
UNIVERSITY OF CALIFORNIA

SANTA CRUZ

PATCH-BASED IMAGE DENOISING AND ITS PERFORMANCE LIMITS

A dissertation submitted in partial satisfaction of the
requirements for the degree of

DOCTOR OF PHILOSOPHY

in

ELECTRICAL ENGINEERING

by

Priyam Chatterjee

June 2011

The Dissertation of Priyam Chatterjee
is approved:

Professor Peyman Milanfar, Chair

Professor Benjamin Friedlander

Professor Boaz Nadler

Tyrus Miller
Vice Provost and Dean of Graduate Studies



Copyright © by

Priyam Chatterjee

2011



Table of Contents

List of Figures vi

List of Tables ix

Abstract x

Dedication xii

Acknowledgments xiii

1 Image Denoising and the State-of-the-Art 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Review of Image Denoising Methods . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Spatial-domain Denoising . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.2 Transform-domain Methods . . . . . . . . . . . . . . . . . . . . . . 18

1.4 The State-of-the-Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Fundamental Limits for Image Denoising 25
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2 Bias in Denoising . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3 Optimal Bias Bayesian Cramér-Rao Lower Bound . . . . . . . . . . . . . 35
2.4 Lower Bound on the MSE . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4.1 Deriving the Bayesian MSE bound . . . . . . . . . . . . . . . . . . 39
2.4.2 Fisher Information Matrix . . . . . . . . . . . . . . . . . . . . . . . 42

2.5 Bounds for General Images . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2A Mathematical Justification for Affine Bias . . . . . . . . . . . . . . . . . . 49

iii



2B Optimal Parameters for Affine Bias Function . . . . . . . . . . . . . . . . 50
2C Higher Order Bias Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3 Estimation of Denoising Bounds 56
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.2 Estimating Denoising Bounds from Ground Truth . . . . . . . . . . . . . 58

3.2.1 Practical Geometric Clustering . . . . . . . . . . . . . . . . . . . . 59
3.2.2 Covariance Estimation from Ground Truth . . . . . . . . . . . . . 62
3.2.3 Calculating Patch Redundancy . . . . . . . . . . . . . . . . . . . . 64

3.3 Bounds Estimation for Noisy Images . . . . . . . . . . . . . . . . . . . . . 66
3.3.1 Covariance Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.3.2 Photometric Redundancy from Noisy Images . . . . . . . . . . . 70

3.4 Denoising Bounds and State-of-the-Art . . . . . . . . . . . . . . . . . . . 71

4 Information Theoretic Interpretations of the MSE Bound 85
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.2 Denoising Bounds and Mutual Information . . . . . . . . . . . . . . . . . 88
4.3 Relationship between Denoising Bounds and Entropy . . . . . . . . . . . 93
4A Entropy Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4B Relation between Mutual Information and MMSE Matrix . . . . . . . . . 104
4C Derivation of Overall Entropy . . . . . . . . . . . . . . . . . . . . . . . . . 107

5 Patch-based Locally Optimal Wiener (PLOW) Denoising 109
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.2 Patch-based Wiener filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.3 Patch-based Locally Optimal Wiener Filter (PLOW) . . . . . . . . . . . . 113
5.4 Parameter Estimation for Denoising . . . . . . . . . . . . . . . . . . . . . 117

5.4.1 Geometric Clustering and Moment Estimation . . . . . . . . . . . 118
5.4.2 Calculating Weights for Similar Patches . . . . . . . . . . . . . . . 120
5.4.3 Aggregating Multiple Pixel Estimates . . . . . . . . . . . . . . . . 122

5.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5A Derivation of Noise Covariance for Similarity Model . . . . . . . . . . . 137
5B Derivation of Redundancy Exploiting Wiener Filter . . . . . . . . . . . . 139
5C Derivation of Approximate Similarity Measure . . . . . . . . . . . . . . . 140

iv



6 Conclusions and Future Work 143
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
6.2 Future Works and Extensions . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.2.1 Extending PLOW to Different Degradation Models . . . . . . . . 151
6.2.2 Guided Filtering with Image Pairs . . . . . . . . . . . . . . . . . . 159
6.2.3 Accounting for Intensity Dependent Noise . . . . . . . . . . . . . 161

