithography

Problem

We now present a detailed discussion of the inverse lithography mask design problem.

The discussion consists of the lithography forward model description, literature survey

of ILT, our proposed approximate forward model, and the optimization problem setup.

2.1 Lithography Modeling

Before we move on to the inverse lithography problem, it is desirable to dis-

cuss the forward (process) model. Accurate modeling of the optical lithography system

is critical because it allows prediction of the wafer pattern without going through the

cumbersome fabrication process. Fast and accurate lithography simulation has become

an integral part of the development of new technologies.

Fig. 2.1 illustrates a block diagram view of the lithography process. It consists
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Output Wafer Pattern

Hopkins Diffraction 
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Figure 2.1: A simplified view of the lithography process

of two functional blocks; namely the projection optics effects (aerial image formation),

and the resist effects. The aerial image calculations are based on the underlying

optical system being coherent, incoherent, or partially coherent [11, 16]. Practical

lithography systems are partially coherent imaging systems which can be simulated

using the Hopkins (scalar or vector) imaging model [11]. Pati and Kailath in [64]

proposed the sum of coherent systems (SOCS) decomposition of the Hopkins imaging

equation, which was later used by Cobb and Zakhor [16] to speed up the forward

model calculations.

The resist exposure model consists of bulk image formation, photo-active

compound (PAC) generation, post-exposure bake, and resist development [13]. Bulk

image is the intensity within the thin resist film. It is formed by interference of

20



counter-propagating plane waves within the resist thin film stack and also takes into

account the reflections from the bottom of the substrate. The resist bleaches under the

influence of the exposure energy and undergoes changes in photochemical properties.

Dills model [13] is used to model the conversion of the bulk intensity in the resist film

into the concentration of the photochemical compound. It is this concentration that

determines the resist dissolution properties and allows for the resist to be patterned.

The post exposure bake step that follows the exposure causes diffusion of the photo-

active compound and smooths the standing waves thereby giving good 3-D resist

profiles [13]. Finally the resist is developed or etched away using a developer solution,

a process which can be modeled (for example) using the Mack model [52, 77].

Note that resist exposure and development involves a 3-D visualization with

all of the above steps affecting the resist profile. However, for the sake of speed and

simplicity, lithographers often consider the 2-D contour view of the (final) developed

resist profile (where the contours are measured at the resist/substrate interface). The

developed 2-D contours are then directly compared to the (desired) 2-D target layouts

to determine the pattern fidelity. There are numerous 2-D resist models like Variable

Threshold Resist (VTR) model [76], Constant Threshold Resist (CTR) model, or

empirical models [2] which predict the 2-D resist contours from the incoming aerial

image. We use the CTR model in our analysis (see Section 2.3 for more details on our

imaging model).

Finally, there are numerous lithography simulation softwares available from

various commercial and academic organizations like iPHOTO-II from Intel [74], SPLAT/SAMPLE
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from University of California Berkeley [6], [40], SOLID from the Fraunhofer Institute

[24], and Prolith from KLA-Tencor to name a few, which employ the aforementioned

(and many other proprietary) models.

2.2 The Inverse Problem

As discussed in Chapter 1, there has been a revival of interest in “inverse

lithography” or “layout inversion” techniques in recent times, which are introduced

more formally in this section.

2.2.1 Introduction

Input (Mask) 
Pattern

Projection
Optics

Aerial      Image

Resist Effects 
(CTR)

Binary Output (Wafer) 
Pattern

ILT

??

Desired

T{.}

Figure 2.2: Forward Model and ILT

The first step towards solving an inverse problem is to define a forward (or
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process) model which is a (possibly approximate) mathematical description of the

given imaging system. The lithography imaging system from the mask to the wafer

consists of two steps (as seen earlier in Section 2.1, Fig. 2.1, and Fig. 2.2).

The image formation process can be mathematically expressed as,

z(x, y) = T{m(x, y)}, (2.1)

where T{.} is the forward model which maps the input intensity function m(x, y) to

the output intensity function z(x, y). Let z∗(x, y) be the desired output intensity func-

tion. The goal of inverse lithography technique (ILT) is to estimate the input intensity

function which will give us a close approximation to the desired output z∗(x, y) (see

Fig. 2.2). This is achieved by searching the space of all inputs and choosing m̂(x, y)

which minimizes a distance d(z(x, y), z∗(x, y)), where d(·, ·) is some appropriate dis-

tance metric to be defined later. Thus,

m̂(x, y) = arg min
m(x,y)

d[z∗(x, y), T{m(x, y)}]. (2.2)

In our case, T{.} is the lithography forward (process) model, z∗(x, y) is the desired

output wafer pattern, and m̂(x, y) is the estimated optical proximity correction or

phase shift mask pattern.

Inverse lithography is an image synthesis or image design problem. The

problems of image restoration (reconstruction) and image synthesis (design) are related

but not the same as pointed out by Sayegh, et al. [79, 80]. In both cases, the output and

the imaging system are known, but the input is unknown [79, 80]. In the restoration

case, the output image results from an actual but unknown input image [29], and
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therefore at least one solution must exist in the absence of measurement error or

noise. However, in the synthesis case, there may be no input capable of producing

the prescribed output, so that we have to target the output as close as possible to the

desired ideal output image. Furthermore, the solution need not be unique.

2.2.2 Past Work on ILT

The pioneering work in ILT was by B.E.A. Saleh and his students at the

University of Wisconsin in the early 1980’s. In 1985 Sayegh, et al. [80] used linear-

programming technique to do OPC for a system modeled as a band-limited linear

system followed by hard threshold operation. They suggested using “pixel flipping”

method to synthesize the masks. Pixel values of 0 or 1 are tried. If the fidelity error

decreases, then the pixel is accepted, else it is rejected and the next pixel is tried.

Nashold and Saleh [56] employed iterative alternating projections, and Sherif, et al.

[84] used mixed linear integer programming to synthesize binary masks for the above

imaging system. Note that the above work (including their proposed techniques) are

restricted to only the linear aerial imaging model.

Pati and Kailath [64] considered the more prevalent partially coherent ap-

proximation to a coherent imaging system, using optimal coherent approximations.

The above system becomes linear in the electric field complex amplitude, which there-

fore enabled them to use POCS (Projection on Convex Sets) to synthesize phase shift

masks. Liu and Zakhor [46] formulated the mask design problem as the minimization

of the L2 norm of the difference between the ideal and the actual wafer images, thereby
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obtaining an integer constrained optimization problem. Later in [47], they optimized

the image log slope in the vicinity of the target. For incoherent imaging, they ob-

served that the above problem is a linear programming one which was solved using

branch and bound algorithms. However, it becomes quadratic for partially coherent

imaging systems, and hence they proposed simulated annealing algorithms to design

phase shift masks (PSM). Peckerar, et al. [65, 68, 67] employed L2 norm based cost

function and proposed gradient-based optimization technique to solve the proximity

effects arising in the related e-beam lithography problem.

More recently, Oh, et al. [59] used random-pixel flipping and Erdmann, et

al. [23] proposed genetic algorithms to solve the joint mask and source optimization

problem. Socha, et al. [86] proposed interference map lithography (IML) technique

for automatic generation and placement of assist bars for contact holes optimization.

In 2005, Granik [31] did a comprehensive review of the past ILT work and discussed

the reduction of the mask design problem to linear, quadratic, and general non-linear

programming problems. In 2006, Liu, et al. [63] demonstrated the commercial viability

of inverse lithography techniques. In Chapter 8, we provide a more detailed discussion

of some the very recently published work [31, 63, 96, 50] on ILT, and relate them to

our proposed framework.

We observe that while ILT has been extensively researched for the past 20

years, it has found commercial following only recently. Cobb and Dudau [14] compare

the computational complexity of sparse (edge-based) and dense (pixel-based) OPC,

and conclude that the latter might become more efficient at the 45nm scale. Another
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reason for the recent success of ILT is the availability of more computing power and the

development of new optimization algorithms. As discussed above, most of the previous

work on ILT employed genetic algorithm, POCS, integer programming, branch and

bound, etc. which have prohibitively high computational complexity.

However, our proposed ILT framework employs continuous function opti-

mization and (analytically calculated) gradient information to systematically explore

the solution space. As seen from Fig. 2.2, the input mask is binary (or trinary for

Alternating PSM), whereas the output pattern is binary. The above two factors are

detrimental towards having a continuous function formulation. In what follows next,

we propose an approximated forward model for ILT which overcomes the binary output

restriction. The discrete mask tone considerations are explored in Chapter 3.

2.3 Approximate Forward Model

We now discuss the forward model used for our inverse problem formulation.

This section is divided into two parts. We start by proposing an approximation to the

resist model, and then explore the details of the aerial imaging models.

Since we employ the pixel-based approach, the first step is to represent the

input, output, and the desired patterns using 2-D discrete images. We define vec-

tors z∗, z, m ∈ �MN×1 which are obtained by sampling and lexicographic ordering of

z∗(x, y), z(x, y), and m(x, y) respectively. The number of samples along the horizontal

and vertical directions are given by M and N respectively. Note that the edge place-
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ment error is related to the sampling interval δsnm and is upper-bounded by (δs/2)nm.

Smaller pixels enable better edge placement but also increase the number of samples

M and N which are related to the algorithmic complexity by O(MN log(MN)). Thus,

there is a trade-off between speed and accuracy. Throughout our discussion, z∗ rep-

resents the prescribed binary pattern, z represents the gray-level output pattern, and

m represents the input pattern fed to the imaging system (which can be binary or

gray-level).

2.3.1 Sigmoid Approximation of the Resist

The simplest way to simulate the resist effect is using the constant threshold

resist (CTR) model [37]. Thus, for positive resists, the areas having aerial image

intensity higher than threshold tr are completely removed leaving behind a space in

the wafer. The above operation can be described using a Heaviside operator (hard

threshold) defined as

Γ(u) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, u ≤ tr

1, u > tr

(2.3)

Optical System
Model

Input {m} Aerial
Sigmoid Output {z}

Image

“aerial image 
formation process”

“approximates the hard 
thresholding (resist effect)”

“close to binary”

Figure 2.3: Approximated forward process model
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The Heaviside operator brings us into the discrete domain and necessitates

the use of branch and bound or other integer optimization algorithms (like our pre-

decessors [79, 47]) to solve the mask design problem. However, the focus of our work

is to solve the inverse problem in the continuous domain. With this in mind, we ap-

proximate the heaviside operator using a sigmoid: a smooth, continuous function [22].

The approximated forward process model is illustrated in Fig. 2.3. We employ the

logarithmic sigmoid function,

sig(u) =
1

1 + e−a(u−tr)
, (2.4)

where the parameter a dictates the steepness of the sigmoid. The parameter tr is

the threshold parameter of the sigmoid and is set equal to the threshold level of the

resist in accordance with the constant threshold resist model. Fig. 2.4 illustrates the

behavior of the sigmoid for different values of a with tr = 0.5. A large value of a

leads to a very steep sigmoid which closely resembles the hard thresholding operation.

Owing to the above approximation, the output pattern z will not be binary, but a

(continuous tone) “ close-to-binary” pattern. The above approximation enables us to

use gradient-based continuous function optimization techniques like steepest-descent

to solve the mask design problem.

2.3.2 Aerial Image Models

We now discuss aerial image calculations and the (cascaded) forward models

for coherent, incoherent, and partially coherent imaging systems.
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Figure 2.4: The effect of the steepness parameter a on the sigmoid function sig(u) = 1/(1 +
e−a(u−0.5)).

Coherent Imaging System

In the case of coherent imaging systems, the spatial distribution of the output

electric field amplitude e(x, y) is linearly related to the input electric field amplitude

generated by the mask m(x, y). This can be mathematically described as,

e(x, y) = m(x, y) ∗ h(x, y) (2.5)

where h(x, y) is referred to as the amplitude spread function (ASF) of the given imaging

system [92].

Typical lithography systems employ a circular lens aperture, where the co-

herent imaging system now acts as an ideal low pass filter with cutoff frequency NA/λ.

The higher frequency components of the diffracted mask image are lost by the finite

lens aperture stop thereby causing a blurry version of the mask image at the imaging

(wafer) plane. The convolution kernel h(x, y) is defined as the Fourier transform of

the circular lens aperture with cutoff frequency NA/λ [11, 92]. Therefore,

h(x, y) = jinc(r
NA

λ
) =

J1(2πr NA/λ)
2πr NA/λ

(2.6)

where r =
√
x2 + y2 and J1(·) is the first order Bessel function of first kind. Fig. 2.5
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illustrates the jinc function h(x, y) for the case of NA = 0.85 and λ = 193nm sampled

at 10nm. Note that it has very prominent side-lobes which lead to the generation of

assist-bars (more on this in Chapter 3).

Figure 2.5: The jinc function for NA=0.85 and λ = 193nm.

The photo-resist responds to the intensity of the electric field, where intensity

is defined as the square of the complex amplitude e(x, y). Therefore, the forward model

is defined as,

zc = sig(|e|2) = sig(|Hm|2), (2.7)

where zc represents the output pattern for coherent imaging systems. The sigmoid

function simulates the resist behavior and acts on the aerial image |Hm|2 (square of the

amplitude), giving the output pattern zc. Two important points to note: the kernel

H ∈ �MN×MN is the jinc function h(x, y) sampled using the same sampling rate as
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zc, and | · |2 operator here implies element-by-element absolute square of the individual

vector entries. Finally, for partially coherent imaging systems, the optical kernel h(x, y)

can be instead substituted by the optimal coherent approximation proposed by Pati

and Kailath [64].

Incoherent Imaging System

Figure 2.6: The jinc squared function for NA=0.85 and λ = 193nm.

An incoherent imaging system is linear in intensity (or irradiance) and can

be mathematically described as [11],

|e(x, y)|2 = |m(x, y)|2 ∗ |h(x, y)|2. (2.8)

The kernel h(x, y) is defined in (2.6), and | · |2 once again implies absolute square of the

individual elements. Note that the phase of the input electric field does not contribute

towards the output. Hence, for incoherent imaging systems we restrict our attention
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to only binary masks. The photo-resist directly responds to the above electric field

intensity and the forward model for a binary mask is defined as,

zi = sig(|H|2|m|2) = sig(H̃m), (2.9)

where zi represents the output pattern for incoherent imaging systems. The filter H̃ in

(2.9) is known as the point spread function of the imaging system and is a jinc-squared

function (see Fig. 2.6). It is defined as the square of the PSF shown in (2.6). Also,

since the mask is binary, |m|2 = m.

Partially Coherent Imaging System

Real-world lithography systems are partially coherent and can be modelled

using the Hopkins diffraction model [11]. Pati and Kailath [64] proposed an approx-

imation to the above model called the sum-of-coherent-system (SOCS) by using the

singular value decomposition of the transmission cross-coefficient matrix. In their ap-

proach, the P th order approximation to the aerial image formulation can be calculated

using the weighted sum of P coherent systems. The forward model now becomes,

zp = sig

⎛⎝ P∑
j=1

σj|Hjm|2
⎞⎠ (2.10)

where Hj for j = 1, . . . , P are the amplitude spread functions (also referred to as

optical system kernels) of the coherent systems, and σ1, . . . , σP are the corresponding

singular values. The singular values quickly decay to zero, thereby facilitating an accu-

rate reduced order approximation. Fig. 2.7 is a block diagram view of the aerial image
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formation model for partially coherent imaging system computed as the weighted sum

of coherent imaging systems.

Intensity (zp)Input
Mask
(m)

H1

H2

HP

Convolution Square Weight

| . | 2

| . | 2

| . | 2

1

2

P

Figure 2.7: Aerial image computation of partially coherent imaging systems using SOCS.

In our work, we have focused only on fully coherent and incoherent imag-

ing systems. However, our framework is also readily extendible to partially coherent

imaging systems via the SOCS model discussed above.

2.4 ILT Optimization Problem

We now formulate the mask design optimization problem for coherent and

incoherent imaging systems. Note that every pixel mj represents the transmission

values of the mask which can be represented as a complex term mj = pj + iqj , where

i =
√−1. For the present discussion, we restrict ourselves to only 180 degree phase

shifting1. Thus, angle(mj) = 0 (no phase-shifting) or angle(mj) = π. The above

conditions imply that qj is always zero and the sign of pj dictates the phase (positive

1Later in Chapter 5, we discuss double exposure lithography which is equivalent to allowing multiple
phases.
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values corresponding to no phase-shift and negative values corresponding to 180 degree

phase-shift). Furthermore, |pj| gives the mask transmission magnitude. Therefore, we

are required to estimate only the real part (pj) of the mask (which we henceforth refer

to as mj for notational convenience). We formulate the mask design problem as finding

the optimized mask layout m̂ that minimizes the cost function F (m), defined as the

L2 norm of the difference between the desired pattern z∗ and the output pattern z 2.

That is,

m̂ = arg min
m

{F (m)} = arg min
m

||z∗ − z||22 = arg min
m

MN∑
k=1

(z∗k − zk)
2 (2.11)

Later in Chapter 3, we refine this approach by introducing the regularization terms

and augmenting the cost function.

Coherent Imaging System:

For coherent imaging system z = zc and the cost function can be formulated using

(6.5) as follows,

F (m) = F c(m) = ||z∗ − zc||22 =
MN∑
k=1

(z∗k − zc
k)

2 (2.12)

From (2.7) we observe that every pixel in a coherent imaging system undergoes a

cascade of convolution, squaring, and sigmoidal operation. Therefore, the output

pixel zc
k in (2.12) can be represented as,

zc
k =

1

1 + exp

⎡⎢⎣−a
⎛⎝MN∑

j=1

hkjmj

⎞⎠2

+ atr

⎤⎥⎦
, (2.13)

2Alternately, it is also possible to employ other vector norms.
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for k = 1, . . . ,MN where hkj are the elements of the kth row of H, which is the jinc

function defined in (2.6).

The estimated mask is either two or three tone depending on the employed

RET. Therefore, the transmission values mj for j = 1, . . . ,MN should be allowed to

take only specific values as summarized in the table below.

RET Allowable transmission values
OPC 0 or +1

6% Attenuated PSM -0.2449 or +1
18% Attenuated PSM -0.4243 or +1

Strong PSM (100% transmission) -1 or +1
Strong PSM (With chrome) -1 or 0 or +1

The optimization problem (2.12) is therefore subject to the constraints given

by the allowable transmission values of mj . This unfortunately makes the search space

discrete thereby again reducing our problem into an integer optimization one. To over-

come this issue and move back into the continuous domain, we relax the parameter

values to lie within a range [m,m]. Thus the discrete equality constraints are substi-

tuted by the inequality (bound) constraints and the optimization problem in (2.12) is

made subject to

m ≤ mj ≤ m for j = 1, . . . ,MN . (2.14)

The above procedure reduces the mask design problem into a bound constrained op-

timization problem which will be henceforth employed in our discussion.

Incoherent Imaging System:

For an incoherent imaging system z = zi and the cost function can be formulated

35



using (6.5) as follows,

F (m) = F i(m) = ||z∗ − zi||22 =
MN∑
k=1

(
z∗k − zi

k

)2
(2.15)

From (2.9) we observe that every pixel in an incoherent imaging system undergoes a

cascade of convolution followed by a sigmoidal operation. Therefore, the zi
k in (2.15)

is given as,

zi
k =

1

1 + exp

⎛⎝−a
MN∑
j=1

h̃kjmj + atr

⎞⎠ , (2.16)

for k = 1, . . . ,MN where h̃kj are the elements of the kth row of H̃, which is the

jinc-squared function.

As discussed earlier, we are only interested in binary masks, and the opti-

mization problem in (2.15) is subject to the bound constraints

0 ≤ mj ≤ 1 for j = 1, . . . ,MN . (2.17)

To summarize, we have been successful in formulating the mask design prob-

lem as a continuous function optimization problem. Our next step is to efficiently

solve this large-scale optimization problem, which forms the topic of discussion of the

next chapter.