Bibliography 162

v



List of Figures

1.1 Image formation model illustrating the various noise sources. . . . . . . 2
1.2 Illustration of the concept of search window, patches and similar patches 7
1.3 Illustration of distance measures of different weight functions . . . . . . 10
1.4 Framework for denoising with locally learned dictionaries . . . . . . . . 15
1.5 Clustering of a simple image based on geometric similarity. . . . . . . . . 16
1.6 Principal operations in shrinkage-based denoising methods . . . . . . . 18
1.7 Some popular benchmark images used for different experiments in this

thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.8 State-of-the-art denoising performance: Is denoising dead? . . . . . . . . 22

2.1 Example of bias in denoising produced by some modern denoising meth-
ods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 Some images consisting of geometrically similar patches that we use for
our study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 Visual comparison of the method bias and predicted bias for BM3D &
K-SVD for the grass image . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4 The spatial distribution of Ni values for a patch size of 11 � 11 on (a)
house image, and (b) Barbara image, shown in Fig. 1.7. . . . . . . . . . . 46

2.5 Clustering results by K-Means algorithm on the box image. . . . . . . . . 47

3.1 Outline of the bounds estimation process. . . . . . . . . . . . . . . . . . . 57
3.2 Steering kernels at different locations of the house image. . . . . . . . . . 59
3.3 Clustering using K-Means for the box and house images. . . . . . . . . . 61
3.4 Some query patches and their respective least similar neighbors as de-

fined by (3.4) with various values of p found from a dictionary of ap-
proximately 450, 000 noise-free patches from 4 different images. . . . . . 64

vi



3.5 The spatial distribution of Ni values for a patch size of 11 � 11 on (a)
house image, and (b) Barbara image, shown in Fig. 1.7. . . . . . . . . . . 66

3.6 Clustering of noisy and noise-free Barbara images into 5 clusters based
on geometric structure of patches . . . . . . . . . . . . . . . . . . . . . . . 67

3.7 Some images consisting of geometrically similar patches that we use for
our study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.8 MSE bounds for noise standard deviation 25 as a function of (a) varying
patch size with K � 1 for the grass and cloth images (Fig. 3.7), and
K � 5 for the house and Barbara images; and (b) varying number of
clusters with patch size 11� 11. . . . . . . . . . . . . . . . . . . . . . . . . 73

3.9 MSE bounds computed on simulated images and compared with the
performance of some state-of-the-art methods. . . . . . . . . . . . . . . . 75

3.10 Bounds for texture images compared to denoising performance of some
state-of-the-art denoising methods. . . . . . . . . . . . . . . . . . . . . . . 76

3.11 Comparison of some state-of-the-art methods with our bounds formu-
lation for some general images. . . . . . . . . . . . . . . . . . . . . . . . . 77

3.12 MSE bounds estimated from a given noisy image compared to the ground
truth where the bounds are calculated from clean images . . . . . . . . . 81

4.1 Illustration of the modified data model considering all patches that are
photometrically similar to any given reference patch zi in the image. . . 86

4.2 Effect of noise on different parts of the House image. . . . . . . . . . . . 91
4.3 Density estimation of points sampled from an unknown pdf at a refer-

ence point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.4 Illustration of the relation between Ni and cluster complexity . . . . . . 99
4.5 Estimation of entropy for data sampled from a multidimensional Gaus-

sian density function as a function of dimensions and number of samples.103

5.1 Illustration of the data model formed by expressing all photometrically
similar patches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.2 Outline of our patch-based locally optimal Wiener (PLOW) filtering method.117
5.3 An illustration of how a pixel is estimated multiple times due to over-

lapping patches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.4 Comparison of denoising results for the house image corrupted by WGN

of σ � 25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

vii



5.5 Comparison of denoising results for the Barbara image corrupted by
WGN of σ � 25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.6 Comparison of denoising performance with leading denoising methods
for Lena, man and stream images (Fig. 1.7) corrupted by σ � 25. . . . . . 129

5.7 Comparison of (cropped) denoising results for color images corrupted
by 5% WGN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.8 Denoising of some real noisy color images. . . . . . . . . . . . . . . . . . 134
5.9 Restoration of images with non-Gaussian noise profiles. . . . . . . . . . . 135

6.1 Comparison of denoising results with MSE bounds for some benchmark
images corrupted by varying levels of additive WGN. . . . . . . . . . . . 144

6.2 Comparison of denoising results with MSE bounds for some benchmark
images corrupted by varying levels of additive WGN. . . . . . . . . . . . 147

6.3 Image formation model showing the different degradation steps that the
image goes through due to camera hardware limitations. . . . . . . . . . 151

6.4 Illustration of correlation among the red, green and blue color channels. 153
6.5 Illustration of patch formation in Bayer patterned raw images. . . . . . . 156

viii



List of Tables

2.1 R2 values for the affine model fit of the bias produced by different meth-
ods for different images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1 Some images ranked according to the predicted denoising bounds show-
ing their relative denoising difficulty. The noise standard deviation is 25

and the bounds are calculated using 11� 11 patches. . . . . . . . . . . . 79
3.2 Comparison of bounds from noisy and noise-free images considered to

be ground truth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.1 Clustering of the house image and the cluster-wise mutual information
estimates when corrupted by various levels of WGN. . . . . . . . . . . . 90

4.2 Ranking of images based on denoising difficulty as indicated by the MI,
compared to the entropy, the denoising bound and MSE of BM3D de-
noising algorithm for WGN. . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.1 Denoising performance of some popular methods (NLSM, BM3D) un-
der WGN corruption, compared to PLOW, with and without oracle in-
formation. Results noted are average PSNR (top), SSIM (middle) & Q-
measure (bottom) over 5 independent noise realizations for each σ. . . . 131

6.1 Some images ranked according to improvement in denoising yet to be
achieved, as predicted by our bounds. The noise standard deviation is
25 and the bounds are calculated using 11� 11 patches. . . . . . . . . . . 146

ix



Abstract

Patch-based Image Denoising and its Performance Limits

by

Priyam Chatterjee

Recently there has been considerable increase in the casual and commercial uses of

image and video capturing devices. Apart from their applications in photography,

the captured data are often inputs to sophisticated object detection and tracking, and

action recognition methods, applications of which permeate different industries. Cap-

tured images are often not of desired quality and need to be enhanced by software. One

of the major causes of the performance degradations for most methods is the presence

of noise. Noise removal, therefore, forms a critical first step for many applications. In

this thesis, we concentrate on this important problem of image denoising.

Image denoising has been an active field of research with literature dating

back to the 1970s. However, given the importance of the problem, considerable effort

still continues to be channeled to bettering the state-of-the-art. Surprisingly, perfor-

mance improvement in recent years has been somewhat limited. In this thesis, we

first study the possible causes of such restricted improvement. To do so we analyze

the problem of image denoising in a statistical framework. Since the best performing

methods are patch-based, we frame the problem of denoising as that of estimating the

underlying image patches from their noisy observations. The performance limits of

this class of methods is then studied in a Bayesian Cramér-Rao lower bound frame-

work. We show that the denoising bounds depend on the image content as well as

the noise statistics, and are related to different information-theoretic measures. In this



thesis, we also show how the denoising bound can be calculated for any given image.

Finally, we use the insights gained in our analysis to develop a practical denoising

algorithm (PLOW) that is designed to achieve the theoretical limits of the denoising.

Through various experiments, we show that our proposed method achieves state-of-

the-art performance, both visually and quantitatively.



In loving memory of my grandfather, Sameer Rai Chaudhury.
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Chapter 1

Image Denoising and the State-of-the-Art

Abstract – This chapter introduces the problem of image denoising, and discusses

the various sources and characteristics of noise corrupting images and why denois-

ing is an important problem. We then briefly study the similarities and dissimilarities

among the various approaches that have been proposed over the last decade. Finally,

we discuss the state-of-the-art in image denoising and its improvement over the years

by comparing the performance of some of the best denoising methods.

1.1 Introduction

In recent years, images and videos have become integral parts of our lives.

Applications now range from casual documentation of events and visual communi-

cation, to the more serious surveillance and medical fields. This has led to an ever-

increasing demand for accurate and visually pleasing images. However, images cap-

tured by modern cameras are invariably corrupted by noise [1]. Apart from the ob-

vious reduction in image quality, such noise usually also hinders the performance of

1



Figure 1.1: Image formation model illustrating the various noise sources. Adapted from [2].

subsequent computer vision applications, such as tracking, object detection, etc. Sup-

pressing such noise is, thus, the usual first step. However, before this can be performed,

it is imperative to understand the source and characteristics of the corrupting noise. To

do so, we briefly study the image formation pipeline (Fig. 1.1).