36



Chapter 3

Single Exposure OPC Mask

Design

In this chapter, we discuss the optimization algorithm for synthesizing OPC masks

for coherent and incoherent imaging systems. We then introduce the regularization

framework to guarantee near binary results, ease of manufacturing, and good quality

aerial images. The discussion is facilitated by numerous examples illustrating the

working of the proposed framework.

Before proceeding, we take a quick look at the notations used in the manuscript.

Matrices are represented using bold upper-case letters, and vectors are represented as

bold, underlined, lower-case letters. Also scalar values are denoted using simple lower-

case letters. More specifically, H and H̃ correspond to the convolution matrix for

coherent and incoherent imaging systems, respectively. For a circular lens pupil, H

and H̃ now represent the jinc and jinc-squared functions. Furthermore, zc and zi are
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vectors representing the output gray-level patterns for coherent and incoherent imaging

systems respectively. Finally, scalars with sub-scripts are used to index corresponding

entries in a vector or a matrix, unless otherwise stated. Thus, zi
k indicates the kth

element of the vector zi.

3.1 OPC Mask Design Algorithm

As discussed in Section 1.2.1, an OPC mask consists of only chrome and

quartz features. Therefore, the mask transmission values are restricted to be either

0 or 1. We begin by considering the case of an incoherent imaging system. Recall

that our goal is to solve the optimization problem defined in (2.15) subject to the

constraints in (2.17).

The above problem can be directly solved using constrained optimization

algorithms like gradient-projection [41], which consists of a descent along the direc-

tion of gradient, followed by a projection onto the constrained space. There is also a

possibility of employing the projected BFGS (Broyden, Fletcher, Goldfarb, Shanno)

[41, 73] algorithm. However, the bound-constrained optimization problem can be fur-

ther reduced to an unconstrained optimization problem using the following parametric

transformation,

mj =
1 + cos(θj)

2
for j = 1, . . . ,MN, (3.1)

where θ = [θ1, . . . , θMN ]T is the unconstrained parameter vector. The re-parameterized

cost function for the incoherent imaging case can be formulated in terms of the pa-
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rameter vector θ as follows,

F i
1(θ) =

MN∑
k=1

⎛⎜⎜⎜⎜⎜⎜⎝z
∗
k − 1

1 + exp

⎡⎣−aMN∑
j=1

h̃kj
1 + cos(θj)

2
+ atr

⎤⎦

⎞⎟⎟⎟⎟⎟⎟⎠

2

. (3.2)

We can now employ steepest-descent search to minimize the above cost

function. This requires the first order derivatives of (3.2), and the gradient vector

di = ∇F i
1(θ) ∈ �MN×1 can be analytically calculated (see Appendix A) using the

following expression:

∇F i
1(θ) = di = a(H̃T [(z∗ − zi) 
 zi 
 (1 − zi)] ) 
 sin(θ) (3.3)

where 
 is the Hadamard product (element-by-element multiplication) of the two

vectors, 1 = [1, . . . , 1]T , and zi is defined in (2.9).

The flow-chart in Fig. 3.1 illustrates the steps involved in calculating the

gradient given by (3.3). We would like to highlight the useful fact that due to the

structure of (3.3), the steepest descent iterations can be quickly and directly carried

out on the 2-D image array (matrices) with no need for the (algebraically convenient)

raster scanning operation (see Fig. 3.1). Note that the gradient calculation involves

two convolution operations which dictate the complexity of our algorithm. Thus, the

algorithmic complexity is O(MN log(MN)).

Having evaluated the gradient, the nth iteration of steepest descent algorithm

is given as,

θn+1 = θn − sdn (3.4)
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Figure 3.1: Flow-chart showing the sequence of operations required for calculating the gra-
dient ∇F1(θ). Note that multiply indicates element-by-element multiplication of 2-D arrays.

where s is the step-size and dn = [di]n (the gradient vector di calculated at the nth

iteration). We are also aware that the OPC solution is typically a perturbation of

the prescribed pattern. Therefore, the steepest descent algorithm can be initialized

using the prescribed pattern, thereby leading to quick convergence. Thus, we can let

θ0 = cos−1(2z∗ − 1). Finally, after completing the iterations, the optimized pattern

m̂ can be obtained from θ̂ using (3.1).

For a coherent imaging system, recall that our goal is to solve the optimization

problem defined in (2.12) subject to the constraints in (2.17). We follow the same

parametric transformation approach discussed earlier to reduce it to an unconstrained

optimization problem. The re-parameterized cost function for the case of coherent
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imaging systems is given as,

F c
1 (θ) =

MN∑
k=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
z∗k − 1

1 + exp

⎡⎢⎣−a
⎛⎝MN∑

j=1

hkj
1 + cos(θj)

2

⎞⎠2

+ atr

⎤⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

2

(3.5)

and the gradient vector in this case is given as,

∇F c
1 (θ) = dc = a(HT [(z∗ − zc) 
 zc 
 (1− zc) 
 (Hm)] ) 
 sin(θ). (3.6)

Once again we observe that the gradient calculation involves two convolution

operations leading to a computational complexity of O(MN log(MN)). However, the

cost-function defined in (3.5) is a quartic function and is non-convex with multiple

local-minima (as also noted by Granik in [31]). Since we are using a local gradient-

based search technique; there is no guarantee of reaching the global minimum. How-

ever, ILT is an ill-posed problem and it is often not necessary to arrive at the global

optima (see [63]). Any good local minimum (where the goodness is defined using data-

fidelity and user-desired properties), can suffice as an acceptable solution. In Section

3.3, we introduce the regularization framework to incorporate the above requirement.

We note that the pattern m̂ obtained using the above method is not binary.

Instead each pixel can have gray values anywhere in [0,1]. This makes the resulting

mask practically unrealizable and hence we need a post-processing step to obtain the

synthesized binary OPC mask m̂b. The simplest way to obtain m̂b from m̂ is using a

global threshold parameter tm, such that the error between z∗ and the output binary

pattern obtained using m̂b (as the input) is minimized. The optimum value of tm can
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be obtained using a simple line search operation [5]. However, the above approach for

mask binarization is sub-optimal and in Section 3.3 we propose an alternate approach.

3.2 Preliminary Results for Incoherent Imaging with Gaus-

sian PSF

We now demonstrate the working of our algorithm using the simple case of

an incoherent imaging system with a Gaussian PSF. We also compare our results with

those obtained by directly solving the constrained optimization problem.

Unconstrained Optimization:

The bottom row in Fig. 3.2 illustrates the binary output patterns (after resist thresh-

olding) obtained using the (left) original pattern (i.e. m = z∗), (center) the optimized

gray pattern (m = m̂) and (right) the binary mask pattern (m = m̂b) as inputs. The

estimated mask m̂ was calculated using the unconstrained gradient descent iterations

described in (3.3) and (3.4).

The corresponding aerial images (which form an intermediate step in the

process flow) are illustrated in the middle row. The PSF effect was simulated using a

Gaussian filter of size 15 × 15 with σ = 5 pixels, with the sigmoid parameters a = 90,

tr = 0.5 and the gradient descent iterations were carried out with step size s = 0.4.

The final output binary patterns were obtained by thresholding the aerial images using

the heaviside operator given in (2.3) with tr = 0.5. Fig. 3.3 illustrates the cost function

behavior for the first 200 iterations of steepest descent, indicating quick convergence.
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Figure 3.2: Top row (input masks), left to right: original pattern, optimized gray pattern,
and binary pattern obtained using an optimum global threshold tm. The middle and bottom
rows indicate the corresponding aerial images and binary output patterns. The parameters
are a = 90, tr = 0.5, 15× 15 filter with σ = 5 pixels, s = 0.4, and number of iterations = 200.

The algorithm was coded using Matlab and the execution time was 7 seconds on a

1.4GHz Pentium-M processor.

The cost F i(m) associated with the above three input patterns can be cal-

culated using (2.15); where for this example, F i(z∗) = 142.76, F i(m̂) = 4.09, and

F i(m̂b) = 8.46. However, for the given imaging system (see Fig. 2.2), the aerial image

is actually subjected to the Heaviside operation to obtain the binary output image.
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Figure 3.3: Cost function (calculated using (2.15)) versus steepest-descent iterations for the
pattern in Fig. 3.2

Hence, it is more appropriate to express the error using the binary output image in-

stead of the sigmoidal transformed (gray level) output image. We employ a metric

we call pattern error, defined as the total number of pixels which are not faithfully

reproduced in the binary output pattern, 1

error(m) = ||z∗ − Γ(H̃m)||1, (3.7)

where Γ(·) is the heaviside operator defined in (2.3). From Fig. 3.2, we observe that

error(m) = 154, error(m̂) = 0, and error(m̂b) = 0.

Note that the imaging system was incapable of rendering the two bars distin-

guishable if the desired image is itself used as the input mask (i.e. m = z∗). However,

the patterns are reproduced very faithfully using the synthesized OPC mask. The re-

sults also indicate a perfect corner reproduction which is physically unrealizable. The

perfect resist reproduction appears because of the coarse sampling of the underlying

pattern coupled with the hard thresholding operation. The current pixel size is too
1Although we define (3.7) using L1 norm, note that for binary patterns, L0, L1 and L2 norms are

all the same.
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big to capture the rounding at the corners. However, if we choose a smaller sampling

interval, the corners will not be perfectly reproduced.

Constrained Optimization:

Fig. 3.4 illustrates the input and output patterns obtained by directly solving the

bound-constrained optimization problem in (2.15) instead of performing the paramet-

ric transformation. We employed the gradient projection algorithm described in [41]

and utilized the Matlab code provided by the author for this experiment. The experi-

mental parameters are exactly the same as Fig. 3.2, and 200 iterations were performed.

We observe that the optimized mask m̂ is structurally very similar albeit much more

gray compared to one obtained in Fig. 3.2. As a result, the pattern error increases from

4 to 40 after the mask binarization step rendering it ineffective. A similar behavior

was observed even for other test patterns. The above comparison illustrates that the

parametric transformation technique also has an added indirect advantage; the un-

constrained optimization routine tends to produce near-binary results, thereby easing

the post-processing binarization step. We attribute this to the cosine term in (3.1),

which results in a non-linear mapping onto [0, 1] while favoring values closer to the

extremities. Furthermore, the execution time was 14 seconds on a 1.4GHz Pentium-M

processor (which is double the amount of time required for the unconstrained case).

Note that the above example is only for illustration purposes and all the remaining

simulations in this article are carried out using unconstrained optimization.
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Figure 3.4: Top row, left to right: original pattern, optimized gray pattern using the con-
strained optimization routine from [41], and the binary pattern obtained using an optimum
global threshold tm. The bottom row indicates the corresponding binary output patterns. The
parameters are a = 90, tr = 0.5, 15 × 15 filter with σ = 5 pixels.

Shortcoming of Mask Binarization:

The mask binarization step in Fig. 3.2 did not cause any increase in the pattern

error. However, this may not be necessarily true in general. Fig. 3.5 illustrates the

input and output patterns for a more complicated circuit pattern. The Gaussian filter

employed has size 11 × 11 with σ = 14 pixels (the high value of σ gives the effect

of a severe averaging filter), while the sigmoid parameters are a = 80, tr = 0.5, and

s = 0.5. We observe that our algorithm performs an excellent job of pre-distortion
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Figure 3.5: Top row, left to right: original pattern, optimized gray pattern, and binary
pattern obtained using an optimum global threshold tm. The bottom row indicates the cor-
responding binary output patterns. The parameters are a = 80, tr = 0.5, 11 × 11 filter with
σ = 14 pixels, s = 0.5, and number of iterations = 200.

and the output is extremely faithful to the desired pattern (error(m) = 447 versus

error(m̂) = 1). Fig. 3.6 illustrates the cost function behavior for the first 200 iterations

of the steepest-descent procedure. Note that the long vertical bar (on the extreme

left) in the prescribed pattern in Fig. 3.5 is completely missing when reproduced using

m = z∗. However, our optimization procedure starts adding prewarping elements to

correct it at around the 85th iteration, which results in a steep decrease in the cost

function observed in Fig. 3.6. The kinks in the curve are due to the large step size
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Figure 3.6: Cost function versus steepest-descent iterations for Fig. 3.5.

and can be overcome by choosing a smaller s.

Fig. 3.5 also demonstrates the performance of the estimated binary mask

obtained using the mask binarization process. We observe that in this case the pattern

fidelity of the binary mask is poorer than the gray level mask (error(m̂) = 1 versus

error(m̂b) = 18). This is not surprising because the imaging system outlined in Fig. 2.2

is a binary-in-binary-out (BIBO) system. The binary output part is modeled by using

the sigmoid based function (see Fig. 2.3) which guarantees that the output pattern

is always close to binary. However, our current setup does not incorporate the fact

that the estimated input pattern should also be binary. The disadvantage is the need

for an extra post-processing step (mask binarization) which is sub-optimal with no

guarantee that the pattern error will be under control (as observed in Fig. 3.5). There

is also a possibility to jointly optimize the binarizing threshold and the gray pattern.

In the next section, we use the regularization framework to overcome these problems

and complete the binary-to-binary loop.
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3.3 Regularization Framework

As we noted earlier, the inverse lithography problem is an ill-posed problem

[90]. The continuous function formulation implies that there can be infinitely many

input (gray level) patterns all giving rise to the same binary pattern at the output.

Similarly, there may be many discrete-tone masks all capable of providing good con-

tour fidelity for a given pattern. Since multiple solutions exist, our goal is to choose a

solution which is more favorable to us compared to others. For example, continuous

tone masks are physically not realizable and we are only interested in solutions com-

prising of two or three tones. Furthermore, we want the synthesized mask patterns

to have low-complexity in order to control the mask manufacturing costs. The user

may also have other requirements like low MEEF (mask error enhancement factor),

large process-window, minimum feature spacing, etc [63]. In general, we may want

to inculcate (or promote) certain desirable properties in the solution. The regulariza-

tion framework [90] incorporates these requirements as prior information about the

solution, and helps us arrive at the preferred solution. The “regularized” problem

formulation can be described as follows,

m̂ = arg min
m

[γfidF (m) + γreg R(m)] (3.8)

where F (m) is the data-fidelity term, and R(m) is the regularization function (or the

penalty term) used to direct the unknown parameter m towards the desired solution

space. γfid and γreg are user-defined scalars for adequately weighing the first (data

fidelity) term against the second (regularization) term. The prior knowledge is con-
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tained in the penalty term R(m) and solutions in closer agreement with the prior are

penalized less compared to others.

The regularization framework was first employed in the context of lithography

by Peckerar, et al. [68, 67] to solve the proximity effect problem arising in e-beam

lithography. The estimated dose was obtained by solving an unconstrained continuous

function optimization problem using gradient-descent. This led to impractical negative

dose values which was overcome by employing a regularization framework similar to

(3.8). In what follows next, we discuss three regularization terms targeted to achieve

three different goals.

3.3.1 Discretization Penalty Term

The first penalty term employed to obtain near binary patterns is as follows,

Rdis(m) =
MN∑
j=1

[
1 − (2mj − 1)2

]
= 4mT (1 − m), (3.9)

where 1 = [1, . . . , 1]T ∈ �MN . Thus every pixel mj has an associated penalty given

by the quadratic function (see Fig. 3.7),

r(mj) = 1 − (2mj − 1)2.

As described earlier, the mask transmission values will be constrained to lie

in [0, 1] and hence we are only interested in the behavior of the cost function in that

range. The penalty incurred is zero for transmission values 0 or 1 and increases as

we move away from the binary region in either direction (maximum at mj = 0.5).
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Figure 3.7: Quadratic penalty cost function Rdis(m)

Therefore, the algorithm now favors pixel values closer to 0 and 1 and penalizes pixel

values around 0.5, which eases the mask binarization process.

The gradient ∇Rdis(m) ∈ �MN×1 of the quadratic penalty term is given by,

∇Rdis(m) = (−8m + 4), (3.10)

which can be used in conjunction with (3.3) and (3.4) while carrying out the steepest-

descent iterations as before.

Fig. 3.8 illustrates the results with the same prescribed pattern, PSF and

sigmoidal parameters used in Fig. 3.5 (Section 3.2). However, here we employ the

quadratic regularization term and minimize the overall cost function

J(m) = F (m) + γdisRdis(m),

where F (m) is defined in (2.15) and Rdis(m) is defined in (3.9), with γdis = 0.015. The

masks in Fig. 3.8 were obtained using 200 iterations with s = 1.5. Note that unlike

Fig. 3.5, the optimized gray-pattern is very close to binary. Hence, there is no need for

the line search operation discussed in Section 3.1 to find the optimal global threshold
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Figure 3.8: Left to right: original pattern, optimized gray pattern, and binary pat-
tern obtained using global thresholding with tm = 0.5. The cost function minimized was
F (m)+γdisRdis(m) and the parameters are a = 80, tr = 0.5, 11× 11 filter with σ = 14 pixels,
s = 1.5, number of iterations = 200, and γdis = 0.015

parameter tm. In fact, we can simply obtain the synthesized binary pattern m̂b by

thresholding m̂ with tm = 0.5. Note that the pattern error only increases from 0 to 1

pixel due to the above step. We also mention that the inclusion of the regularization

penalty that promotes binary results did not introduce any new error when applied to

the pattern in Fig. 3.2.

52



3.3.2 Complexity Penalty Term

The pixel-based approach allows tremendous flexibility in representing the

mask patterns but also suffers the inherent disadvantage that the masks are rather

complex and hence difficult to manufacture and inspect. Liu and Zakhor addressed

this issue in the past using a cell-based approach [48]. The cells are selected and moved

around either randomly or using the knowledge from previous moves. Researchers in

the past have also reverted to post-processing operations to simplify the output [59],

but this approach is sub-optimal. We follow the regularization framework and employ

a penalty function to direct our algorithm towards generating low-complexity masks.

Isolated perturbations, protrusions, etc are not preferred because they increase the

storage and manufacturing cost. Hence we seek a penalty term which suppresses these

effects. Thus we integrate a mask simplicity criterion into the optimization objective

and inherently favor low-complexity masks while exploring the search space.

To achieve this, let us first define an auxiliary variable called the activation

pattern f where,

fj = |mj − z∗j | for j = 1, . . . ,MN.

The on pixels in f indicate the positions where pre-warping occurred; so the pre-warped

pattern can be obtained by simply flipping the corresponding pixels in z∗ from 1 to 0

or 0 to 1.

There are a variety of penalty terms that one can employ depending upon how

one defines mask complexity. Akin to the idea of Total Variation (TV) [90] penalty,
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we choose to penalize the mask complexity using the local variation of the activation

pattern as follows [27]:

||∇f ||1 = ||Qxf ||1 + ||Qyf ||1, (3.11)

where Qx,Qy ∈ �MN represent the first (directional) derivatives and are defined as

Qx = I− Sx and Qy = I − Sy where Sx and Sy shift the 2-D mask represented by m

along horizontal (right) and vertical (up) direction by one pixel, respectively.

This approach, while relatively simple, enables us to decouple the features

of the underlying prescribed pattern z∗ from m thereby capturing only the changes

occurring due to prewarping. Isolated holes, protrusions, and jagged edges have higher

associated penalty. The regularization term in (3.11) suppresses these effects and forces

the changes to be spatially smoother and less abrupt. This leads to simple, and easy

to manufacture OPC masks.

The gradient ∇RTV (m) ∈ �MN×1 of the TV penalty term is given as,

∇RTV (m) = [Qx
T sign(Qxf)

+Qy
T sign(Qyf)] 
 sign(m− z∗), (3.12)

which can be used in conjunction with (3.3) and (3.4) while carrying out the steepest-

descent iterations as before.