The image capturing process of digital cameras is based on light from the

scene entering the camera and being focused on a sensor where it is converted to digi-

tal information. These light rays undergo various processing stages (see Fig. 1.1) before

the final digital image is produced. They are first distorted by the lens which focuses

the incident light on the camera sensor. In modern commercial cameras, the (CCD

or CMOS) sensor usually includes a color filter array (CFA) in which each sensor ele-

ment reacts to a particular range of light wavelengths. The incident rays, or photons,

reaching each sensor element are then accumulated and converted to electrical volt-

age which is then read and stored in digital form. The CFA data has incomplete color

information at each location (pixel) and, thus, must be interpolated by a demosaicing

2



process. Further adjustments such as white balancing, gamma correction and color

tone-mapping are then performed before the final image is produced.

Noise corrupting the final image is introduced in different forms in various

stages of the image formation pipeline [2], illustrated in Fig. 1.1. Some of these noise

sources stem from the camera characteristics. For example, the fixed pattern noise ap-

pears due to non-uniform response of the sensor elements and dark current noise is a

result of aberrant charges appearing at the sensors even without any incident photons.

These noise sources can be effectively modeled for a given camera and, hence, con-

trolled. Thermal noise appears due to heating of electronic components of the camera

with use. This noise increases as a function of the exposure time and duration of use.

In general, for short exposures the effect of thermal noise is minimal. Effects of quan-

tization noise, arising as a result of analog-to-digital conversion of the signal, can also

be mitigated by using sufficient number of bits to store pixel information.

On the other hand, shot noise is due to the photonic nature of light. Since pho-

tons do not hit the sensors uniformly even for a uniform scene, the resultant observa-

tion is always noisy. This photon counting process makes the noise signal-dependent

and is usually modeled to be Poisson distributed [3]. When the image is well-exposed,

that is, a large number of photons are incident on the camera sensor, the Poisson prob-

ability density function (pdf) closely resembles a Gaussian pdf. Moreover, as the pho-

tons are accumulated in each sensor element independent of neighboring elements,

the noise can also be assumed to be spatially uncorrelated. As a result, image noise

3



is popularly modeled to be zero mean independent and identically distributed (iid)

Gaussian1, or white Gaussian noise (WGN).

Under photon-limited low light conditions, the noise is known to be dom-

inated by the Poisson distributed shot noise [1, 4]. However, in such cases variance

stabilization methods, such as Anscombe root transformation [5], can be applied to

obtain an approximation of a Gaussian distributed signal. Any denoising algorithm

based on the Gaussian assumption of noise can then be applied, following which an

inverse transformation is performed to obtain the denoised image [6]. Thus, denoising

methods addressing Gaussian noise are practically applicable even in such cases [7].

The image denoising problem can be posed as that of estimating the noise-free

pixel intensity zi from its noisy observation2 yi at each location i where

yi � zi � ηi. (1.1)

Here ηi is the corrupting noise, assumed to be WGN with a certain standard devia-

tion σ. With increasing pixel resolution and limited sensor sizes, fewer photons are

available at each sensor element, leading to more pronounced noise effects. Noise sup-

pression has, thus, become more relevant. While advances in optics and hardware try

to mitigate such undesirable effects, software-based denoising approaches are more

popular as they are usually device independent and widely applicable. In this thesis

we focus on such software-based approaches for image denoising.

1In practice, demosaicing of the noisy CFA image corrupts the spatial independence as well as the
Gaussian structure of the noise. However, this color interpolation is usually performed within a small
neighborhood, thus making the iid Gaussian assumption a reasonable approximation.

2For color images, yi represents each of the color components, while for grayscale images yi is the
observed intensity.

4



1.2 Contributions

Image denoising is a very basic problem that is of wide interest to the image

processing and computer vision communities. In this thesis, we perform a thorough

statistical analysis of the image denoising problem leading to a practical denoising

method that achieves near-optimal performance. The remainder of this thesis is orga-

nized as follows:


 Chapter 2 – Fundamental Limits for Image Denoising

In this chapter, we present an expression for the performance limits of image de-

noising. Considering the superior performance of patch-based methods, we cast

the problem of denoising as that of estimating the unknown noise-free patch in-

tensities at each image location. A lower bound on the mean squared error (MSE)

of the estimate is then formulated in a Bayesian Cramér-Rao bound framework.