Fig. 3.9 illustrates the results with the same prescribed pattern, PSF, and

sigmoidal parameters used in Fig. 3.2. However, here we employ both the quadratic
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Figure 3.9: Left to right: original pattern, optimized gray pattern, and binary pat-
tern obtained using global thresholding with tm = 0.5. The cost function minimized was
F (m)+γdisRdis(m)+γTV RTV (m) and the parameters are a = 90, tr = 0.5, 15×15 filter with
σ = 5 pixels, s = 1, number of iterations = 200, γdis = 0.025 and γTV = 0.045

and TV regularization terms and minimize the overall cost function

J(m) = F (m) + γdisRdis(m) + γTVRTV (m),

where F (m) is defined in (6.5), Rdis(m) is defined in (3.9), and RTV (m) is defined

in (3.11) with γdis = 0.025 and γTV = 0.045. The masks were obtained using 200

iterations with s = 1.0. We observe that the synthesized OPC pattern is much simpler

than the one in Fig. 3.2, yet the pattern error is still quite small.

Similarly, Fig. 3.10 illustrates the results obtained using both regulariza-
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Figure 3.10: Left to right: original pattern, optimized gray pattern, and binary pat-
tern obtained using global thresholding with tm = 0.5. The cost function minimized was
F (m)+γdisRdis(m)+γTV RTV (m) and the parameters are a = 80, tr = 0.5, 11×11 filter with
σ = 14 pixels, s = 1, number of iterations = 400, γdis = 0.01 and γTV = 0.02
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tion terms with the same prescribed pattern, PSF, and sigmoidal parameters used

in Fig. 3.8 with γdis = 0.01 and γTV = 0.02. The above result was obtained in 400

iterations with s = 1. In both the above cases, we observe that the isolated holes,

protrusions, and jagged edges are suppressed and hence the resulting mask is simpler,

and therefore easier, and cheaper to fabricate and inspect.

3.3.3 Aerial Image Penalty Term

The lithography process needs to be robust to the process errors introduced

by undesirable focus and exposure variations. This can be achieved by availing a good

quality aerial image; one with sharp contrast or steep transitions along the desired

edge locations. Sub-resolution assist features (SRAF) are small features below the

resolution limit of the imaging system, but influence the lithography behavior of the

larger features near them. They help improve the contrast of the main feature, but do

not themselves print in the final wafer pattern [69].

Interference Map Lithography (IML) is a commonly employed technique to

generate SRAF for contact holes [86]. It is based on the principle of Fresnel lens and

aims at increasing the peak intensity at the wafer. In the simplest case of binary mask

for an isolated contact, this can be achieved by placing clear areas on the mask where

the PSF is greater than zero, and by placing opaque areas on the mask where the PSF

is less than zero. Similarly for strong phase shift mask, there are 100% transmittance

0 degree areas (+1) where the PSF is greater than zero, and 100% transmittance 180

degree areas (-1) where the PSF is less than zero. The above idea is extended to random
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logic contacts by treating each of them as a Dirac delta function, and calculating the

electric field on the wafer plane (the interference map) as a linear superposition of the

individual contributions of contact holes. The above technique is restricted however,

to coherent imaging systems only. SRAF also give rise to side-lobes, which should be

below the resist threshold to avoid their printability. IML cannot automatically take

the SRAF printability into account. Therefore, there has recently been much interest

in ILT-based techniques for SRAF generation geared towards the 65, 45, and 32nm

nodes [38, 55].

There can be multiple ways of promoting assist-bars in the solution (as also

noted by Granik in [32]). In our study, we employ a penalty term defined as the

L2 norm of the difference between the desired (binary) pattern and the aerial image

obtained using the input mask. For a coherent imaging system, the penalty term is

given as,

Raerial(m) = ||z∗ − |Hm|2||22, (3.13)

and the gradient ∇Raerial(m) can be calculated as,

∇Raerial(m) = −HT
[
(z∗ − |Hm|2) 
 (Hm)

]
. (3.14)

It is important to ensure that slight variations in the lithography process con-

ditions do not result in the printing of the SRAF (a common check performed during

RET verification). However, the penalty term in (3.13) automatically ensures that the

energy in the side-lobes is minimal, thereby also accounting for SRAF printability.

Note that the optimization problem (2.12) can also be formulated using (3.13)
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instead of the contours fidelity term. That is, F (m) = F c(m) = Raerial(m). This will

guarantee a high quality aerial image. However, the contour fidelity will be very poor.

The above approach is useful in case of isolated contacts where the dose can be varied

to bring the CD on target and hence contour fidelity is not an issue of concern.

The augmented cost function to be minimized is defined as the sum of the

data fidelity term and the regularization terms:

J(m) = γfidF (m) + γaerialRaerial(m) + γdisRdis(m) + γTVRTV (m) (3.15)

where γaerial, γdis, and γTV are the regularization weights corresponding to their re-

spective penalty terms.

3.3.4 An Alternative Two Step Strategy for Optimization

A closer look at the above regularization terms indicates that on some occa-

sions they tend to conflict and suppress certain type of features in the estimated mask.

For example, the gradient descent optimization is usually initialized at m0 = z∗. In

such cases, the assist bar generation implies a switch from 0 to 1 in regions away

from the main feature in the estimated mask. However, in the continuous domain,

any movement away from 0 is penalized by the quadratic penalty term Rdis(m). This

tends to counteract the generation of assist-bars. We also observe from our experi-

ments (see Fig. 3.14) that often the best contour fidelity and aerial image contrast is

obtained by breaking the feature into two disjoint ones. This effect is again suppressed

by both the complexity and discretization penalty terms.
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Hence, we propose an alternative optimization strategy which involves dis-

tributing the optimization objectives into two steps. In what follows next, we discuss

a possible strategy for assist-bar generation and strong phase shift masks (PSM) syn-

thesis.

Step 1 - In the first step, data fidelity is defined as the aerial image fidelity and we

aim to minimize the cost function,

J(m) = Raerial(m)

Since the only term employed is the aerial image penalty, our goal is to estimate a

mask which improves the overall contrast of the aerial image. The steepest descent

iterations are initialized as m0 = z∗. Note that since the data fidelity does not account

for the contour fidelity, the resulting contours will not be on target yet.

Step 2 - We next minimize the augmented cost function defined in (3.15) which

consists of the contour fidelity, complexity, discretization, and aerial image penalty

terms. The key point is that the steepest descent algorithm for step two is initialized

using the estimated mask pattern obtained from step one. In this case, the phase as-

signments for strong PSM and generation of assist-bars for binary and AttPSM masks

occurs during the first step. In step two, we start exploring the search space from the

above solution point and incorporate the other objectives.

There is also a possibility of solving for only the contour fidelity in the first

step. The resulting (continuous-tone) mask solution is then subject to the discretiza-
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tion and complexity penalty terms in the second step to obtain the final regularized

solution.

3.4 More Results

Typical lithography systems employ a circular pupil as discussion in Sec-

tion 2.2. In this section, we demonstrate results for coherent and incoherent imaging

systems using circular and square lens pupils.

3.4.1 Assist Bars for Coherent Imaging

Fig. 3.11 illustrates the estimated masks and the binary output patterns

obtained using a coherent imaging system (σ = 0) with a circular pupil, λ = 193nm,

NA = 0.85, and the resist threshold tr = 0.3. The desired pattern consists of 90nm

random logic contact holes sampled at 10nm (k1 = 0.39). We follow the two step

optimization approach and Fig. 3.11 illustrates the estimated mask obtained at the

end of step one. The result was obtained in 60 iterations with s=20 and the run-time

was 22 seconds on a 1.4Ghz Pentium-M machine using Matlab. The cost function

behavior is illustrated in Fig. 3.12 and indicates quick convergence. We have observed

that the algorithm scales the center feature during the initial iterations and adds assist

bars during the remaining ones.2 Note that the assist features are also shared between

adjacent contacts and the mask has continuous tone. Furthermore, the output wafer

pattern (bottom row) obtained using the above mask does not have the contours on
2The above effect of scaling of the main feature was also recently reported in the ILT-based assist

bar generation work in [55].
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Figure 3.11: The synthesized masks (top row) and the output binary patterns (bottom row)
for 90nm random logic contact patterns. m̂b (left) is the estimated mask at the end of Step 1
(γaerial = 1), m̂b (center) is estimated at the end of Step 2 (γfid = 1, γaerial = 0.25, γdis =
0.005, γTV = 0) and m̂b (right) is estimated using the above parameters with γTV = 0.005

target. This is not surprising since the contour fidelity was not considered as an

optimization objective.

The estimated mask in the center of Fig. 3.11 illustrates the result at the end

of the second step. The parameters are: γfid = 1, γaerial = 0.25, and γdis = 0.005.

We observe that the mask is having discrete tone and the output contours for all

the contacts are on target. Fig. 3.13 compares the aerial image slices and indicates a
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Figure 3.12: Convergence curves for Fig. 3.11. The left curve indicates the cost
function behavior for Step 1 and the right curve indicates the regularization cost
(γdisRdis(m)+γTV RTV (m)) versus iteration number for Step 2 of the optimization.

tremendous improvement in the peak intensity. We also observe that the side-lobes are

under control and the assist bars do not print. However, the assist features are broken,

irregular, curvy, and complex, making the mask very difficult to manufacture. Hence,

we repeat the second step by employing the complexity penalty term (γTV = 0.005).

This leads to a comparatively simple pattern (see m̂b on the right in Fig. 3.11) and the

assist bars tend to become square or rectangular in shape, which are more preferable.

The above result was obtained by performing 100 iterations (see Fig. 3.12) with s = 8

and the run-time was 60 seconds.

3.4.2 Incoherent Imaging with Circular Pupil

Fig. 3.14 illustrates the estimated masks and the binary output patterns ob-

tained using an incoherent imaging system with σ = 1, λ = 193nm, NA = 0.95,

and the resist threshold tr = 0.5. The desired pattern is a more complicated pattern

sampled at 5nm with features as small as 50nm (k1 = 0.25). The top row indicates
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Figure 3.13: Horizontal slice at row number 35 for the aerial image obtained using the
synthesized mask in Fig. 3.11. Note that the contrast has improved and the side-lobes will not
print.

the input patterns and the bottom row indicates the corresponding output wafer pat-

terns. The center mask was obtained without any regularization with only γfid = 1.

We observe that although the contours are on target, the mask itself is very choppy

and irregular, making it very hard to manufacture. Hence we employ the two step

procedure outlined earlier and optimize using the augmented cost function (3.15) with

γfid = 1, γTV = 0.1 and γdis = 0.01. This results in an estimated mask which is

comparatively much smoother with little loss in performance. It is also interesting to

note that the algorithm automatically decided to break some features into two disjoint

sections.3 For example, the elbow on the top-left region in Fig. 3.14 is split into two

parts in m̂b, but is reproduced accurately at the output. Such counter-intuitive results

are hard to obtain using edge-based parametrization and would require extensive and

tedious segmentation scripts. The results were obtained using 100 iterations (runtime
3The above effect of breaking of features was also observed for partially coherent imaging systems

in [45].
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55 seconds) for each step.
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Figure 3.14: The top row consists of the original pattern and the synthesized masks before
and after regularization. The bottom row indicates the corresponding output wafer patterns.
m̂b (center) is estimated using γfid = 1 and m̂b(right) is obtained using γfid = 1, γdis = 0.01,
and γTV = 0.1.

3.4.3 Comparison with Combinatorial Optimization (Sherif, et al.)

Here we compare the results obtained using our continuous function opti-

mization method against those obtained by integer optimization. Sherif, et al. [84]

employed mixed-linear integer programming to estimate the resist threshold and the

OPC mask for an idealized lithography system with a square aperture. Their cost

function is very similar to the pattern error defined in (3.7) (note that we have used

the latter as a metric to evaluate the quality of our results). The authors in [84]
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reduce the non-linear cost function to a linear objective function with unconditional

constraints by tripling the number of estimated variables. The problem can then be

solved using branch and bound method.

Sherif, et al. Poonawala, Milanfar Sherif, et al. Poonawala, Milanfar

Input

d=4.5 d=4.5d=4.0 d=4.0

Output

Figure 3.15: The top row indicates the synthesized masks obtained using Sherif, et al. (from
[84]) and our algorithm for a square pupil with d = 4.0 and d = 4.5 pixels. The bottom row
indicates the corresponding output wafer patterns assuming a hard-limiter with tr = 0.2.

In order to make a fair comparison, we choose the same imaging system and

target pattern (z∗) as employed by the authors in [84]. The imaging system considered

in [84] is an incoherent imaging system with a square aperture. In this case, the PSF

is defined as,

h(x, y) =
1
d2

sinc2(
x

d
)sinc2(

y

d
),

where d is the width of the impulse response function in units of pixels. The results

for the cases of d = 4.0 and d = 4.5 are illustrated in Fig. 3.15. The experimental

parameters for our algorithm are as follows: a = 60, tr = 0.2, and γdis = 0.03.

We observe that the synthesized masks obtained using our algorithm are different
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from those obtained by solving the combinatorial optimization problem. However, the

output wafer pattern is reproduced with 100% accuracy proving that our results are

correct. It is also worth noting that our masks were synthesized in 5 seconds using

a 1.4GHz Pentium-M machine compared to 15-25 minutes reported in [84] (using the

computational resources available in 1995).

3.5 Weight Mask and Selected Parameter Optimization

In this section we discuss two additional useful features which can be incor-

porated in the above framework for solving the OPC mask design problem.

3.5.1 Weight Mask

In many practical scenarios, it is of interest to reproduce certain regions or

areas of the pattern more faithfully as compared to others. Consider two parallel

wires; the key requirement is that they never fuse on the reproduced pattern, whereas

we are much less concerned about their actual reproduced shape. Similarly the mask

designer can mark other critical regions depending on the shape, size and vicinity of

the neighboring features. The above information can be incorporated into a weight

pattern which can then be used for selective region correction. The goal is that only

the critically marked (high priority) regions on the desired pattern should be faithfully

replicated using suitable prewarping. The unimportant (low weight) regions of the

underlying pattern may be reproduced with relatively less fidelity. The weight pattern

is assigned before running the OPC routine and can be generated heuristically or by
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the mask designer.
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Figure 3.16: The employed weight mask (left), synthesized mask pattern (center), and the
final output pattern (right). Note that 5x5 region around the corners have zero weight whereas
the weight is one everywhere else.

Let w ∈ �MN×1 represent the weight mask where each element wk ∈ [0, 1]

signifies the importance (or weight) associated with reproducing that particular pixel

at the output. For an incoherent imaging system, we reformulate the optimization

problem in (2.15) using the weighted cost function as follows,

m̂ = arg min
m

MN∑
k=1

wk

(
z∗k − zi

k

)2
(3.16)

The gradient calculations and steepest-descent iterations can be easily extended using

(3.3) and (3.4) as follows,

θn+1 = θn − s{aH̃T[w 
 (z∗ − zi) 
 zi 
 (1 − zi)] 
 sin(θn)} (3.17)

Fig. 3.16 illustrates the weight mask (left), optimized OPC pattern (center),

and the final output pattern (right) using the same parameters as in Fig. 3.2 with

γdis = 0.02 and γTV = 0.04. In this case, we are not concerned about reproducing the

corners accurately at the output. However, we want the other features of the pattern
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(length, width and separation of the bars) to be accurately reproduced. The above

objective can be achieved by incorporating the information from the weight mask in

Fig. 3.16. Note that a 5×5 region around every corner has been assigned zero weight,

whereas the remaining regions have been assigned a higher weight equal to one. The

resulting prewarping is different from that occurring in Fig. 3.2 and all the regions,

barring corners, are perfectly reproduced.

3.5.2 Selected Parameter Optimization

All the algorithms discussed up to this point assume the entire synthesized

pattern to be completely unknown. The user (mask designer) has no control over which

regions of the underlying pattern are allowed to be predistorted. The entire layout

space is not always at our disposal and some design rules may require us to force our

variations to fall only within a specified area or region of the synthesized mask. In this

section we outline an approach which provides the above flexibility. This may also be

beneficial in reducing the computational time required to reconfigure OPC solutions

in the event of design re-spins, errors, etc. Note that the focus here is on controlling

the areas of the input that undergo changes, whereas in Section 3.5.1, the focus was

on controlling the areas of the output to be accurately reproduced.

The procedure starts with the mask designer (or the OPC engineer) marking

(or selecting) regions (or pixels) in the original pattern where predistortion is permis-

sible. Alternatively, the above procedure can also be automated based on feature type,

density, vicinity, etc and incorporated into the CAD software. The above pixels are
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stacked together to form the unknown parameter ṁ ∈ �P×1. The remaining pixels

will stay unchanged in the synthesized mask and are stacked together to obtain the

known vector m̈ ∈ �(MN−P )×1.
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Figure 3.17: Left to Right: User-selected parameters (marked in white), the corresponding
optimized mask pattern, and the final output pattern. The parameters are a=90, tr = 0.5,
15x15 filter with σ = 5, λdis = 0.01, and s=1.

Note that an element h̃kj in matrix H̃ denotes the contribution of the jth

pixel towards the formation of the output zk. The above matrix can be rewritten

as H̃ = [h̃1, h̃2, . . . , h̃MN] where h̃p ∈ �MN×1 represents the contribution of the pth

pixel toward the formation of the output vector z. The h̃p’s corresponding to the

pixels in ṁ are stacked together to form Ḣ ∈ �MN×P and the remaining h̃p’s are

stacked to form Ḧ ∈ �MN×(MN−P ). Thus H̃ is split into two components where Ḣ

determines the contribution from pixels which are unknown (allowed to be modified)

and Ḧ determines the contribution from pixels which are fixed. The forward model in

(2.9) can now be rewritten as,

zi = sig(Ḣṁ + Ḧm̈). (3.18)
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Note that the second summation term inside the sigmoid is a constant because m̈

remains unchanged. Finally, the steepest descent iterations can be directly used to

update the modifiable pixels in ṁ as follows,

θ̇
n+1

= θ̇
n − s{a (ḢT [(z∗ − zi) 
 zi 
 (1 − zi)] ) 
 sin(θ̇

n
)} (3.19)

Fig. 3.17 illustrates a user-defined band (three pixels thick on both side of the

edges) indicating the region allowed to undergo predistortion. The user-selected region

is marked in white, and the remaining region where predistortion is not permissible is

marked in black. The chosen parameters were used to solve for the same experiment

and pattern as in Fig. 3.2 albeit with γdis = 0.01 and s = 1. Fig. 3.17 also illustrates

the optimized binary OPC pattern and the final binary output pattern using the above

method. As expected, the changes are confined to lie within the band and are very

different (far less scattered) compared to the synthesized OPC mask in Fig. 3.2.

In conclusion, we were able to design OPC masks to reduce line-end short-

ening, corner-rounding, and improve pattern fidelity for both coherent and incoherent

imaging systems. Our ILT routine is also capable of automatic generation and place-

ment of assist-features to improve the aerial image contrast. In the next chapter, we

extend our ILT framework to synthesize strong and weak phase shift masks.
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Chapter 4

Single Exposure PSM Design

We now move our discussion to the design of phase shift masks (PSM) and demonstrate

the extension of our framework to the cases of attenuated PSM (AttPSM), 100%

transmission PSM, and strong PSM with chrome. The results will indicate that ILT

leads to very interesting and un-intuitive mask designs, especially for strong PSM.

4.1 PSM Optimization

An incoherent imaging system does not account for the phase information

of the mask. Therefore, in this chapter, we focus exclusively on coherent imaging

systems. Recall from (2.12) and (2.13), that the ILT problem for a coherent imaging

system consists of minimizing the cost function:
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F c(m) =
MN∑
k=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
z∗k − 1

1 + exp

⎡⎢⎣−a
⎛⎝MN∑

j=1

hkjmj

⎞⎠2

+ atr

⎤⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

2

(4.1)

As seen from Section 2.4, the estimated mask pixels are now allowed to have

negative values (corresponding to the 180 degree phase shifted regions). In what

follows next, we discuss the mask design algorithms for the three commonly employed

variants of PSM.