 Chapter 3 – Estimation of Denoising Bounds

This chapter deals with the estimation of the bounds from a given image. For

this work, we assume the noise to be WGN. We estimate the bounds by inde-

pendently estimating the different parameters of the denoising bounds. We first

present methods of estimating the parameters assuming the noise-free image to

be available. These methods are then generalized to account for the presence of

noise in the input image. Through experiments, we show that the estimated pa-

rameters are accurate enough to obtain an estimate of the performance limits for

denoising any given noisy image.


 Chapter 4 – Information Theoretic Interpretations of the MSE Bound

Here, we analyze the bounds formulation of Chapter 2 from an information theo-

5



retic point of view. We show that the bounds are related to information theoretic

measures and that parameters of the bound are connected through such informa-

tion theoretic measures. We also show how information theoretic measures can

be used to determine relative denoising difficulty among noisy images.


 Chapter 5 – Patch-based Locally Optimal Wiener (PLOW) Denoising

In this chapter, the insights gained in Chapters 2 & 3 are used to realize a practical

patch-based image denoising algorithm that achieves or improves on the current

state-of-the-art. As an added advantage, the proposed method has a sound sta-

tistical basis that justifies its performance.

Although developed for denoising, a more generalized model of our denois-

ing algorithm developed in Chapter 5 can be applied to many other image processing

problems. We point out such directions and conclude the findings of our research in

Chapter 6. Before proceeding with the analysis of the denoising problem and its per-

formance limits, we provide a brief overview of the various existing approaches for

denoising in Sec. 1.3 followed by a discussion of the current state-of-the-art in Sec. 1.4.

1.3 Review of Image Denoising Methods

Image denoising has been a well-studied problem. The challenge facing any

denoising algorithm is to suppress noise artifacts while retaining finer details and

edges in the image. Over the years, researchers have proposed many different methods

that attempt to achieve these contradictory goals. These methods vary widely in their

approaches. Broadly, these denoising filters can be categorized based on their domain

6



Figure 1.2: Illustration of the concept of search window N piq, patches and similar patches. The
square region bounded in red with noisy pixel of intensity yi at the center is the patch yi. If
two pixels yi and yj have similar neighborhoods, we term the patches yi and yj as similar.

of denoising - spatial or transform domain. Below, we briefly outline some of the most

popular approaches within each category.

1.3.1 Spatial-domain Denoising

Denoising methods where the pixel intensities are used directly in the denois-

ing process are said to be spatial-domain filters. Even within this class of denoising

methods, the actual approaches can vary significantly. In general, the most successful

approaches can be classified as being either a process where denoising is performed by

a weighted averaging of pixel intensities; or an explicit model-based approach where

parameters of the data model are usually learned from the noisy image itself.

Weighted Averaging Methods:

The underlying concept behind many spatial-domain denoising filters is to

suppress noise through a weighted averaging process which can be mathematically

7



written as

ẑi �
¸
j

Wij yj , such that
¸
j

Wij � 1. (1.2)

Here ẑi is the denoised estimate of the pixel at i, and Wij is the normalized weight

that controls the influence of yj in the denoising of yi. The simplest weighted averag-

ing process for denoising is averaging pixels within a local neighborhood (or search

window) with a normalized weight function

Wij � wij°
j wij

where wij �

$''&''%
1, if j P N piq

0, otherwise.

(1.3)

Here N piq denotes a small
?
S � ?

S neighborhood centered at i (see Fig. 1.2). This

simple averaging can be considered to be a special case of the Yaroslavsky filter [8]

where pixels closer to the pixel of interest exert greater influence over the denoising

process. The weight function in [8] is designed as a Gaussian:

wij � exp

"
�}xi � xj}2

h2s

*
, (1.4)

where xi � rx1 x2si denotes the position of the i-th pixel in a two dimensional coor-

dinate system, as shown in Fig. 1.2. Here h2s is the bandwidth of the Gaussian filter

that controls the level of smoothing. The filters in Equations 1.2 & 1.4 do not take

into account intensity information. As a result, pixels across edges are averaged in the

denoising process, leading to loss of detail and edge sharpness.

To restrict such loss of detail in the image, it is important to ensure that the

averaging is performed only over photometrically similar pixels. For example, to de-

noise the pixel yi of Fig. 1.1, we should use the intensity information of yj , but not y1.

However, in the presence of noise, identifying such similar pixels can be challenging.

One of the first approaches making use of a data adaptive weight function is attributed

8



to Smith et al. (SUSAN [9]) and Tomasi et al. (bilateral filter [10]). The non-linear weight

function proposed by them takes the form

wij � exp

"
�}xi � xj}2

h2s

*
exp

"
�pyi � yjq2

h2r

*
. (1.5)

The weight function here takes into account the local intensity information as well. An

additional smoothing parameter h2r is introduced and this intensity bandwidth needs

to be tuned based on the corrupting noise level. The added photometric term ensures

that similar pixels in the neighborhood are preferred in the averaging, thus avoiding

smoothing across edges. However, as the noise level increases, the filter’s ability to

distinguish between similar and dissimilar pixels degrades quickly [11].

Buades et al. [12] and Awate et al. [13] independently proposed a simple mod-

ification that lends robustness to this weight function. There the authors generalized

the photometric part of the weight function by taking into account information from

the vicinity of the pixels as well (see Fig. 1.2). That is to say, instead of comparing in-

tensities of a pair of pixels, intensities of local groups of pixels (patches) are compared.

Thus, the denoising process in [12] uses a patch-based weight function

wij � exp

"
�}yi � yj}2

h2r

*
, (1.6)

where yi is a group of pixels within a small (usually rectangular) vicinity of yi with its

center at i. Referring to Fig. 1.2, the weight for yj in denoising yi is high as patches yi

and yj are also similar. Since a group of pixels are compared, the weight calculation

scheme is considerably better at rejecting dissimilar pixels from the averaging process.

An interesting aspect of Eq. 1.6 is that there is no spatial weight compo-

nent. As a result, the search for similar patches can be conducted over the entire

image leading to a non-local formulation. However, doing so can be computation-
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Figure 1.3: Illustration of distance measures of different weight functions, adapted from [21].
The measure of distance between two points used by the Yaroslavsky filter [8] is }Bx}2 while
NLM [12] uses }By}2. The patch-based bilateral filter [9, 10] measures the Euclidean distance,
while the steering kernel of [22] measures the geodesic distance along the solid red curve.

ally prohibitive [12]. Although many methods have been proposed to speed up this

process [14–17], it was argued in [18] that an exhaustive search can often lead to per-

formance loss. Consequently, performing the averaging over a smaller search window

N piq is usually preferable. The size of this search window thus plays a role in the de-

noising performance of the non-local means (NLM) filter. For example, when the un-

derlying image in smooth, a larger search window is effective in suppressing the noise,

while textural regions gain from using a smaller neighborhood. Kervrann et al. [19, 20]

exploited this observation, along with a slightly modified weight function:

wij � exp

$&%�pyi � yjqT
�
V�1
i �V�1

j

	
pyi � yjq

h2r

,.- . (1.7)

Here, the diagonal matrix Vi contains the variance of each pixel of the patch yi as its

entries. Such optimal spatial adaptation of the search window leads to considerable

improvement in denoising performance of the NLM filter.

The weight measures that we have discussed until now can be generally con-
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sidered to be the exponential of the negative distance between two points. In Fig. 1.3

we illustrate the different distance measures used by different methods. Considering

a simplified 1-dimensional representation of the image where the horizontal and ver-

tical axes denote the intensity and spatial location of pixels (patches), we can see that

the Yaroslavsky filter measures the positional distance between two point at xi and

xj . NLM, on the other hand, measures the intensity distance, while the (patch-based)

bilateral filter uses the Euclidean distance metric.

In [22], Takeda et al. proposed a very different approach to computing the dis-

tance between two pixels. The authors compute the approximate geodesic distance

which is the distance along the signal curve [21], denoted by the solid red line in

Fig. 1.3. The weight function used there is

wij �
a|Cj |
2πh2

exp

#
�pxi � xjqT Cj pxi � xjq

h2

+
, (1.8)

where h2 is a global smoothing parameter, Cj is the structure tensor [23] at location j

measured from the local gradient information, and | . | denotes the determinant. With

a robust estimate of the local structure matrix Cj , this weight measure has proved

to be effective in discriminating similar and dissimilar pixels even in the presence of

considerable noise [11]. A more detailed analysis of this locally adaptive regression

kernel (LARK) is provided in [11, 24, 25].