4.1.1 Attenuated PSM

Attenuated phase shift masks (AttPSM) consist of quartz and molybdenum

silicide (MoSi) instead of chrome (see Section 1.2.2). MoSi (unlike chrome) allows a

small percentage of light intensity (typically 6% or 18%) to pass through it. AttPSM

are also referred to as weak phase shift masks in the lithography literature. The

thickness of MoSi is chosen such that light which passes through is 180◦ out of phase

compared to the transmitting quartz regions. In our discussion, we focus on the 6%

intensity transmission AttPSM.

Note that every pixel mj can now have only two amplitude transmission

values equal to −√
0.06 = −0.245 (the 180 degree phase shift with weak transmission)

or +1 (100% transmission with no phase shift). Therefore, the optimization problem

in (4.1) is subject to the constraints that mj = −0.245 or 1. The above integer

optimization problem can be reduced to an unconstrained optimization problem using
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the same procedure outlined in Section 3.1 (for OPC masks). Therefore, the first step

is to translate the integer constraints into inequality constraints −0.245 ≤ mj ≤ 1,

thereby reducing it to a bound constrained optimization problem. The parametric

transformation should now map the unconstrained variable θj to the range [-0.245, 1]

and is given as,

mj = 0.6225(1 + cos(θj)) − 0.245 (4.2)

The (re-parameterized) unconstrained optimization objective is now given as

F c
1 (θ) =

MN∑
k=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
z∗k − 1

1 + exp

⎡⎢⎣−a
⎛⎝MN∑

j=1

hkj {0.6225(1 + cos(θj)) − 0.245}
⎞⎠2

+ atr

⎤⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

2

(4.3)

The above objective can be minimized using steepest descent iterations sim-

ilar to (3.4) to obtain the optimal mask solution. The above solution will of course

have continuous transmission values between -0.245 and 1, and hence a post-processing

operation will be required to obtain the two-tone 6% AttPSM masks.

Alternatively, we can also employ the regularization framework introduced

in Section 3.3, with the goal of obtaining easy to discretize AttPSM mask solutions.

This can be achieved by employing a quadratic penalty term, where now the pixels

having values −0.245 and 1 have zero penalties, and the cost increases as we move

away from them in either direction (also see Fig. 4.1). Therefore, we can choose

r(mj) = −m2
j + 0.755mj + 0.245, (4.4)
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and the penalty is highest at the center of the range (mj = 0.3775). Finally, the

two-tone AttPSM m̂b is simply obtained by thresholding the estimated mask m̂ with

tm = 0.3775.
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Figure 4.1: Discretization penalty term for AttPSM (maximum penalty is at mj = 0.3775)

There is also the possibility of using the complexity and aerial image penalty

terms, and the two step optimization procedure outlined in Section 3.3. Finally, the

steepest descent iterations are initialized using the target pattern z∗, such that the

zero regions are substituted by the phase-shifted MoSi regions. Thus, (z∗i = 0) →

(m0
j = −0.245) and (z∗i = 1) → (m0

j = 1) for j = 1, . . . ,MN .

4.1.2 100% transmission PSM

As the name suggests, 100% transmission PSM does not use the opaque

chrome features at all, and is an extreme case of AttPSM. It is an all transmissive

mask consisting of only zero and 180 degree phase shift features. It is also referred to

as strong phase shift mask or chromeless phase lithography (CPL) in the lithography

literature (see Fig. 1.9).
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Figure 4.2: Discretization term for 100% transmissive PSM (maximum penalty is at mj = 0)

Here every pixel mj can only have values -1 (fully transmissive with 180

degree phase shift) or +1 (fully transmissive with 0 degree phase shift). The optimiza-

tion problem in (4.1) is therefore subject to the integer constraints that mj = −1 or 1.

Once again we relax the condition and impose the bound constraints −1 ≤ mj ≤ 1,

and perform the parametric transformation mj = cos(θj) to reduce the problem to an

unconstrained optimization problem. The quadratic penalty term (used for regular-

ization) now has zero penalty at −1 and 1, and maximum penalty for mj = 0 (see

Fig. 4.2),

r(mj) = −m2
j + 1. (4.5)

Hence, the transmission values are pushed towards -1 and 1 thereby easing the dis-

cretization step. The two tone 100% transmission mask m̂b is obtained by thresholding

the estimated mask m̂ with tm = 0.

It is important to note that in case of strong PSM, the estimated mask seldom

resembles the target (see Fig. 4.5, 4.8, and 4.11). Hence, the steepest descent algorithm
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was initialized to all zeros, thereby allowing the algorithm to automatically perform

the phase assignments for all the regions.

4.1.3 Strong PSM with Chrome

The final case we consider is that of strong PSM where the mask features

can have values 0 (chrome) or 1 (quartz with no phase shift) or -1 (quartz etched to

provide 180 degree phase shift). The bound constraints and parametric transformation

are similar to those employed for 100% transmission PSM. The only difference occurs

in the discretization regularization term since we now want a three-tone mask. There
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Figure 4.3: Discretization penalty cost for strong PSM (with chrome). The minima are at
-1, 0, and 1

can be different ways of formulating the above regularization term. One possible

approach is to divide the interval [-1 1] into three equal parts and employ a fourth

order quartic penalty term where each pixel has an associated cost,

r(mj) = −0.967m4
j + 0.307m2

j + 0.655 (4.6)
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Fig. 4.3 is the plot of the above function. The above curve was obtained by fitting a

fourth order polynomial to an over-determined linear system. The latter was formu-

lated to obtain stationary points at mj = −0.33, 0, and 0.33, zero penalty at mj =

−1, 0, and 1, and high penalty at mj = −0.33 and 0.33. The required three-tone

mask m̂b can be finally obtained by quantizing m̂j ∈ [−1,−0.33), m̂j ∈ [−0.33,+0.33),

and m̂j ∈ [+0.33, 1] to -1, 0, and 1 respectively.

4.2 Results

We now demonstrate some results obtained using the above framework for

both weak and strong PSM.

4.2.1 2-Bar Separation

Experiment 1:

In the first experiment, our goal is to print two 120nm thick bars separated by

50nm (k1 = 0.22) with high contour fidelity. Fig. 4.4 illustrates the synthesized 6%

attenuated PSM for a coherent imaging system with σ = 0, λ = 193nm and NA =

0.85. We employ the two-step optimization strategy outlined in Section 3.3.4 and the

experimental parameters are as follows: a = 25, tr = 0.3, γfid = 1, γaerial = 0.25,

γTV = 0.01, γdis = 0.01, and s = 5. The number of iterations for the two steps were

80 and 160, and the run-times were 30 and 60 seconds respectively. We observe that

the optimization algorithm automatically adds assist bars in all four directions. The

width of the assist bars and their placements from the center feature are calculated
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as part of the optimization procedure. Fig. 4.7 illustrates the central horizontal slice

of the aerial image. If the desired binary pattern is itself fed as the input to the

imaging system, the aerial image barely has any modulation and the two bars are not

distinguishable. However, the synthesized AttPSM mask causes good modulation and

the assist features do not print.
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Figure 4.4: The estimated 6% AttPSM mask (left), the corresponding aerial image (center),
and the final binary output pattern (right) for coherent imaging system with λ = 193nm and
NA = 0.85. The black and white regions in m̂b correspond to -0.245 and 1 respectively.
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Figure 4.5: The estimated 100% transmission PSM (left), the corresponding aerial image
(center), and the final binary output pattern (right) for coherent imaging system with λ =
193nm and NA = 0.85. The black and white regions in m̂b correspond to -1 and 1 respectively.

Fig. 4.5 illustrates the synthesized 100% transmission PSM for the same
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imaging system. The experimental parameters are as follows: a = 25, tr = 0.3,

γfid = 0.75, γaerial = 0.25, γTV = 0.01, γdis = 0.01, and s = 5. The number of

iterations for the two steps were 120 and 240, and the run-times were 45 and 90 seconds

respectively. Note that our goal is to create a horizontal separation between the two

bars. However, the corresponding region in the synthesized mask is a zero phase shift

fully transmissive (white) contiguous region. The destructive interference is actually

created by the two vertically separated 180 degree phase shift (black) features giving

a sharp contrast aerial image as observed in Fig. 4.7. The result also demonstrates

that our algorithm can synthesize masks which can be very different from the desired

patterns.
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Figure 4.6: The estimated strong PSM (left), the corresponding aerial image (center), and
the final binary output pattern (right) for a coherent imaging system with λ = 193nm and
NA = 0.85. The black, gray, and white regions in m̂b correspond to -1, 0, and 1 respectively.

Finally, Fig. 4.6 illustrates the result using a strong PSM with chrome. The

experimental parameters are as follows: a = 25, tr = 0.3, γfid = 1, γaerial = 0.25,

γTV = 0, γdis = 0.01, and s = 1.5. The number of iterations for the two steps were

80 and 160, and the run-times were 30 and 60 seconds respectively. Once again the
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Figure 4.7: Horizontal slices along the center of the aerial images obtained using the desired
pattern z∗ and the various synthesized PSMs in Fig. 4.4, 4.5 and 4.6 as inputs.

synthesized mask is quite different from the desired pattern. We also see three as-

sist features around the main pattern which improve the contrast of the aerial image.

The aerial image slices in Fig. 4.7 demonstrate an improvement in the contrast. Fur-

thermore, the side-lobes are below the resist threshold tr, and hence they will not

print.

4.2.2 Random Logic Contact Holes

In the second experiment, our goal is to improve the contrast of the aerial

image and distinguish the 100nm random logic contacts (see Fig. 4.8) using strong

PSM. The lithography system parameters are: σ = 0, λ = 193nm, andNA = 0.7 (k1 =
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Figure 4.8: The top row consists of the desired pattern, the estimated strong PSM with
chrome, and the 100% transmission PSM. The black, gray, and white regions correspond to
transmission values of -1, 0, and 1 respectively. The bottom row consists of the aerial images
corresponding to the masks in the top row. Here λ = 193nm, NA = 0.7, and σ = 0.

0.36). The first row in Fig. 4.8 indicates the desired pattern (z∗) and the estimated

discrete tone masks (m̂b) for strong PSM with chrome and 100% transmission PSM.

The colors black, gray, and, white correspond to transmission values -1, 0, and +1

respectively. Note that in this case we are only concerned about matching the aerial

image without worrying about the resist effects. Hence we set the contour fidelity

term γfid = 0. The remaining experimental parameters for strong PSM with chrome

are γaerial = 1, γdis = 0.03, γTV = 0, s = 7, and number of iterations = 100. The
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parameters for 100% transmission PSM are γaerial = 1, γdis = 0.01, γTV = 0, s = 7,

and number of iterations = 100. The optimization was carried out in a single step for

both cases and each had a runtime of 50 seconds.

The aerial images corresponding to the input masks are illustrated in the

bottom row of Fig. 4.8. We observe that strong phase shift masks bring tremendous

improvement in the aerial image contrast thereby making the contacts distinguishable.

Note that the upper half of the desired pattern is a contiguous zero region. The 100%

transmission PSM deals with such regions by placing the +1 and −1 assist bars in

a manner which destructively interfere leading to very little energy deposition. The

PSM with chrome blocks the energy deposition by simply using chrome features.

4.2.3 Periodic Contact Holes

We now illustrate results for printing 100nm contact hole grating for different

pitches. Since a contact train periodically repeats in the X and Y directions, the

ILT simulations are performed for only one period. The boundary conditions are

simulated as periodic (while performing the convolution operations) to account for

the pattern periodicity. Fig. 4.9 indicates one period of the estimated CPL masks for

100nm contact hole with pitch increasing from 200nm to 400nm. The simulations were

performed for a coherent imaging system with NA = 0.85, λ = 193nm, and pixel-size

of 20nm. The experimental parameters are γaerial = 1, γfid = 0, and γdis = 0.01.

We observe that even though the contact hole size is fixed, the estimated masks look

drastically different over the pitch. The tight pitch of 200nm leaves no room to place
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assist bars on the mask, but the main feature appears enlarged. As pitch increases,

the size, position, and shape of the assist bars significantly vary.

Figure 4.9: Estimated CPL masks for a 100nm contact through varying pitch for NA = 0.85.
Left to right the pitch value is 200nm, 260nm, 340nm, and 400nm.

4.2.4 2-D Periodic Dense Pattern

The next experiment is for a periodic dense pattern consisting of phase-

conflicts [54], a critical issue with strong PSM. Fig. 4.10 illustrates the two basic types

of phase-conflicts: no phase-shift where we want it, and phase-shift where we do not.

For the T-junction, we observe that there is lack of phase-shift along the horizontal

critical feature due to the odd wrapping of phase assignments. The second type of

phase assignment problem is called the termination problem, since it usually occurs

near a line-end. When two opposite phases meet, they create a dark interference region

(see Fig. 1.9 in Section 1.2.2), thereby resulting in an unwanted resist line. In the past,

researchers have proposed using alternating phase shift mask with trim mask (double

exposure) [28] or layout modification using graph-cut methods [7] to resolve the above

problem.

The target pattern in Fig. 4.11 consists of both T-joints and line-ends. The
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Figure 4.10: Two commonly arising cases of phase conflict (from [54]). The pattern on the
left is a T-Joint which results in lack of phase-shift along the critical dimension. The one on
right is a line-end which suffers from the problem of unwanted phase-shift.

grating pitch is 160nm, NA=0.85, k1 = 0.35, and the pattern is sampled using 20nm

resolution. We employ our ILT approach and solve for one period of the pattern

(marked in dotted red box in Fig. 4.11). The boundary conditions are simulated

using circularly symmetric padding for the convolution operations. The experimental

parameters are γfid = 1, γdis = 0.01, s = 0.5, number of iterations = 1500, and

the runtime was 50 seconds. The estimated 100% transmission mask corresponding

to one period of the pattern is indicated in Fig. 4.11. The results indicate that the

aerial image has low peak-intensity value in the phase-conflict regions, but the overall

contour fidelity (at tr = 0.3) is good.

4.2.5 A Complicated Tight-Pitch Pattern

The target pattern in Fig. 4.12 consists of a mixture of line, space, and

contacts on a 120nm pitch and was provided to us by Intel Corporation. The imaging
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Figure 4.11: The top row indicates the periodic target pattern and the estimated 100%
transmission PSM. The bottom row indicates the aerial image and its contour at tr = 0.3.
Here NA = 0.85, σ = 0, and k1 = 0.35.

system has NA=0.93 giving a very low k1 value of 0.29, and the mask pixel size is

20nm. We employ our ILT approach to solve for a CPL mask, and the experimental

parameters are γfid = 1, γaerial = 0.1, γdis = 0.03, and s = 1. The estimated 100%

transmission mask is indicated in Fig. 4.12. The very low k1 value and the phase

conflict regions lead to a relatively poor contrast aerial image, but the overall contour

fidelity (at tr = 0.3) is still good.

As discussed earlier, the cost-function for coherent and partially coherent

imaging systems is a quartic cost function, and is non-convex with multiple local-
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Figure 4.12: The top row indicates the complicated target pattern with 120nm pitch and the
estimated 100% transmission PSM. The bottom row indicates the aerial image and its contour
at tr = 0.3. Here NA = 0.93, σ = 0, and k1 = 0.29.

minima (as also noted by Granik in [31]). Note that the solutions obtained using

OPC and AttPSM masks look structurally similar to the target pattern (see Fig. 3.11,

Fig. 3.14, and Fig. 4.4). Our observation is that in such cases, the target itself acts

as a good initial guess, and the (local) gradient-based search algorithm converges to a

“good local minimum”.

In the case of strong PSM, the estimated masks do not structurally resemble

the target (see Fig. 4.5, Fig. 4.6, Fig. 4.8, and Fig. 4.11). PSM mask design often

runs into “phase entanglement issues” as observed in [31]. In our case, the gradient
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descent algorithm was initialized to all zeros thereby forcing the algorithm to choose

the phase (0 or 180 degree) for all the regions. However, in the presence of dense

features with numerous “phase-conflicts”, the algorithm sometimes gets stuck in a

“bad local minimum”.

One possible approach (suggested in [31]) is to inspect the local minima of a

simplified quadratic programming (QP) problem, and choose a good minimum as the

initialization guess to the quartic cost function optimization routine. Another option

is to employ four-phase masks, which are adequate for any Manhattan type geometry,

as proved in [64]. The above approach was also employed under the alias of generalized

inverse lithography in [50]. Yet another approach is to initialize with several different

starting conditions, and reach a “better’ local minima. But this is computationally

more intensive. A more practical alternative is to use double exposure ILT, which

automatically splits the target pattern into two parts and resolves the phase-conflicts

[70]. The latter is more thoroughly explored in the next chapter of the thesis.
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Chapter 5

ILT for Double Exposure

Lithography with k1 ≥ 0.25

As we approach the 45nm and 32nm technology nodes, the operating k1 value is

rapidly decreasing (currently k1 ≈ 0.3). For such low k1 values, the aerial image

contrast obtained using single exposure lithography is poor, and the process is very

sensitive to focus and exposure errors. Furthermore, single exposure lithography also

suffers from the phase-conflict issue (discussed in Section 4.2.4).

The above issues and the non-readiness of EUV lithography has forced the

industry to look into alternate advanced lithography solutions. Double exposure tech-

niques have gained much importance recently, and are tipped as important technology

enablers for 45nm and smaller nodes [34, 36]. They employ two (same or different)

masks and two (same or different) illumination settings in order to print the desired

circuit pattern. There are two fundamentally different flavors of double exposure de-
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pending on whether the resist is developed once or twice. These are referred to as

double exposure lithography (DEL) or double patterning lithography (DPL), and are

described in more detail in Section 5.1.

In this chapter, we extend our inverse lithography framework to the case

of DEL. The above combination allows patterning very close to the Rayleigh limit

(k1 = 0.25) with high contrast aerial images, and also overcomes the phase-conflict

problem.

5.1 Double Exposure and Double Patterning

In this section, we compare and contrast the two different implementations

of double exposure.

5.1.1 Double Exposure Lithography (DEL)

A flowchart of the steps involved in DEL is outlined in Fig. 5.1. We observe

that the two exposures are carried out sequentially on the same resist layer, and the

resist is developed only once after the second exposure. If a conventional resist is used,

the final aerial image is the linear super-position of the two individual exposures.

Hence, the minimum resolvable pitch is the same as single-exposure, i.e., minimum

kpitch = 0.5 and,

Min Pitch = 0.5
λ

NA
. (5.1)

The above technique is widely adopted because it gives superior contrast for

very low k1 values (close to 0.25), not achievable using single exposure lithography. It
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Exposure # 1

Exposure # 2
Mask 2

Develop Resist

Etch

Mask 1

Coat Resist

Figure 5.1: Flowchart of the steps involved in double exposure (single development) lithog-
raphy.

finds applications such as trim mask with alternating phase shift masks [28] (to over-

come the phase-conflict issue discussed in Section 4.2.4), double-dipole lithography

(H/V decomposition), IDEAL (Innovative Double Exposure by Advanced Lithogra-

phy) [34], etc. Double exposure with high-index immersion fluids (NA>1.5) has the

potential to enable 32nm technology node. DEL also forms the focus of this thesis,

and is explored in much more detail in the later sections.

5.1.2 Dual Patterning (DPL)

The double development case (also referred to as dual patterning) requires

additional resist development, etching, and coating steps in between the two exposures
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[36, 26]. The concept behind multiple exposure/develop techniques is that the funda-

mental single-exposure limit given in (5.1) is not on the individual feature size (CD),

but on the pattern pitch [9]. Using non-linearities in the pattern transfer process, CDs

can be much smaller than half of the smallest allowed pitch. Dual patterning uses the

above concept by patterning features at dimensions close to 1/4 of the minimal pitch

allowed by constraints of the imaging system (see Fig. 5.2), and stores the informa-

tion from the first exposure in a hard mask (or other sacrificial layer). The second

exposure is then carried out with similar feature size target and appropriate shift and

again preserved in a sacrificial layer, thereby doubling the frequency of each exposed

feature present on each of the masks (also see Fig. 5.3). The minimum pitch resolution

for dual patterning is 0.25 λ
NA . It was demonstrated that dual patterning allows one

to reach patterning with effective k1 as low as 0.16 [58].