As opposed to the methods discussed earlier, the normalized denoising weights

Wij of [22] are obtained in a higher order kernel regression framework [26]. There, the

authors assume the underlying noise-free image to be a regression function of which

only noisy samples are observed. This regression function is assumed to be sufficiently

smooth locally to allow fitting of some low (usually 0, 1 or 2) degree polynomial. This
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leads to a local patch-based3 model as

yi � zi � ηi � Φβi � ηi, (1.9)

where Φ is the basis containing polynomial functions in its columns as shown in Eq. 1.10,

βi is the vector of coefficients and ηi is the noise patch. The polynomial matrix Φ for a

2nd order polynomial model (as used in [22]) has the form

Φ �

���1 pxj � xiq vech
 pxj � xiqpxj � xiqT

(
...

...
...

��� , (1.10)

where vechpAq denotes the raster scanned lower triangular form of the matrix A.

To allow for discontinuities at edges, this polynomial model fitting is restricted

to only pixels that are similar to the reference pixel in the center of the patch. For this,

the weight function of Eq. 1.8 is used. The final estimate of the denoised pixel is ob-

tained as the weighted least squares solution:

pβi � arg min
βi

pyi �ΦβiqT Ki pyi �Φβiq

� �
ΦTKiΦ

��1
ΦTKiyi, (1.11)

and ẑi � eT1
pβi, (1.12)

where Ki � diagpr. . . wij . . . sq and e1 is the first column of an identity matrix. In the

special case where a zero-th order polynomial model is considered, the polynomial

matrix becomes Φ � r. . . 1 . . . sT . This leads to the estimator taking the form of Eq. 1.2

with Wij � wij°
j wij

.

In general, a higher order polynomial forms a better local model. However, if

too high an order is chosen, the local image model starts fitting to noise. Consequently,

3In this case, the search window N piq and patch yi (see Fig. 1.2) are the same.
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the authors in [22] used a 2nd order polynomial. It is important to note that such a gen-

eralization is not restricted to the locally adaptive regression kernel (LARK) weights of

Eq. 1.8 and can be applied to other methods as well. In [27–30] it was shown that the

higher order bilateral [9, 10], NLM [12] and OSA [19] filters improved on the perfor-

mance of the respective zero-th order filters. As such, most weighted averaging meth-

ods can be cast in a kernel regression framework where the main difference among

the methods lies in the choice of respective weight functions. However, irrespective of

the distance metric (weight function) chosen, the weight matrices share many common

characteristics. A very detailed study of such intrinsic properties is presented in [21].

The kernel regression framework has also been shown to have an equivalent

variational formulation. Brox et al. [31] analyzed this relation to derive an iterative

framework involving the NLM filter. Another variational interpretation of the NLM

filter was used for image denoising and segmentation by Gilboa et al. [32]. In [33],

Barash illustrated the relation between the bilateral filter and anisotropic diffusion [34],

which in turn also has a variational interpretation [35]. The bilateral filter was also

shown to have a Bayesian formulation in [36]. While the above equivalence analyses

were performed for specific kernels, parallel relations can be drawn for other weighting

functions as well [21].

The steering kernel regression (SKR) framework of [22] uses a local polyno-

mial model for the data. This polynomial model arises from making use of a local

Taylor expansion of the underlying image which is assumed to be a locally smooth

regression function. However, the framework admits other basis functions as well. As

such, alternate choices of bases lead to different local models (Φ) for the image. Next,
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we briefly discuss some of the spatial-domain approaches where more explicit models

are used to perform denoising.

Denoising through Data Modeling:

While the kernel regression-based framework typically employs an implicit

local model of the image for denoising, many spatial-domain methods employ a more

explicit model-based approach. In most of these methods the models act as prior in-

formation about the clean image and are either learned a priori from noise-free natural

images or directly from the noisy image. Denoising is then performed by enforcing

these priors on the noisy image.

One of the most popular model-based methods is the K-SVD algorithm [37].

There the authors propose a patch-based framework where each patch in the image is

represented as a linear combination of patches from some over-complete set of bases.

Building on the observation that noise-free image patches are sparse-representable [38],

the authors enforce a constraint on the number of basis patches (or atoms) that can be

used in estimating any given patch. Mathematically, the problem can be formulated as

pzi � Φpβi, where

pβi � arg min
βi

}yi �Φβi}2 subject to }βi}0 ¤ τ. (1.13)

Here τ is some small threshold that controls the level of sparsity, thus ensuring that the

data model does not fit to noise. In practice, the optimization framework of Eq. 1.13 is

replaced by a convex approximation where the `0 norm is replaced by an `1 norm.