Figure 5.2: The original (1:1) grating and two decomposed (1:3) gratings for dual patterning.
The two patterns are shifted versions of each other and the pitch is doubled enabling them to
be individually printed using single exposure.

However, additional processing steps related to preserving the image of the
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Figure 5.3: Steps involved in double patterning for frequency doubling of grating (figure
courtesy Intel Corporation).

first exposure in sacrificial layer (such as need to load and unload wafer twice from the

exposure tool), carry additional overlay and dimensional control (CD) penalty. Fur-

thermore, the extra processing steps such as a second develop, hard-mask deposition,

and etch steps might result in additional yield liability as well as increased wafer cost.1

In this thesis, we focus exclusively on DEL, where the resist is developed

only once at the end of the two exposures. With regard to the above, we explore two
1Despite of these misgivings, the unavailability of EUV and high-index immersion fluids have made

dual patterning a strong contender for the 32nm technology node.
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cases of k1 ≥ 0.25 (above Rayleigh resolution limit), and k1 < 0.25 (below Rayleigh

resolution limit). In this chapter we extend our ILT framework for k1 ≥ 0.25 using

conventional resist, and present a new paradigm of decomposing the gray-level aerial

image for the individual exposures. Later (in Chapter 6), we explore an ambitious

paradigm of using novel materials which may allow frequency doubling (k1 < 0.25)

similar to dual patterning, but without the need for a sacrificial layer.

5.2 Double Exposure Inverse Lithography Technology (DEL-

ILT) Framework

Here we demonstrate the shortcoming of DEL and motivate the need for an

inverse lithography based approach to mask design for double exposure lithography

systems. This is followed by a discussion of the forward model for DEL, and a formal

definition of the double exposure inverse lithography problem.

5.2.1 Motivation

As discussed earlier, in DEL systems the resist is developed only once at the

end of the two exposures. All DEL systems involve some sort of pattern decomposition

targeted towards the individual exposures. A typical double dipole lithography scheme

proposed by Hsu, et al. [36] starts by separating the target into horizontal and vertical

geometries for use with D-Y and D-X dipoles respectively. The final image with the

two exposures is the sum of the energies at the wafer plane. Therefore, a critical

shielding/protecting step is essential in order to guarantee a high aerial image contrast.
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Thus the vertical features are protected when the horizontal features are imaged and

vice-versa. The above steps are followed by scattering bar insertion and model-based

OPC in order to improve robustness and bring the contours on target.

Figure 5.4: The top row indicates the vertical and horizontal (decomposed) target patterns
and the original target. The bottom row indicates the corresponding aerial images obtained
using single exposure ILT masks, and the combined aerial image.

Fig. 5.4 is a simple example which demonstrates the effect of residual aerial

image energy in DEL. Here, the target pattern was first decomposed into horizontal

(H) and vertical (V) structures (see the left and center patterns on the top row), and

the corresponding masks were synthesized. The individual aerial images are illustrated

in Fig. 5.4 and they have a good contrast. However, we observe that the combined

aerial image has an unacceptable quality at the critical junction (the gap between

the horizontal and vertical features) due to the unwanted residual energy from the
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previous exposure. Thus some sort of model-based pattern decomposition or shielding

is essential for the success of DEL. The double exposure inverse lithography (DEL-ILT)

framework proposed in this thesis is an “aerial image aware” pattern decomposition.

Most commonly employed techniques aim to split the (binary) target into two parts

followed by some post-processing steps to obtain a high contrast aerial image. However,

the DEL-ILT framework is a fresh paradigm which acts by decomposing the (gray-level)

aerial image into two overlapping parts (see Fig. 5.10 for the DEL-ILT decomposition

of the target pattern in Fig. 5.4). The estimated masks are simultaneously synthesized

to guarantee a superior contrast of the combined aerial image without worrying about

the residual energies from the previous exposure.

5.2.2 The Double Exposure Inverse Lithography Problem

The first step towards solving an inverse problem is to define a forward (or

process) model which is a mathematical description of the given imaging system.

Consistent with our earlier notation, the image formation process for a DEL system

can be mathematically expressed as,

z(x, y) = T{a(x, y), b(x, y)}, (5.2)

where T{.} is the forward model which maps the input intensity functions a(x, y) and

b(x, y) to the output intensity function z(x, y). Let z∗(x, y) be the desired output

intensity function. The goal of double exposure inverse lithography mask design is to

estimate the input intensity functions â(x, y) and b̂(x, y) which will give us a close ap-

proximation to the desired output z∗(x, y) (see Fig. 5.5). This is achieved by searching
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the space of both the inputs and choosing a pair â(x, y) and b̂(x, y) which minimizes

a distance d(z(x, y), z∗(x, y)), where d(·, ·) is a distance metric. Therefore,

{â(x, y), b̂(x, y)} = arg min
a(x,y),b(x,y)

d[z∗(x, y), T{a(x, y), b(x, y)}]. (5.3)

Input Mask # 1

??

Exposure # 1

Exposure # 2
Input Mask # 2

Develop

Binary Output (Wafer) 
Pattern

T{.}

ILT ??

Desired

Figure 5.5: Forward Model and ILT for Double Exposure Lithography Systems

A typical lithography process consists of aerial image formation and the resist

process. If the forward model T{.} accounts for the resist effects, the output pattern

z(x, y) represents the resist pattern in the wafer. If T{.} only models the imaging

optics, z(x, y) represents the aerial image in the wafer plane. The objective of the

inverse problem in the first case is to improve the contour fidelity, and in the second

case is to improve the aerial image contrast. The present discussion focuses on the
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latter case of aerial image improvement.2

The final aerial image for the given DEL system is equal to the sum of the

aerial images obtained from the two individual exposures. Using the SOCS approx-

imation for partially coherent imaging systems, the aerial image z can be modeled

as,

z =

⎛⎝ P1∑
j=1

αj |Hja|2
⎞⎠+

⎛⎝ P2∑
j=1

βj |Gjb|2
⎞⎠ , (5.4)

where a, b, z ∈ �MN×1 are obtained by sampling and lexicographic ordering of

a(x, y), b(x, y), and z(x, y) respectively, H1, . . . ,HP1 and G1, . . . ,GP2 are the SOCS

kernels corresponding to the two exposures, and α1, . . . , αP1 and β1, . . . , βP2 respec-

tively correspond to their singular values. Note that the above model can account for

different illumination settings for the first and second exposures (commonly seen in

double dipole lithography).

As a proof of principle, we focus on the simpler case of a DEL system using

a coherent imaging system (σ = 0) with the same exposure settings for both the

exposures. Under the above assumptions, the forward model in (5.4) reduces to,

z = |Ha|2 + |Hb|2, (5.5)

where H is a jinc function with cutoff frequency NA/λ. Alternatively, H can also be

substituted by the optimal coherent approximation (OCA) kernel reported in [64].

The only related work (in the open literature) on double exposure mask design

using inverse lithography is by Wang, et al. [91] and Pati, et al. [64]. Their original goal
2The contour fidelity model will be discussed in Section 7.3 in context of alignment error.
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was to actually solve the inverse problem for single exposure phase shift mask design.

The mask was synthesized in the frequency domain using POCS (projection onto

convex sets) iterations. The resulting mask was complex-valued having continuous

phase and amplitude. Double exposure was suggested only as a phase quantization

technique by employing the double-exposure theorem [91]. The latter states that any

image attainable using a complex-valued mask can be obtained using a suitable pair

of two strong continuously varying phase shift masks. Finally, the amplitude was

quantized using half-toning. Note that they did not originally set out to design masks

for double exposure systems, and hence their framework is more restricted in that

it can inherently handle only coherent imaging systems with the same illumination

settings for both exposures. Furthermore, the half toning technique [91] tremendously

increases the complexity of the masks. Finally, it is hard and not intuitive to impose

simplicity and discretization constraints on the masks in the frequency domain.

In the next section we discuss our inverse imaging approach for pixel-based

DEL mask design.

5.3 DEL-ILT Optimization

The mask synthesis problem can be formulated as minimizing the L2 norm of

the difference between the desired pattern z∗ and the aerial image z defined in (5.5),

[â, b̂] = arg min
a,b

F (a,b) = arg min
a,b

||z∗ − |Ha|2 − |Hb|2||22. (5.6)
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The above estimated masks are subject to integer constraints depending by the em-

ployed RET (as seen earlier in Chapter 2). Throughout the current discussion, we

restrict ourselves to the case where both the estimated masks are 100% transmission

strong PSM. Thus, the transmission values of the estimated mask pixels should be

either -1 or +1 leading to an integer optimization problem, which can be reduced to

a continuous variable optimization problem by imposing the following 2MN bound

constraints on the estimated variables,

−1 ≤ aj ≤ 1 and − 1 ≤ bj ≤ 1 for j = 1, . . . ,MN . (5.7)

Having reduced the problem to the continuous domain, the analytically calculated

gradient can once again be used to systematically explore the solution space.

Note that double exposure lithography under the bound constraints in (5.7)

is equivalent to employing single exposure masks with continuously varying phase and

amplitude as per the double exposure theorem (also see Appendix B). The estimated

masks are finally thresholded using optimum thresholds ta and tb to obtain the (phys-

ically realizable) two-toned masks.

It is important to realize that the number of unknown parameters in double

exposure ILT are twice as many as those in a single exposure ILT. Indeed the inverse

problem for DEL is severely ill-posed and there may be multiple pairs of eligible mask

solutions. We employ the regularization framework (introduced in Section 3.3) to

overcome the above issue and arrive at preferred (good) local minima. For example,

the tone of the estimated masks can be controlled by minimizing the augmented cost
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function,

J(a,b) = F (a,b) + γdisaRdis(a) + γdisb
Rdis(b),

where F (a,b) is the data fidelity term defined in (5.6), Rdis(·) is the quadratic penalty

term for 100% transmission strong PSM (defined in (4.5)), and γdisa , γdisb
are the reg-

ularization weights. The discrete tone CPL mask can then be obtained by simply

thresholding the estimated masks with ta = tb = 0. The regularization framework

can also possibly be used to promote other desirable properties like tolerance to align-

ment errors, low-complexity and ease of manufacturing, low MEEF, and good process-

window.

We now discuss two gradient-based algorithms for solving the bound-constrained

optimization problem defined by (5.6) and (5.7). The above algorithms will also help

to demonstrate the existence of multiple solutions.

5.3.1 Method 1: Simultaneous Descent

The first method consists of finding the gradient of the cost function defined

in (5.6) with respect to the 2MN unknown parameters, and searching through the

entire 2MN dimensional space using steepest descent iterations. The gradient of the

cost function (5.6) with respect to the parameter vectors a and b are denoted as

∇aF (a,b) and ∇bF (a,b) where,

∇aF (a,b) = −HT
[
(z∗ − |Ha|2 − |Hb|2) 
 (Ha)

]
∈ �MN×1 (5.8)

∇bF (a,b) = −HT
[
(z∗ − |Ha|2 − |Hb|2) 
 (Hb)

]
∈ �MN×1 (5.9)
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The steepest descent algorithm requires a user-defined initialization to start

its iterations. However, it is interesting to note from (7.4) and (7.5) that the gradients

have the same functional form. Hence if a0 = b0 (i.e. the two masks are initialized to

the same value), then for all the iterations we will have ak = bk. This is not helpful

and against the spirit of double exposure, since the above effect can be easily simulated

with a single mask by merely doubling the dose. Hence, it is compulsory to initialize

a and b at separate points for the success of this algorithm.

Furthermore, note that the optimization problem in (5.6) is subject to bound

constraints given in (5.7). The above can be reduced to an unconstrained optimization

problem by using the parametric transformation aj = cos(ωj) and bj = cos(ψj) for

j = 1, . . . ,MN . The new parameter vector is θ = [ωT , ψT ]T ∈ �2MN×1, where ω and

ψ are the unconstrained vectors corresponding to a and b. The cost function defined

in (5.6) is reformulated to obtain F1(ω,ψ) and the gradient vectors d1 = ∇ωF1(ω,ψ)

and d2 = ∇ψF1(ω,ψ) ∈ �MN×1 are evaluated. The steepest descent iterations are

used to update both masks together as follows,

θk+1 = θk − sdk (5.10)

where,

dk =

⎡⎢⎢⎢⎣ dk
1

dk
2

⎤⎥⎥⎥⎦ .
Thus, for every iteration we move along the direction defined by the 2MN dimensional

gradient vector d, and simultaneously update both θ1 and θ2. The step size s is fixed
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by the user. The above method works in practice, but its convergence is slow. In the

next section, we explore a possible way of speeding up the convergence.

5.3.2 Method 2: Cyclic Coordinate Descent

We now introduce an alternative optimization strategy called cyclic coordi-

nate descent. The latter involves optimizing the cost function with respect to only one

parameter at a time, and sequentially covering up the whole parameter vector. Thus

each coordinate axis (corresponding to a given parameter) is searched, and descent

is made only along that particular dimension. The above procedure is then repeated

(cycling) until convergence is achieved. Thus at any point, we only make one dimen-

sional moves along a1, . . . , aMN , b1, . . . , bMN and back to a1. However, we propose a

slightly modified approach, which is in spirt of the above scheme. Instead of searching

the 2MN -dimensional space one dimension at a time, we split the search into two MN

dimensional sub-spaces, corresponding to the two masks.

The procedure is as follows. We start by initializing the variables arbitrarily

(usually a0 = b0 = 0) and do the parametric transformations to obtain the un-

constrained vectors ω0 and ψ0. However, we update ω and ψ separately on every

iteration. Each iteration now consists of two steps. The first step involves updating

only ω by calculating the gradient of (5.6) with respect to ω. The second step in-

volves updating only ψ, but the gradient calculations now utilize the updated value

of ω (from the previous step). To summarize, for the kth iteration,

ωk+1 = ωk − s1∇ωF1(ωk,ψk) (5.11)
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ψk+1 = ψk − s2∇ψF1(ωk+1,ψk) (5.12)

At any point, we restrict our search only to the subspace defined by one mask. Simula-

tion results (see Section 5.4) indicate that Method 2 has a faster convergence compared

to Method 1. It is also worth noting that the solutions obtained using Method 1 and

2 are not always equal implying that there are multiple ways of splitting the patterns

for double exposure (see Section 5.4.2 for more details).

5.4 Results

We now discuss some results obtained using the above framework. All the

experiments were carried out for fully coherent imaging systems with 193nm radiation

wavelength.

5.4.1 T Joint
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Figure 5.6: The T-junction target pattern (left) and the two estimated chromeless PSM
(center and right).

A T-Joint suffers from the phase conflict problem (as seen in Fig. 4.10 in
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Chapter 4). Hence direct rule-based phase assignments cannot be made, and special

solutions have been proposed in the past to address this issue [36, 8]. Fig. 5.6 illustrates

the desired pattern and the two synthesized chromeless PSM obtained using our double

exposure inverse lithography approach with Method-2. The horizontal and vertical

bars are 80nm wide (k1 = 0.35), and the mask pixel-size is 20nm in wafer dimensions

(actual size 80nm assuming 4X reduction factor). The experimental parameters are

s1 = s2 = 8, γdis = 0.002, and number of iterations = 300. The aerial images in Fig. 5.7

illustrate that the first exposure prints the horizontal and vertical bars but leaves a

gap at their intersection3. This is the phase-conflict region. The second exposure

deposits the missing energy in the above region to resolve it (see Appendix B). The

final aerial image has good contrast and is uniform along all portions (including the

junction). Fig 5.8 illustrates the aerial image obtained using a chromeless PSM, which

was synthesized by solving the single exposure ILT problem. We observe that the aerial

image in this case is weak (tending to break) near the junction indicating a hot-spot.

The L2 norm cost function for single and double exposure cases was 39.81 and 35.12

respectively, indicating that the latter achieves a much better contrast. Fig. 5.8 also

indicates that the aerial image contours at tr = 0.55 have higher fidelity and much

smaller pattern error for DEL-ILT4. Thus, DEL was able to resolve the phase-conflict.

Finally, the aerial image decomposition obtained by employing Method-1 is similar to

the one seen in Fig. 5.7.
3The aerial images are up-sampled by 8X using spline interpolation for display purpose.
4Note that the optimization was performed only for the aerial image and not the pattern fidelity.

The pattern error can be further decreased using contour fidelity as the objective goal (see Section
7.3).
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Figure 5.7: The final aerial image (left) and the aerial images corresponding to the two
individual exposures (center and right) for the mask patterns in Fig. 5.6

5.4.2 U-Joint

Fig. 5.9 illustrates the target pattern and the synthesized PSM for a vertical

bar sandwiched between a U-shaped feature. The width of the above features and their

horizontal and vertical separations are 80nm (k1 = 0.35). The masks were synthesized

using Method-2 and 20nm pixels similar to the previous case. The aerial images

in Fig. 5.10 indicates very interesting pattern decomposition. It appears that the

proposed algorithm is trying to split the original pattern into two less dense patterns,

thereby making them easier to print using individual exposures. The combined aerial

image has a superior contrast.

Fig. 5.11 illustrates the aerial images obtained using the masks synthesized by

Method-1. We observe that the decomposition is different from that in Fig. 5.10. We

believe that in general there may be multiple ways of splitting the target pattern for

double exposure. The above can be attributed to the ill-posedness of the inverse DEL
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Figure 5.8: The graph on the left is the aerial image obtained by solving the single exposure
ILT problem for the T-junction. The center and right graphs are the contours at tr = 0.55
(sampled at 2.5nm) for single and double exposure ILT. The corresponding pattern errors are
1047 and 389.
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Figure 5.9: The U-Joint target pattern (left) and the two estimated chromeless PSM (center
and right) obtained using Method-2.

problem. In Section 7.3, the optimization objective is reformulated to find a (preferred)

pattern split which is robust to alignment errors. Similarly, the pattern decomposition

can be motivated by other user-defined objectives (via novel regularization terms).

The graph in Fig. 5.12 indicates the cost function behavior of the two al-

gorithms (discussed in Section 5.3) for the first 50 iterations of the steepest descent

algorithm. The rate of convergence depends on the chosen step-size. In order to make

a fair comparison, optimal step sizes were calculated at every iteration for both the
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Figure 5.10: The final aerial image (left) and the aerial images corresponding to the two
individual exposures (center and right) for the mask patterns in Fig. 5.9.

algorithms. The step-sizes were calculated using the electrical caching technique dis-

cussed in [31]. The double exposure ILT problem was solved for the target pattern

in Fig. 5.9. We observe that the cyclic descent method converges faster than the si-

multaneous descent method. This is true for all the target patterns discussed in this

chapter. The computational complexity and number of convolutions required by the

two algorithms is the same. Therefore, we conclude that the cyclic coordinate descent

technique is a superior way of searching the solution space.

5.4.3 Pattern Decomposition for More Complicated Patterns

We now demonstrate automatic pattern decomposition results for some very

complicated patterns (provided to us by Intel Corporation), with numerous phase-

conflicts, and very low k1 values. Our first assignment was to print the complex

pattern consisting of 60nm features (as indicated in Fig. 5.13) using 193/0.93NA dry

lithography. The mask pixel size is 20nm in wafer dimensions (actual size 80nm for
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Figure 5.11: The final aerial image (left) and the individual aerial images (center and right)
for the U-joint target pattern. The corresponding masks were synthesized using Method-1.

a 4X reduction system). The estimated CPL masks and their corresponding aerial

images are illustrated in Fig. 5.13, and are un-intuitive, but very successful. The

DEL-ILT algorithm splits the aerial image into two (overlapping) parts, and in the

process automatically resolves all the possible phase-conflicts. The combined aerial

image has very good quality and closely resembles the target pattern.

Our next assignment was to print the target illustrated in Fig. 5.14 consisting

of 80:320 vertical gratings (thin lines in between large spaces). Here the pixel-size is

20nm, NA = 0.85, radiation wavelength = 193nm with corresponding k1 = 0.35 for

smallest pattern pitch. The target also consists of an 80nm horizontally sandwiched

space thereby making the whole layout a challenging patterning problem. The es-

timated CPL masks obtained using DEL-ILT along with their corresponding aerial

images are illustrated in Fig. 5.14. We again observe an unconventional pattern de-

composition, but the combined aerial image has very good contrast. In particular,
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Figure 5.12: Cost function behavior for simultaneous and cyclic descent algorithms when
solving for the target pattern in Fig. 5.9.

note that there is a very well-defined separation (dark-area) between the horizontal

space and grating line-ends; something very challenging to obtain using conventional

H-V decomposition.

5.4.4 Verification using Prolith

We now want to verify our DEL-ILT aerial images using Prolith (a commer-

cially available lithography simulation software). Fig. 5.15 illustrates a (complicated)

target pattern and the synthesized CPL masks obtained using Method-2. The target

pattern was provided by Intel and consists of 60nm features on a 120nm pitch, the

mask pixel size is 20nm, NA = 0.93, and k1 = 0.29. The corresponding aerial images

obtained using our forward model (5.5) are given in Fig. 5.16. We observe that the

algorithm attempts to alternately distribute the column of contacts between the two

exposures. Thus it decomposes the original pattern into two comparatively sparser

patterns which can then be tackled separately during the individual exposures. The
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Figure 5.13: Top row illustrates the estimated CPL masks (black=-1 and white=+1) and
the (binary) target pattern consisting of 60nm features. The pitch p=120nm is indicated by
dotted lines in the figure. Bottom row indicates the aerial images for the individual exposures
and the combined aerial image. Here NA = 0.93 and k1 = 0.289.

combined aerial image has a superior contrast as observed in Fig. 5.16.

Fig. 5.17 illustrates the aerial images obtained by feeding the estimated ILT

masks (in Fig. 5.15) to Prolith (provided by KLA-Tencor). The simulation was per-

formed assuming Kirchhoff (thin-mask) approximation and using the same experimen-

tal settings as earlier. We observe that the results are in good overall agreement with

those obtained in Fig. 5.16. The slight discrepancy in the results may be due to the

numerical approximations used by Prolith to simulate the sharp cutoff of a coher-

ent imaging system (an ideal low-pass filter). We believe that the differences can be

overcome if we employ the exact same forward model as Prolith.

The DEL-ILT framework proposed in this chapter was successful in pattern-

ing solutions close to the k1 = 0.25 physical limit. In the next chapter, we discuss the
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Figure 5.14: Top row illustrates the estimated CPL masks and the target pattern consisting
of 80:320 vertical grating interlaced with 80nm wide horizontal features. Bottom row indicates
the aerial images for the individual exposures and the combined aerial image. Here NA = 0.85
and k1 = 0.35.

extension of ILT to double exposure lithography systems with physical limit k1 = 0.125

enabled by the use of novel materials.
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Figure 5.15: The complex target pattern (left) and the two estimated chromeless PSM (center
and right).
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Figure 5.16: The final aerial image (left) and the aerial images corresponding to the two
individual exposures (center and right) for the mask patterns in Fig. 5.15

Figure 5.17: The final aerial image (left) and the aerial images for the two individual expo-
sures (center and right) obtained by feeding the mask patterns from Fig. 5.15 to Prolith.
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Chapter 6

DEL with Novel Materials for

k1 < 0.25

In the previous chapter, we discussed double exposure single development (DEL)

lithography using conventional resists. Although DEL gives superior contrast, the

resolution limit is the same as that of single exposure. In this chapter, we explore a

novel paradigm of DEL which enables patterning below the Rayleigh limit (k1 < 0.25).

6.1 Motivation

In case of DEL with conventional resists (discussed in Chapter 5), the aerial

image intensities from the two exposures are linearly superimposed. Therefore, the

lower bound on kpitch (which dictates the minimum resolvable pitch) is the same as

that of single exposure (equal to 0.5). Using the currently available 193nm/1.1NA

immersion scanner systems, the minimum resolvable pitch is equal to 0.5× 193/1.1 ≈
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87nm. As we approach the 32nm and 22nm nodes, there is an increasing need for

lithography techniques which can pattern even tighter pitches. Double patterning (see

Section 5.1.2) with a minimum kpitch = 0.25 has emerged as a very strong contender

to fulfil the above requirement. Dual patterning consists of preserving the image of

the first exposure in a sacrificial layer. The above step requires loading and unloading

the wafer twice from the exposure tool, which induces overlay and dimensional control

(CD) penalty. Furthermore, the extra processing steps such as second develop, hard-

mask deposition, and etch steps might result in additional yield liability as well as

increased wafer cost

There is strong incentive to identify techniques able to support patterning

with two masks containing split design information, yet capable of producing combined

final latent image in resist without unloading the wafer off the exposure tool chuck.

We thus need only one single exposure to produce an image ready for pitch doubling,

thereby avoiding the need for a sacrificial layer, the follow-up processing steps, and

their corresponding yield liabilities.

In this chapter, we consider the paradigm of double exposure single develop-

ment (DEL) for kpitch < 0.5. Considering the single development scenario, the only

way this is possible is by using new out-of-sight out-of-mind (OSOM) materials with

properties that allow non-linear combination of the two aerial images obtained from

the individual exposures. We have identified two potential candidates with regard to

above which are discussed in this chapter. The first one is called contrast enhancement

layer (CEL) which was originally proposed in the 1980s in an effort to improve the
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resist profiles for single exposure lithography [49, 51]. In this chapter, we propose a

mathematical model for CEL, illustrate its working for the 1-D case, and also extend

our ILT framework to enable DEL-CEL with 2-D patterns. The second OSOM ma-

terial is two-photon absorption resist which responds to the square of the intensity of

the aerial image. We discuss its suitability for DEL (1-D case) and point to a need for

novel materials with much enhanced properties to make such an approach feasible for

manufacturing.

6.2 DEL Using Contrast Enhancement Layer (CEL)

We now discuss the CEL as a potential technology enabler for the k1 <

0.25 case. The contrast enhancement layer (CEL) is a photo-bleachable film which

is coated on top of the conventional photo-resist (see Fig. 6.1). It was studied in the

1980s in order to improve the sidewall angle of single exposure lithography process

[49, 51, 33, 61]. The CEL film is initially unbleached with (ideally) zero or very low

transmittance for small dose values. As the incident dose increases, the film starts

undergoing bleaching action and the transmittance increases. The bleaching rate is

related to the incident energy. The transmittance of an ideal fully bleached CEL film

is equal to one. Thus, the film which was initially opaque to the exposure wavelength,

becomes transparent upon exposure. When the aerial image is incident on the CEL,

higher intensity regions bleach faster compared to lower intensity ones. This non-

linear transformation of the incident aerial image leads to a higher contrast of the
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dose received by the resist. During the exposure, the unbleached portion of the CEL

will act as a portable conformable mask. Finally, we wish to point out that our current

model takes a simplified view and ignores the reflections from the substrate.

CEL
Resist

Wafer

Air

Figure 6.1: The resist stack with CEL.

6.2.1 Modeling

The (non-ideal) bleaching behavior of the CEL is similar to a soft-threshold

operation. Therefore, the CEL film transmittance T (Di) can be modeled as a sigmoid

function as follows,

T (Di) = sig(Di, a, tc, c) =
1

1 + e−acDi+atc
, (6.1)

where Di is the incident dose, the parameter c is inversely related to the thickness, a

is related to the slope of the transition region, and tc is the threshold dose parameter

of the sigmoid. Fig. 6.2 indicates the behavior of a typical sigmoid function with

a = 60, tc = 0.15, and varying values of c. As discussed earlier, the transmittance

is low for small values of incident dose. As the input dose builds up, the film starts

bleaching and its transmittance increases (T (Di) = 0.5 for Di = tc/c). Fig. 6.2 also

indicates the effect of the film thickness c on the film transmittance. A thin CEL
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film bleaches quickly compared to a thicker one, and hence has a steeper transition

region. Furthermore, a thick CEL film also requires higher dose values to become fully

transmissive.
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Figure 6.2: CEL film transmittance for different film thickness.

The final transmitted dose Dt{Di} (henceforth referred to as simply Dt), is

obtained by integrating the transmittance as the incident dose builds up from 0 to Di.

Dt =
∫ Di

0
T (Di)dDi =

∫ Di

0

1
1 + e−acDi+atc

dDi

Therefore,

Dt = Di − tc
c

+
1
ac

log
[
1 + e(−acDi+atc)

]
(6.2)

Fig. 6.3 indicates that the graph of transmitted dose versus incident dose

consists of three regions. For low doses (unbleached film), the incident dose is absorbed

by the CEL film and Dt is very low. When Di increases, the film starts bleaching and

there is a non-linear increase in the transmitted energy. Finally, the CEL film gets fully

bleached after which the transmitted dose increases linearly. As one would expect, the

118



0 0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

D
i

D
t

c=1
c=0.75
c=0.5
c=0.3

Figure 6.3: Transmitted dose (Dt) versus input dose Di for different film thickness.

above regions also depend on the thickness of the CEL film. Thinner CEL films enter

the linear region earlier compared to the thicker ones.

6.2.2 Working of CEL

We now discuss the working of CEL for the simple example of 1-D gratings.

The target consists of 80nm (1:1) grating which needs to be printed using 193/0.85NA

(kpitch = 0.35). The first step is to divide the target into two 160nm pitch gratings

(also see Fig. 5.2) which can be printed using single exposure CPL masks (with pitch

= 320nm). Note that the second exposure consists of simply shifting the mask by

80nm. The left plot in the top row in Fig. 6.4 indicates the aerial image and the

transmitted CEL image (calculated using (6.2)), both for the first exposure. The

CEL transmitted dose is absorbed by the photo-resist and stored in the form of PAC

(photo-active compound) concentration. The right plot indicates the aerial image and

the CEL dose for the second exposure. It is very important to highlight here that in
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order to support DEL, the CEL considered should have reversible bleaching property.

In other words after the first exposure is completed, the entire CEL film returns back

to its original (opaque) state. If the CEL were not reversible, the regions previously

exposed would remain bleached and as such have different transmittance values than

those indicated in Fig. 6.2. Development of the above material is central to the use

of CEL for double exposure. Such materials are not just hypothetical as is evidenced

by class of reversible CEL (ArselTM) under development by Pixelligent Technologies

LLC.

The total dose absorbed by the resist is a superposition of the two CEL trans-

mitted doses. The graph in the bottom row of Fig. 6.4 indicates that the combined

transmitted CEL dose (assuming the reversibility property) shows good modulation.

An intuitive explanation is that the CEL suppresses the aerial image energy in the

unwanted regions owing to the soft-thresholding action. This has the effect of trun-

cating the tail of the optical PSF (making it narrower), and resulting in less energy

being deposited in the areas targeted by the second exposure. Fig. 6.4 also indicates

the aerial image in the absence of CEL layer (just for demonstration purpose). Since

kpitch < 0.5, no useful modulation is observed.

Image log-slope (ILS) is a commonly employed metric to evaluate the quality

of the aerial image. The ILS at the desired edge location is evaluated as,

ILS(Dt) =
1
Dt

dDt

dx

Higher ILS value implies higher image slope, which in turn gives good contrast. The
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Figure 6.4: The two figures in the top row indicate the aerial images (dotted blue) and
the CEL images (solid red) for the two individual exposures. The bottom row indicates the
combined aerial image (showing no modulation) and the combined CEL image (showing good
modulation). In this case a = 30, tc = 0.15, and c = 0.45.

calculated ILS at the desired edge location (CD = 40nm) for the incoming aerial image

(Di) and the CEL image (Dt) are 0.016 and 0.032 respectively. Thus the CEL also

improves the aerial image contrast which was indeed one of the earliest applications

of CEL [60]. Finally, we also observe that the transmitted CEL doses have lower

magnitude compared to the incoming (aerial image) dose. We discuss this in more

detail in the next section.
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6.3 ILS Improvement of the CEL-DEL Image

Our goal now is to improve the robustness of the double exposure CEL-based

lithography system. This will also enable us to understand the fundamental trade-offs

involved in designing a CEL-DEL system. We have identified three potential ways

to improve the operating ILS at the desired edge location which are discussed below.

The experimental setup employed here is the same as in Section 6.2.

6.3.1 CEL Film Thickness

The effect of the CEL film thickness parameter c on the film transmittance

and the transmitted dose were illustrated earlier in Fig. 6.2 and Fig. 6.3 respectively.

Fig. 6.5 illustrates the effect of c on the transmitted dose modulation assuming a fixed

value of the incoming (aerial image) dose modulation Di. The remaining simulation

parameters are fixed (a = 30, tc = 0.15), and c was varied from 0.8 to 0.2. We observe

that as the CEL film becomes thicker, the magnitude of the transmitted dose modu-

lation decreases. Therefore, in order to obtain 40nm CD, the photo-resist threshold

tr should be equal to 0.48, 0.36, and 0.076 for c = 0.8, 0.5, and 0.2 respectively. The

ILS values for the corresponding tr values are 0.022, 0.03, and 0.054. To summarize,

the ILS can be improved by using a thicker CEL film. However, patterning the above

image also requires very sensitive (high-acid generating) resists, having very low tr

value.
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Figure 6.5: Effect of CEL film thickness assuming fixed Di.

6.3.2 Incoming Dose Magnification

The second mode of operation is to use the same photoresist (fixed value of

tr), and magnify the incoming dose by a factor p. The CEL film thickness c also needs

to be adjusted in order to match Dt with the target CD at the chosen threshold value

tr. Fig. 6.6 illustrates the original aerial image (Di) and the transmitted CEL doses

for four different values of p assuming a resist with operating threshold tr = 0.33.

The corresponding CEL thickness parameters are also indicated in the legend. We

observe that as the dose magnification increases, the transmitted CEL image quality

improves. The ILS values corresponding to magnification factor p = 2, 3, 5, and 7 are

0.032, 0.047, 0.072, and 0.087 respectively. Thus we conclude that for a given resist,

the ILS can be improved by magnifying the incoming dose and using a thicker CEL

film. Dose magnification can be realized in practice using a more powerful light source
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or longer exposure times. A very high intensity light source endangers the operating

life of the (very expensive) lenses, and is a less preferable option. On the other hand,

longer exposure times lead to reduction in the overall yield. Hence, we are interested

in finding out the maximum “mileage” (in terms of ILS improvement) possible for a

given magnification factor.
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Figure 6.6: Effect of dose magnification p on the CEL image using fixed resist with threshold
(tr = 0.33). Here, a = 60 and tc = 0.15.

It can be proved (see Appendix C) that for a given value of p, the ILS of the

transmitted dose is upper-bounded by p times the ILS of the original incoming dose

Di. In other words,

ILS(Dt(pDi)) <= p× ILS(Di) (6.3)

The above equation is a fundamental relationship which will also be beneficial to

evaluate the quality of the CEL material. A good CEL material should be capable of

improving the ILS by a full-factor p (particularly for large values of p).
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6.3.3 Quenchers

The third and final way to improve the ILS is motivated by the fact that the

combined CEL image sits on top of a background energy, as observed in Fig. 6.4. As

observed earlier, ILS at the desired edge location is evaluated as

ILS(Dt) =
1
Dt

dDt

dx

Therefore a possible way to improve the ILS is by adding (base) quenchers to the

photoresist. Quenchers are alkaline-based chemicals which can be used to neutralize

the extra acid generated by the (undesired) background energy present in Dt. The

above process is equivalent to subtracting a constant q (q ≥ 0) from Dt thereby

effectively shifting the entire modulation curve (indicated in Fig. 6.4) down. The

effect on ILS is as follows:

ILS(Dt − q) =
1

Dt − q

d(Dt − q)
dx

=
1

Dt − q

d(Dt)
dx

> ILS(Dt)

Thus the effective ILS is higher than before.

6.3.4 Matching with ArselTM

We now compare the behavior of the proposed CEL model with the measured

data of ArselTMkindly provided by Pixelligent Technologies LLC. Fig. 6.7 indicates the

measured optical density (calculated as OD = log(Di/Dt)) as a function of input dose

Di. The blue and red curves correspond to the measured OD whenDi is increased from

0 to maximum and decreased back to 0, respectively. The two curves will coincide if

the CEL is completely reversible. The graph on the left represents the OD calculated
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using the proposed model with parameters ac = 1.6, tc = 2.5, and c = 0.3. Both

graphs indicate a structurally similar behavior; a linear drop in the OD (attributed to

bleaching) followed by flattening at higher dose values (attributed to very high T (Di)).

Figure 6.7: OD versus Di for the proposed model (left) and the measured data using
ArselTM(right).

6.4 ILT using CEL for 2-D Patterns

In the last section, we demonstrated the working of CEL for 1-D gratings.

We now demonstrate the applicability of CEL for printing 2-D patterns using DEL

for k1 < 0.25. The goal is to use ILT to synthesize CPL masks for printing the target

pattern in Fig. 6.8 which consists of 40nm features on an 80nm pitch using 193/0.9NA

(k1 = 0.187). The target is sampled at 20nm implying that the features are merely

two 20nm pixels wide.

Firstly, our DEL-ILT algorithm (with the integrated CEL model) did not

converge to an acceptable local minima for k1 < 0.25. Therefore, we were unable to

perform the automatic pattern decomposition similar to that illustrated in Section 5.4.
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We suspect that this may be due to the local gradient-based search technique used for

optimization. The algorithm is unable to explore the more complicated search space

resulting from k1 < 0.25, and better heuristic based initialization points may help

solve the problem. However, this remains a direction of future work.
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Figure 6.8: The target pattern consisting of 40nm features on 80 nm pitch and the (manually)
decomposed patterns used for individual exposures.

We therefore perform a rule-based pattern decomposition as illustrated in

Fig. 6.8 and employ the single exposure based ILT algorithm to synthesize the CPL

masks. The augmented forward model also accounting for the CEL is as follows:

z = F (G(p|Hm|2)), (6.4)

where the function G(.) represents the CEL transmittance function defined in (6.2).

F (.) is a sigmoid function which models the thresholding operation performed by the

resist (see Section 2.3.1),

F (y) = sig(y) =
1

1 + exp(−ary + artr)
.
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Here ar and tr are the slope and threshold parameters of the resist respectively. Thus

the forward model in (6.4) accounts for the magnified incoming aerial image dose, the

CEL transferred dose, as well as the resist contour formation. The estimated mask m̂

is defined as one which minimizes the L2 norm of the difference between the target

contour z∗ and output contour z modeled using (6.4),

m̂ = arg min
m

C1(m) = arg min
m

||z∗ − z||22. (6.5)

The cost function in (6.5) is still continuous allowing the use of non-linear programming

techniques for optimization. We follow our earlier proposed parametric transformation

(Section 3.1) and regularization (Section 4.1.2) techniques, and employ the gradient-

descent optimization algorithm to minimize C1(m). The gradient can be calculated

as follows:

∇C1(m) = −4arpHT[(z∗ − z) 
 z 
 (1− z) 
 (Hm) 
 q], (6.6)

where

q =
1

1 + exp(−accp|Hm|2 + actc)
.

Fig. 6.9 illustrates the results obtained using the CEL-ILT algorithm dis-

cussed above. The top row indicates the estimated CPL mask (white = 1 and black

= -1), the aerial image, and the CEL image for a single exposure. The simulations

parameters were: ac = 60, tc = 0.15, c = 0.2, p = 4, ar = 60, tr = 0.3. We observe

that although the aerial image is very poor, the CEL transmitted image (Dt) has much

better contrast, and closely resembles the target. This is because our ILT algorithm is
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aware of the presence of CEL, and estimates the masks taking its action into account.

By the end of the first exposure, the CEL transmitted dose is completely absorbed by

the photoresist, where it is stored in the form of photo-active-compound (PAC) con-

centration. The second exposure is performed by simply shifting the mask horizontally

by 320nm (see Fig. 6.8). The bottom row in Fig. 6.9 indicates that the combined aerial

image (the dose received by the resist in the absence of CEL) has no useful modulation.

This is expected because kpitch < 0.5. However, the linear superposition of the two

CEL images shows very good modulation, which will enable patterning of the desired

features. The contours at tr = 0.3 indeed indicate good pattern fidelity.

6.5 Two-Photon Absorption Resist

The second OSOM material candidate for k1 < 0.25 DEL is two-photon

absorption (2-PA) resist. They have been well-known to double the resolution of

optical lithography, and were actively explored by Yablonovitch, et al. [95].

The left graph in Fig. 6.10 illustrates the aerial image intensity obtained using

an interferometric arrangement with 2-coherent beams incident at ±θ. Therefore,

I(x) = 1 + cos(Kx) where K = 2k sin θ and k = 2π/λ. For the case of two-photon

absorption, the resist responds to the square of the intensity. Thus I2(x) = 3/2 +

2 cos(Kx)+1/2 cos 2Kx, which consists of superposition of both the single and double-

frequency components. As observed in Fig. 6.10, the above mixture merely enables

patterning at the same resolution as single-photon absorption (although with a better
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Figure 6.9: The top row indicates the CEL-ILT results obtained by solving (6.5). The bottom
row indicates the DEL results where the second exposure was performed by shifting the mask
by 240nm.

contrast). Therefore, we need to suppress the linear frequency component in order to

enable frequency doubling, and allow kpitch < 0.5. Yablonovitch, et al. [95] proposed a

new (single) exposure arrangement which destroys the stationary interference patterns

corresponding to the linear frequency component, leaving behind the double-frequency

interference pattern on a background.

An alternative way to enable frequency doubling using 2-photon absorption

resists is by employing DEL. In the case of gratings, the second exposure should have
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Figure 6.10: The intensity and square of intensity modulation curves corresponding to the
conventional and 2-photon absorption resists respectively.

an offset of half a period compared to the first. Therefore the combined contribution

from the two exposures is given as follows:

I2
1 (x) + I2

2 (x) = [1 + cos(Kx)]2 + [1 + cos(Kx+ π)]2

= [1 + 2 cos(Kx) + cos2(Kx)] + [1 − cos(Kx)]2

= [1 + 2 cos(Kx) + cos2(Kx)] + [1 − 2 cos(Kx) + cos2(Kx)]

= 2 + 2 cos2(Kx)

= 3 + cos(2Kx)

We observe that by merely phase shifting and adding I2(x) to itself, the

linear frequency component cancels out, leaving behind only the double-frequency

component with a DC background. Thus 2-photon absorption resists are naturally

suitable to DEL. However, we are not yet aware of materials exhibiting suitably large

2-photon absorption cross section (δ) values at the wavelength of interest with existing

radiation sources. In order to get an estimate of the required value for δ, lets assume
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a lithography system with a radiation source consisting of a 193nm laser with 10ns

pulse length (l), 60W output power (P ), and 6KHz repetition rate (fp). Therefore, its

corresponding peak intensity (I) within 1cm2 exposure slit area A will be,

I = P/(Afpl) = 60/(6 × 103 × 10−8) = 106W/cm2

Conventional photo-resists are usually engineered with one-photon absorption

coefficient of α ≈ 104cm−1. For “two-photon resist” one would need the two-photon

absorption to be at least equal to the one-photon absorption. Therefore, the two-

photon absorption coefficient can be calculated as,

β = α/I = 104/106 = 10−2cm/W (6.7)

We can then estimate a lower bound on the required 2-photon absorption

cross-section for such materials (for use with existing 193nm radiation sources) by

employing the following equation:

δ = β
hν

N

Substituting β from the calculations in (6.7), N = 1020 (number of 2-photon

absorption sensitive molecules per cm3), and hν = 10−18J (excitation photon energy

for 193nm photons) gives δ = 10−2 × 10−18/1020 = 10−40cm4 × s × photon−1.

The (above calculated) required minimal value for 2-photon absorption cross

section is many orders of magnitude higher than δ = 1 × 10−46 cm4 × s × photon−1

(in the near-IR), which is amongst the highest δ values ever reported for any organic

molecule [21, 3, 20]. This makes the prospects of synthesizing such material for use with
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existing 193nm exposure systems highly unlikely. For example, an attempt to drasti-

cally reduce the exposure slit area (in order to raise the peak intensity), will also result

in correspondingly drastic loss of system productivity, thereby making it unacceptable

for volume manufacturing. Another possible option to find imaging solutions worthy

of volume IC manufacturing is by employing femto-second laser sources (such as tradi-

tionally used in 2-photon microscopy or MEMS manufacturing). Although this enables

the use of materials with more realistic, yet still gigantic δ = 10−46cm4×s×photon−1,

it also has its own forbidding set of problems. High volume manufacturing lithography

that require 1 or 2 cm2 working (output) area in support of needed productivity lev-

els, will typically require sub-200nm wavelength femto-second lasers with power output

exceeding the existing ones by several orders of magnitude. Unfortunately, imaging

systems with such source will also face equally hard challenges to deliver diffraction-

limited exposure system solutions, that can correct the large chromatic aberrations

arising due to the use of a femto-second laser source. Furthermore, it is also challeng-

ing to find optical materials that will not degrade rapidly under the unusually high

power densities present in such imaging system. Overall in our opinion, the efforts in

exploring two-photon absorptive materials in support of pitch doubling with double

patterning for 32nm half pitch and below, do not appear to be a promising direction

to pursue at this time.

Thus, we explored two potential candidates which enable frequency doubling

without the need of the second development step. Based on the current material avail-

ability, CEL appears to be a more promising candidate. Future work in this direction
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consists of modeling the non-ideal transparent and opaque behavior of the CEL film

for the fully bleached and unbleached states, and accounting for the reflections from

the CEL-resist interface. It will also be very interesting to verify the effect of CEL

thickness using ArselTM.
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Chapter 7

Contributions, Impact, and

Future Work

In this chapter, we first discuss the contributions of this thesis to the area of mask de-

sign using inverse lithography. Since the inception of this project, inverse lithography

based OPC, PSM, and SRAF solutions have generated much of interest in the indus-

try and academia alike. Therefore, we next discuss some of the very contemporary

work (published in the past 2 years), and connect them to our proposed framework.

Finally, we identify some key areas of future work, and some interesting problems in

the lithography industry, which may benefit from an inverse imaging approach.

7.1 Contributions

In this thesis, we proposed a novel inverse lithography framework for pixel-

based OPC and PSM mask design. The key contribution of this work is to reduce
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the mask design problem to a continuous function optimization problem, and use

analytically calculated gradient to systematically explore the solution space (via the

steepest-descent algorithm). We also introduced the regularization framework to incul-

cate user-defined properties in the synthesized mask solutions. The inverse lithography

approach was successfully extended to double exposure lithography, which led to a new

paradigm of aerial-image based pattern decomposition. We sincerely hope that our

ILT approach will help the lithography industry to design new patterning solutions in

pursuit of Moore’s law.

• In Chapter 2, we posed the single exposure inverse lithography mask design

problem. We noted that the binary input and output nature of the problem had

prohibited the past researchers from employing non-linear programming tech-

niques. To overcome this, we introduced the sigmoid function approximation to

the hard threshold (resist) operation, and reduced the output to the continuous

domain. We then discussed the forward process model for coherent, incoherent,

and partially coherent imaging systems, and formulated the mask design prob-

lem as minimizing the L2 norm of the difference between the (binary) target

and the (near-binary) output pattern. Finally, we substituted the integer RET

constraints by bound constraints, thereby reducing the mask design problem to

a bound-constrained continuous function optimization problem.

• In Chapter 3, we discussed the single exposure OPC mask design algorithm.

The ILT mask design problem was first reduced to an unconstrained optimiza-
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tion problem. We then calculated the analytic gradient of the cost function, and

employed a steepest-descent algorithm to search for the optimal mask solution.

The analytic gradient had a computational complexity ofO(MN log(MN)) mak-

ing it practically feasible. We then introduced the regularization framework to

control the tone and complexity of the estimated mask patterns, thereby easing

the mask binarization and mask manufacturing process. We also introduced an

aerial image penalty term for promoting SRAF generation. The results demon-

strated automatic generation and placement of assist bars, serifs, anti-serifs, and

un-intuitive feature-splitting. The pattern fidelity was superior and side-lobes

were not printed. Finally, we extended the ILT framework to weighted-region

and selected-parameter optimization.

• In Chapter 4, we addressed the single exposure PSM mask design problem.

We introduced the tone control penalty terms for AttPSM, 100% transmission

PSM, and strong PSM with chrome. The estimated masks obtained using ILT

were very un-intuitive and did not resemble the target. However, the results

demonstrated good aerial image contrast and pattern fidelity for low k1 values.

• In Chapter 5, we motivated and posed the double exposure inverse lithography

problem. Our approach involved estimating two real-valued masks, which was

shown to be equivalent to estimating one complex-valued mask. We formulated

the mask design problem as minimizing the L2 norm of the difference between the

aerial image and the target, and proposed two optimization algorithms to search
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the 2MN dimensional space. The results indicated a very interesting paradigm,

whereby the proposed algorithms decomposed the gray-level aerial image into

two parts, and automatically resolved the phase-conflicts. The combined aerial

image demonstrated very good contrast, and enabled patterning of very complex

target patterns close to k1 = 0.25.

• In Chapter 6, we explored a novel paradigm of pitch doubling using double ex-

posure single development lithography with novel materials allowing non-linear

superposition of the two aerial images. We proposed a mathematical model for

reversible CEL, and three different ways of improving the image log slope. The

single exposure ILT framework was successfully extended to synthesize CPL

masks using the new CEL-resist stack. We also concluded that 2-photon ab-

sorption resists were not suitable for dual patterning applications due to lack of

materials with desired absorption cross-section.

7.2 Recent Work

We now discuss some recently published literature on the inverse lithography

mask design technique.

7.2.1 Luminescent Technologies

The inverse lithography problem was first formulated by Saleh, et al. [80]

in the 1980s. However, ILT never found commercial success owing to lack to efficient

algorithms, and the satisfactory performance provided by edge-based techniques. The
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shortcomings of edge-based OPC solvers became prominent at the 65nm nodes, which

led to the debut of Luminescent Technologies (in 2005), who launched the first “com-

mercial” software (Luminizer) for mask design based on ILT [63, 44, 45].

The Luminescent approach employs a level-set function ψ(x, y), and the con-

tours of the photomask pattern are represented using the “level-set” ψ(x, y) = 0. The

merit function referred to as the Hamiltonian measures the similarity between desired

target pattern and the printed wafer pattern. The mask design problem is formulated

as estimating the level-set function ψ̂(x, y) which minimizes the Hamiltonian. The

above problem was solved using (analytically calculated) gradient-descent algorithm,

and the regularization framework was also employed to impose mask-manufacturing

constraints. Their results illustrated sizing of the main feature while placing assist-

bars [55] and feature-splitting [45], both of which were also observed by us in Section

3.4.

7.2.2 Mentor Graphics

Granik [31, 32] (2005/2006) used pixel-based mask representation and sum of

coherent imaging system (SOCS) formulation to solve the inverse lithography problem.

The cost function was defined as the L2 norm of the difference between the target and

the aerial image (as defined in (3.13)). Contour fidelity was accounted by using an

additional term, which penalized the deviation of the intensity from the given threshold

tr along the boundary C of the target pattern [80]. He also suggested the use of penalty

terms to account for the tone and mask manufacturing requirements (although no
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results were presented). Finally, random local variation and analytic gradient based

optimization techniques were proposed to solve the optimization problem, and a post-

processing clean-up step was employed to simplify the SRAF.

7.2.3 GILT - University of Delaware

In another work recently reported in March 2007, Xu, et al. [50] inspired

by our ILT framework, employed the same forward model, sigmoid formulation, and

analytic gradient-based technique discussed in this thesis. The only difference is that

they propose to estimate complex-valued masks for single exposure lithography. As

discussed in Section 5.3 and Appendix B, the above extension is exactly equivalent to

estimating two real-valued masks for double exposure lithography (DEL). The authors

in [50] also employ the regularization framework to restrict the mask to have four

phase values, thereby enabling them to overcome phase-conflicts. The above is also

equivalent to estimating two 100% transmission strong PSM as observed in Appendix

B and Section 5.4.

7.2.4 Invarium Inc.

Yenikaya and Sezginer [96] (March 2007) use Fourier series expansion of the

mask transmission function, and optimize an L2 norm cost function with respect to

the mask Fourier coefficients. The cost function measures the aerial image fidelity

(similar to (3.13)) over a uniform-grid (pixels), and the contour fidelity is measured

at target-points placed along the edges of the pattern. The mask transmission values
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are penalized by OPC or PSM bound constraints (as seen in (2.17)), thereby reducing

the problem to the continuous domain. The estimated continuous tone mask is then

converted to manufacture-friendly polygons using a post-processing step.

7.2.5 Synopsys Inc.

In another recent work (March 2007), Li, et al.[43] analytically calculate

the change in the gradient of the aerial image due to the addition of an assist bar

(for an isolated feature). The optimal position of the assist feature is determined by

scanning all the positions in the vicinity of the main feature, and choosing the one

which maximizes the aerial image gradient. The ILT framework utilizes the analytic

gradient of an aerial image-based cost function to directly determine the optimal size

and position of the assist feature (as observed in Fig. 3.11).

In conclusion, we observe that there has been an increasing activity in the

inverse lithography mask design approach in recent years1. The underlying similarity

between all these works is the desire to avoid the integer optimization, and focus

on continuous function formulation with gradient-based optimization techniques. The

systematic exploration of the solution space coupled with distributed computing power

have enabled ILT-based techniques to be extendible to full-chip level [44] making them

attractive candidates for 45 and 32nm nodes.
1The work discussed in the thesis has also been published in several conferences and leading journals

[73, 72, 71, 70].
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7.3 Future Work and Extensions

In this section, we present our preliminary results for alignment error tolerant

DEL-ILT solutions. We also discuss extensions of the ILT mask design problem, and

some new avenues in the semiconductor industry, where an inverse imaging approach

may be potentially beneficial.

7.3.1 Robustness of DEL to Alignment Error

In practice, the flowchart in Fig. 5.1 indicating the steps involved in double

exposure is missing a critical step. Before performing the second exposure, the second

mask needs to be positioned at exactly the same place as the first one. The above

step called mask-to-mask alignment is an integral part of the DEL procedure. Un-

fortunately, the mask alignment error (also called overlay error) is inherent to every

exposure tool. The traditional H and V decomposition (see Fig. 5.4) is very sensitive

to overlay, and the mask alignment error directly translates into wafer CD error. This

imposes very stringent overlay accuracy requirements. However, recall that DEL-ILT

is an ill-posed problem, and there can be infinitely many ways of decomposing the

pattern. In this section, we explore the possibility of choosing an alternate pattern

decomposition schema, which leverages the effect of mask misalignment. Thus, our

goal is to split the pattern in such a way that the effect of mask alignment error on

the final wafer CD is minimized, thereby increasing the robustness of the lithography

system.

The forward model discussed in (5.5) only accounts for the aerial image calcu-
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lations. Since alignment error is measured on the wafer CD, our first step is to account

for the resist effects in the DEL-ILT modeling. The augmented forward model is given

as,

z = sig(|Ha|2 + |Hb|2). (7.1)

The resist is modeled using a soft threshold sigmoidal function (defined in Chapter 2),

where the latter acts on the sum of the aerial image intensities of the two exposures.

Note that z here corresponds to the output wafer pattern.

In our analysis, we assume that the second mask is positioned exactly in the

same horizontal mask-plane (X-Y) as the first one, and hence there is no displace-

ment along the Z-direction (or the optical axis)2. The mask misalignment is only due

to linear translational motion of the second mask in the X-Y plane. The probabil-

ity distribution of the tool alignment error can be obtained from the production job

data. The above can be used to setup the DEL-ILT for the 3σ misalignment case.

Alternatively, we can also solve for the worst case alignment error.

The double exposure model in (7.1) can be augmented to account for the

displacement of the second mask:

z = sig(|Ha|2 + |HSxSyb|2), (7.2)

where Sx,Sy ∈ �MN×MN are matrices (operators) which shift the mask b along

the horizontal and vertical directions by 1 pixel. Thus, the mask is assumed to be

misaligned in both directions. Since our principal objective is to demonstrate the
2Displacement along the optical axis causes de-focus errors, which can be accounted for while

optimizing for the process window.
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existence of alignment error tolerant mask solutions, we currently restrict our study

to the simple case of full-pixel motion. The forward model (7.2) can also be extended

to the more general cases of sub-pixel motion, but this forms a direction of future

research.

The optimization problem can now be formulated as estimating the masks â

and b̂ such that the contour fidelity in the presence of alignment error is minimized.

Therefore,

[â, b̂] = arg min
a,b

‖z∗ − sig
(
|Ha|2 + |HSxSyb|2

)
‖2
2. (7.3)

The gradient of the above function with respect to a and b is given as,

∇aF (a,b) = −HT [(z∗ − z) 
 (1 − z) 
 z 
 (Ha)] ∈ �MN×1 (7.4)

∇bF (a,b) = −ST
y ST

x HT [(z∗ − z) 
 (1− z) 
 z 
 (SxSyHb)] ∈ �MN×1 (7.5)

Note that ST
x and ST

y are 2-D matrix operators representing shift along the horizontal

(left) and vertical (up) direction by 1 pixel. The gradient calculation can be carried

out without the raster-scan operation, and the optimization problem can be solved

using one of the two methods discussed in Section 5.3.

We now present some results demonstrating the working of our approach.

Fig. 7.1 illustrates the resist contours obtained for the pattern in Fig. 5.14 when the

ILT problem is solved without any alignment error considerations. In other words,

the problem was solved using the forward model (7.1) to bring the contours on target.

As expected, the pattern error is excellent (equal to zero) when mask b is perfectly

aligned. However, the contour fidelity is very poor if mask b is shifted right or down
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Figure 7.1: Left to right: The resist contours for no misalignment, b shifted right by 20nm,
b shifted down by 20nm, and b shifted both right and down by 20nm, where the ILT problem
is solved for the contour fidelity with no misalignment.

or both by 1 pixel as observed in the graphs in Fig. 7.1. The pattern error shoots up

from zero to 88, 96, and 170 for the above cases. Note that the mask is sampled at

20nm resolution, therefore one pixel shift corresponds to a displacement of 20nm.

Fig. 7.2 illustrates the aerial image decomposition and the resist contours

at tr = 0.5, where the ILT problem is solved considering that the second mask b

is shifted both right and down by 20nm. The aerial images indicate that only a

fraction of the total energy is deposited in the second exposure to minimize the effect

of misalignment. The decomposition is also very different from the one observed in

Fig. 5.14. The contours in Fig. 7.2 indicate that the contour fidelity is very good for

all four placements of mask b. The pattern error is very low (less than or equal to

4) for all the above cases, and has drastically improved compared to Fig. 7.1. Thus,

DEL-ILT has succeeded in estimating masks which have made the double exposure
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Figure 7.2: The top row indicates the aerial images from the first exposure (left), second
exposure (center), and the combined aerial image (right). The bottom row indicates the resist
contours with no misalignment, and the second mask is shifted right or down or both by 20nm.
The DEL-ILT problem is solved only for the last case (b misaligned in both directions).
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lithography system robust to alignment error. It is important to note that the order

of exposure needs to be maintained in this case.

In conclusion, preliminary results (using the simple alignment error model

in (7.2)) indicate the existence of alignment error tolerant pattern decomposition

schema3. This considerably eases the tight alignment CD budgets faced by the tool

manufacturers, which might help reduce the tool cost as well as increase the yield.

DEL-ILT can thus be possibly extended to obtain aerial image aware, mask misalign-

ment aware, patterning solutions.

7.3.2 Thick-Mask Effects

The framework proposed in this thesis assumes a thin-mask or Kirchhoff

approximation. The mask is considered to be a 2-D object (infinitely thin) where

the electric field exiting the mask is given by the ideal transmission function of the

mask pattern (see Fig. 7.3). Although the above approximation provides reasonably

accurate results with mask features larger than the wavelength of light used (as was

the case for 65nm and higher nodes), it turns out to be very inaccurate as the mask

feature sizes shrink below 193nm. The mask topography effects become non-negligible,

and both amplitude and phase of the exit electric field are non-ideal as observed in

Fig. 7.3. Furthermore, strong PSM (AltPSM and CPL) consists of etching the mask

creating trenches (with depths in the order of the wavelength), to cause the 180 degree

phase-shift. Therefore, the simplified Kirchhoff model is insufficient, and rigorous 3D
3Similarly other user-defined requirements like process window size, MEEF, etc might lead to a

different pattern decomposition.
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electromagnetic field simulations (accounting for the mask topography, mask side-

wall angle, material property, geometry, and incident field conditions) have become

necessary for accurate aerial image and CD prediction.

Figure 7.3: Kirchhoff (thin) versus rigorous (thick) mask modeling (from [25]).

There has been no reported work in the literature which performs inverse

lithography while also accounting for the thick mask effects. The reason is that EMF

solvers are computationally so taxing that even the forward modeling problem, is

practically a very challenging one. Recently [89, 88] proposed using boundary layer

models and lookup tables to simplify the thick-mask modeling. Any practical applica-

tion of ILT would require an accurate and computationally efficient approximation to

the rigorous electric field computations, perhaps using an empirical or boundary-layer

model.

From Fig. 7.3, we observe that the exit electric field (for thick-masks) is a
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perturbation of the ideal (thin) mask transmission function. Therefore, the ILT mask

solutions calculated using thin mask approximation can serve as good initialization for

thick-mask ILT. In this way, we hope that the framework proposed in this thesis will

point to a solution path for mask-topography aware ILT.

7.3.3 Mask Design for 3-D Resist and Etch Profiles

The ILT framework discussed in this thesis only matches the 2-D aerial image

and the 2-D resist contours (at the best focus point). However, the resist layer has finite

thickness (100-200nm) giving rise to 3-D resist profiles. As discussed in Section 2.1, the

resist exposure process consists of steps like bulk (or latent) image formation, photo-

active compound (PAC) generation, post-exposure bake, and resist development [13],

each of which has a potential impact on the resist profile and side-wall angle. Fig. 7.4

illustrates some commonly arising errors in 3-D resist profiles. Continued shrinking

of dimensions have led to poor aspect ratio, thereby increasing the risk of a pattern

collapse. Finally, a good resist profile is also important for a good etch profile, and

acceptable device performance.

Therefore, an important direction of future work consists of estimating masks

which guarantee both 2-D and 3-D contour fidelity. One way to achieve this is to op-

timize the 2-D contour fidelity for several horizontal slices along the thickness of the

photo-resist. Physical or parametric models can be used to capture the degradations

caused by the resist exposure process, and accounted in the forward lithography mod-

eling. The above approach was also very recently explored by Yenikaya, et al. [96].
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Figure 7.4: Example of 3-D resist profiles (from [39]).

7.3.4 Applications to E-beam Lithography

We now discuss two possible extensions of our work to e-beam lithography.

Proximity Effect Correction

The fabrication of devices at nanometer scale is performed using electron-

beam lithography, which consists of directly firing a focused beam of electrons onto

a photo-resist coated substrate (see Fig. 7.5). Unlike microlithography, a mask is

not used. Instead, the pattern is directly carved on the substrate using the electron

beam. Unfortunately, once the electrons enter the resist, they tend to scatter before

depositing their energy, giving rise to proximity effects. That is, the electron scattering

causes the energy to spread throughout the substrate which results in a blurring effect.

The point spread function of the above system is commonly modeled as the sum of two

Gaussian kernels accounting for the forward and backscattering of the electrons. The
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Figure 7.5: E-Beam Lithography (from [18])

above effect is counteracted using electron-beam proximity correction, a predistortion

technique commonly utilized by the nanolithography community, [18], [66]. E-beam

writers are commonly employed to manufacture the masks used for optical lithography.

The e-beam lithography process can be modeled similarly to microlithogra-

phy, as shown in Fig. 2.3. The pattern is carved one pixel at a time by the e-beam

writer, and hence pixel-based pattern representation is well suited for this purpose.

E-beam proximity effect correction techniques fall into two sub-categories of dose mod-

ification and shape modification. Unlike before, here the dose (or energy) of the elec-

trons can also be modified, and hence the estimated pattern is not restricted to be

binary anymore. Each pixel of m now represents the dose given to the corresponding

location. The allowable dose values may be continuous within a finite range, or fixed

to some discrete levels, depending on the properties (switching time, power, resolution,
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etc) of the e-beam writer.

Peckerar, et al. [65, 68, 67] formulated the dose optimization problem using

an L2 norm cost function, and employed gradient-descent as well as regularization

technique to solve the above problem. However, their forward model only accounted

for the energy deposited by the e-beam, and does not account for the photo-resist

response (contour fidelity). For mask writing applications, this may lead to mask CD

variations, which is unacceptable for high mask-error-enhancement-factor (MEEF)

systems. The ILT framework proposed in this thesis may be extended to account for

the mask CD fidelity, mask side-wall angle, chrome etch depth, etc. Controlling the

mask topography is critical for accurate simulation of the thick-mask effects (discussed

in the Section 7.3.2). Therefore, it is quite possible that the next generation e-beam

writing tools will perform a mask topology aware e-beam proximity effect correction.

Integrating E-beam and Optical Lithography Distortions

It is worth noting that the reticles used for microlithography are themselves

fabricated using e-beam lithography (see Fig. 7.6). In a typical process flow, the

mask engineer first synthesizes the OPC pattern to pre-compensate for the process

distortions arising in optical microlithography process. The synthesized pattern is

then forwarded to the mask fabrication laboratory, but it cannot be directly fed to the

e-beam writer. Zheng Cui in [19] carried out a combined simulation and demonstrated

that the mask distortions due to e-beam proximity effects play an important role in

worsening the optical proximity effects. Therefore, the mask manufacturer has to run
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one more round of optimization procedure to precompensate for the e-beam process

distortions, and determine the correct dose and path for the e-beam writer.

E-beam
Lithography

Optical
Lithography

Input Dose 
and Pattern

Mask
(Reticle) Output

Pattern on 
the Wafer

Mask Manufacturing Circuit Printing

Figure 7.6: Mask manufacturing to circuit printing process

Perhaps an alternate approach is to view the above system as a cascade of e-

beam and optical lithography, and to build a lumped process distortion model. We can

then directly solve for the optimum e-beam dose/pattern required to obtain the desired

pattern z∗ on the silicon wafer. The actual reticle is just treated as an intermediate

by-product. The penalty on reticle costs, storage, complexity, time, etc are actually

incurred at the mask fabrication level, and hence the above approach gives us a more

direct control on the above factors.

7.3.5 RET for Optical Maskless Lithography and DUV Laser Writing

Optical maskless lithography is an attractive alternative to mask-based lithog-

raphy due to the increasing reticle costs. Fig. 7.7 indicates the functional flow of

traditional mask-based versus maskless lithography systems. In the latter case, the

embedded mask writer converts the data to an embedded reticle, which is an image

created by spatial light modulators (SLM). Thus the photomask is replaced with an

addressable array of light-modulating elements which can be controlled in real-time.
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The two commonly employed modulating elements for SLM are piston or tilting micro-

mirrors.

Figure 7.7: Traditional mask-based versus maskless flow for optical lithography (from [78]).

Maskless lithography suffers from the same distortions arising in traditional

(reticle-based) optical lithography. The pixel-size (at wafer plane) for maskless pro-

jection system (from Micronic Laser Systems) is 30nm [78]. SLM can be used to

emulate binary, attenuated, alternating, and chromeless phase shift masks. Unlike

traditional systems, gray-scale masks and multiple phase levels can also be simulated

using SLM. As observed in [85], an RET based approach is required to determine the

optimal arrangement of each mirror such that the resist contours are on target. The

ILT approach discussed in this thesis uses a pixel-based mask representation, and is

readily extendible to maskless lithography application. Note that pixel size dictates

the density of the micro-mirrors, whereas multiple tones increase the data storage and

processing time. It will also be interesting to study the trade-off between the pixel-
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size versus multiple tone and phase values while designing the maskless lithography

system.

Another possible extension of the ILT framework is for Deep Ultra-Violet

(DUV) laser writers. The rise in mask complexity has increased the mask writing

time for e-beam based mask writers, making DUV-based mask writers an attractive

proposition. The Sigma 7500 DUV mask writer uses a 248nm pulsed laser and a

programmable SLM with one million micro-mirrors to write the mask pattern. Oster-

berg, et al [62] recently proposed an embedded optical proximity correction technique

to bring the mask contours on target. Once again, the proposed ILT framework should

be extendible to correct the DUV mask writer distortions.

7.3.6 Pattern Splitting and Stitching for DPL

As seen from Fig. 5.2, double pattering requires decomposing the target pat-

tern (with pitch p) into two patterns (with pitch 2p). Hsu, et al. [36] proposed color

line method (CLN) and color space method (CSP) for splitting 1-D features. However,

pattern splitting for complex 2-D array structures or random logic lines that are con-

nected to each other is more challenging. The above requires cutting (and stitching)

the complex 2-D structure into two separate patterning layers. Park, et al. [26] ob-

served that pattern stitching depends on the proximity environment in order to avoid

breaking and necking of the features, and proposed a model-based approach to achieve

the above.

The DEL-ILT framework for k1 ≥ 0.25 (discussed in Chapter 5) provided
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a novel paradigm of splitting the gray-level aerial image between the two exposures.

However (as discussed in Section 6.4), we had little success in decomposing the patterns

for k1 < 0.25. We suspect this might be due to poor initialization, which causes the

gradient-based search technique to get stuck in a poor local minimum. Perhaps, a

better heuristic-based initialization may help overcome the above issue. For example,

all polygons spaced closer than half the pitch must be separated a priori and assigned

to two different layers. An inverse problem can then be solved to determine the best

way of splitting the interconnections between the features (for the two patterning

layers), and estimating the corresponding mask structures.

7.3.7 Practical Extensions

We now discuss some more extensions of the proposed ILT framework geared

towards increasing its practical utility for the lithography industry.

In our approach, we only optimize for the best focus and dose conditions.

However, an important extension would be to optimize over the process window (a

range of dose and de-focus values), in order to increase the robustness of the lithog-

raphy process. We are also modeling the resist behavior using a CTR model, but it

does not accurately model the real world resist systems. More sophisticated resist

models like the variable threshold resist (VTR)[75, 17] or other empirical models must

be employed to add practical value.

The current ILT problem is solved in the spatial domain where all MN

pixels of the estimated masks are treated as unknown variables. Therefore, we have
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to search the vast MN dimensional space in order to arrive at the optimal mask

solution. One way to reduce the dimensionality of search space (which forms part

of the ongoing research at the University of Texas Austin) is to transform the mask

pattern to frequency space using DCT. The high frequency components are dropped

(set to zero), and only the low frequency components are considered as free parameters

to form the solution space. Finally, there is also a possibility of using Quasi-Newton

optimization algorithm, which uses the second order derivative of the cost function,

to search the solution space more efficiently.
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Appendix A

Derivation of the Gradient for

Incoherent Imaging Systems

Here we present the derivation for the gradient of the cost function for an incoherent

imaging system. We also observe that the gradient calculation can be carried out

directly on the 2-D matrices, with no need for the raster-scan operation.

From (2.15) and (2.9), the L2 norm cost function in terms of the uncon-

strained parameter vector θ is gives as,

F i
1(θ) =

MN∑
k=1

(z∗k − zk(θ))
2 (A.1)

where,

zk(θ) = zi
k(θ) =

1

1 + exp

⎡⎣−a
⎛⎝MN∑

j=1

h̃kj
1 + cos(θj)

2

⎞⎠+ atr

⎤⎦
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The partial derivative of (A.1) with respect to θp is given as,

∂F i
1(θ)
∂θp

= 2
MN∑
k=1

(z∗k − zk(θ))

(
−∂zk(θ)

∂θp

)

= 2
MN∑
k=1

(z∗k − zk(θ)) z2
k(θ)

∂

∂θp
exp

⎛⎝−a
MN∑
j=1

h̃kj
1 + cos(θj)

2
+ atr

⎞⎠
= 2

MN∑
k=1

(z∗k − zk(θ)) zk(θ)(1 − zk(θ))
∂

∂θp

⎛⎝−a
MN∑
j=1

h̃kj
1 + cos(θj)

2
+ atr

⎞⎠
= a

MN∑
k=1

(z∗k − zk(θ)) zk(θ)(1 − zk(θ)) sin(θp)h̃kp

= a sin(θp)
MN∑
k=1

h̃kp (z∗k − zk(θ)) zk(θ)(1 − zk(θ))

Therefore, the gradient vector can be calculated as,

∇F i
1(θ) =

[
∂F i

1(θ)
∂θ1

, . . . ,
∂F i

1(θ)
∂θMN

]T

= a(H̃T [(z∗ − zi) 
 zi 
 (1 − zi)] ) 
 sin(θ).

In the above equation, 
 resembles element-by-element multiplication of the vec-

tors. The matrix multiplication with H̃T corresponds to a convolution operation with

h̃(−x,−y). Both these operations can be implemented directly on the 2-D matrices

as demonstrated in Fig. 3.1.
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Appendix B

Double Exposure Theorem

The double exposure theorem states that the aerial image obtained using a complex-

valued mask function can be also achieved using successive exposure of two real valued

masks. Let mask m = a + ib, where a,b ∈ �MN×MN and i =
√

( − 1). Then for a

coherent imaging system,

z = |Hm|2 = |H(a + ib)|2 = |Ha + iHb|2

Square of the magnitude of a complex number is equal to the sum of the squares of

the real and imaginary parts. Hence,

z = |Ha|2 + |Hb|2

A real-valued mask consists of only two phases (0 and 180 degrees). Therefore

any image obtained using a continuously varying phase in one exposure, can also be

obtained by means of two exposures, each using a mask with only two phases 0 and

π. Furthermore, the two real-valued mask can be identified as the real and imaginary
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parts of the complex-valued mask.

Pati and Kailath in [64] noted that the number of discrete phase-levels used in

PSM design should be at least four, in order to avoid conflicts and ambiguities in phase

assignment (four-phase theorem). Xu and Arce in [50] proposed to used generalized

ILT by estimating single exposure PSM masks to estimate both phase and magnitude.

The phase values were restricted to 45, 135, -135, and -45 degrees, which enabled them

to pattern 2-D Manhattan geometry patterns. Note that in our DEL-ILT framework

we employ the regularization term to estimate two CPL masks (transmission values -1

and +1). This is equivalent to restricting the transmission values of the corresponding

complex-valued mask to be 1+i, 1−i, −1−i and 1−i. Thus, the single exposure mask

is indirectly restricted to have only four distinct phase values 45, 135, -135, and -45

degrees, respectively. The aerial images obtained using DEL-ILT have good contrast

(even in the phase-conflict regions) as observed in Fig. 5.14 and Fig. 5.16.
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Appendix C

Relationship Between ILS and

Dose Magnification.

Here we prove that for a given incoming dose magnification p, the ILS of the trans-

mitted dose (Dt) is upper-bounded by p times the ILS of the original incoming dose

Di (at the given edge location).

Using (6.2), the transmitted CEL dose for the magnified incoming dose (pDi)

can be calculated as follows,

Dt = f(Di) = pDi − tc
c

+
log[1 + exp(−acpDi + atc)]

ac
(C.1)

Let tr be the resist threshold which determines the desired CD (edge location). There-

fore, the original ILS can be calculated as,

ILSorig =
1
Di

∂Di

∂x

∣∣∣∣
Di=tr

=
1
tr

∂Di

∂x

∣∣∣∣
Di=tr

(C.2)

Similarly, the ILS of the CEL transmitted dose Dt at the same edge location is given
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as,

ILSnew =
1
Dt

∂Dt

∂x

∣∣∣∣
Dt=tr

=
1
tr

∂f(Di)
∂x

∣∣∣∣
f(Di)=tr

=
1
tr

∂f(Di)
∂Di

∂Di

∂x

∣∣∣∣
f(Di)=tr

=
1
tr

(
p

1 + exp(−acpDi + atc)

)
∂Di

∂x

∣∣∣∣
f(Di)=tr

(C.3)

Note that new ILS is evaluated for the same CD (and edge location) as before,

i.e., Di = f(Di) = tr. As seen earlier in Section 6.2.2, if p = 2 and we use the same

CEL parameters (tc = 0.15, a = 30), f(Di) = tr gives the desired CD for c = 0.45.

Therefore,

ILSnew =
1
tr

(
p

1 + exp(−acpDi + atc)

)
∂Di

∂x

∣∣∣∣
(Di=tr ,tc=0.15,c=0.45,a=30)

= p

(
1

1 + exp(−acpDi + atc)

)
1
tr

∂Di

∂x

∣∣∣∣
(Di=tr ,tc=0.15,c=0.45,a=30)

= p

{
1

1 + exp(−acptr + atc)

}
(tc=0.15,c=0.45,a=30)

{
1
tr

∂Di

∂x

∣∣∣∣
Di=tr

}

= p

{
1

1 + exp(−acptr + atc)

}
(tc=0.15,c=0.45,a=30)

× ILSorig (C.4)

For the above case, we observe that ILSnew = 2× 0.9734 × ILSorig = 1.95 × ILSorig.

Thus, for the given CEL material, magnifying the dose twice gives 1.95 times improve-

ment in the ILS.

Furthermore, we also observe that
1

1 + exp(−acptr + atc)
is upper bounded

by 1. Therefore, ILSnew ≤ p × ILSorig; magnifying the incoming dose by a factor p,

can lead to a maximum of p times improvement in the ILS.
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Appendix D

Intel Fab Results

Here we present the printed wafer results for single and double exposure inverse lithog-

raphy. The experiments were performed in the Intel fab using a 193nm dry lithography

system with NA=0.93 and σ = 0.2.

Figure D.1: SEM image of the fabricated wafer pattern obtained using the single exposure
ILT mask pattern from Fig. 4.12 (courtesy Intel Corporation).

164



Fig. D.1 is the SEM image of the wafer pattern fabricated using the single

exposure CPL-ILT mask from Fig. 4.12. We observe that the lines, spaces, and the

contacts are all distinguishable with no pattern collapse, which is very encouraging.

But the printed size of the individual contacts is different. This can be attributed to the

model discrepancy. The mask design problem was solved for a (practically infeasible)

fully coherent imaging system, but the experiments in the fab were performed using a

scanner with σ = 0.2 (partially coherent). Furthermore, our forward model does not

account for the thick mask effects discussed in Section 7.3.2. Any practical application

of ILT will need to incorporate the above effects into the forward model.

Figure D.2: SEM images of the fabricated patterns using the DEL-ILT mask patterns from
Fig. 5.13 (left) and Fig. 5.17 (right). The figure is courtesy Intel Corporation.

Fig. D.2 consists of SEM images of the wafer patterns for two DEL-ILT

examples from Chapter 5 (Fig. 5.13 and Fig. 5.17). We observe that the printed

wafer patterns resemble their respective target patterns, thereby validating the aerial

image decomposition paradigm of DEL-ILT. The contour fidelity can be improved by
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accounting for partial coherence and mask topography effects, as discussed earlier.
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