The over-complete basis set (or dictionary) Φ can be formed either offline

from some parametric basis functions (say, DCT), or patches from clean images; or

online using patches from the noisy image itself. In [37], the authors note that the
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Figure 1.4: Framework for denoising with locally learned dictionaries [24].

latter approach is more practical and also leads to be better denoising performance. In

that case, the dictionary Φ also needs to be learned. In [37], the Φ and the coefficients

βi are estimated alternately in an iterative framework.

The sparsity constraint on βi ensures that each estimated patch lies in some

low dimensional subspace spanned by few atoms. In [37, 38] these atoms are normal-

ized to have unit norm. Consequently, one of the atoms in the support of any given

patch is the constant patch which can be scaled to match the mean intensity of the patch

being restored. It is then reasonable to assume that structurally similar patches share

the same support, although the coefficients βi may vary. The global over-complete dic-

tionary can then be thought to be a union of multiple smaller local dictionaries where

locality is defined by geometric or structural similarity among patches.

This observation was exploited in [24] where we proposed a denoising frame-

work using multiple locally learned dictionaries. The basic outline of the framework is

illustrated in Fig. 1.4. Denoising there follows three steps. In the first step, the image is

clustered based on patch structure. An example of such clustering is shown in Fig. 1.5

where the simulated box image is clustered based on whether the patches contain flat

regions, horizontal or vertical edges, or corners. In the next step, a dictionary Φk is

learned for each cluster Ωk. Finally, the coefficients βi for each patch in the cluster

are estimated. In [24], the principal components of the member patches were used as

dictionary atoms for each cluster. The number of components used were adaptively
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(a) Box image (b) Cluster 1 (c) Cluster 2 (d) Cluster 3 (e) Cluster 4

Figure 1.5: Clustering of a simple image based on geometric similarity. Note how pixels in
any particular cluster can have quite different intensities but similar geometric structure (edge,
corner, flat regions, etc.)

chosen based on the complexity of the image patches within each cluster, taking care

to avoid over-fitting. The coefficients were learned in the kernel regression framework

of Eq. 1.11 using the LARK weights of [22].

The framework proposed in [24] incorporates flavors of regression as well

as dictionary-based approaches. It is easy to see that when Φk is restricted to poly-

nomials of a given maximum degree, we obtain the method outlined in [22]. On the

other hand, without any clustering, the learned dictionary is global and the framework

becomes similar to that of K-SVD [37]. A clustering-based framework employing prin-

cipal components for dictionary learning was also applied to image coding in [39],

and to denoising and other applications in [40]. When the clustering is based on spa-

tial proximity, this framework leads to the localized PCA-based denoising framework

of [41, 42] with the latter approach exploiting photometric similarity among patches as

well. Although the generic framework is similar, the exact processes employed by the

methods within each step can be quite different.

The observation of similar patches sharing similar atoms was also recently

exploited by Mairal et al. [43] to improve the performance of the K-SVD framework.

There, the authors explicitly restrict similar patches to share the same support, and the
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coefficients βi for the group are estimated in a joint optimization framework. However,

instead of using structural information, photometric similarity was used as the grouping

criterion. Two noisy patches yi and yj were considered similar if they satisfied the

condition

}yi � yj}2 ¤ γ2, (1.14)

where γ is a threshold whose value is usually dictated by the strength of the noise

corrupting the observed image. Photometric similarity is a more restrictive condition

compared to structural similarity as patches need to have similar intensities as well.

This can be seen from Fig. 1.5 where geometrically similar patches within each cluster

can have different intensities. As a result, a large number of local models were used

in [43].

Another model-based approach involving segmentation of the image was

proposed in [44], where the authors segment the image into multiple local regions with

similar intensities (or color). However, as opposed to the previous models, a paramet-

ric polynomial model was used to represent the underlying data in each segment. As

with SKR [22], the authors there showed that a higher order (in their case, affine) model

retains much more texture than a lower order polynomial (locally constant) fit.

The modeling-based methods discussed so far make use of either paramet-

ric or data adaptive models where the parameters are estimated from the noisy image

without any prior information. On the other hand, many methods explicitly make use

of clean (noise-free) images to learn either the model or a prior on the model parame-

ters. Such methods require a separate (offline) training phase. For example, the two

color model used for denoising by Joshi et al. [45] models the color of each pixel in

a neighborhood as a linear combination of two principal colors, where the coefficients
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Figure 1.6: Principal operations in shrinkage-based denoising methods, as presented in [48].

are estimated in an optimization framework that makes use of a learned prior. Another

such method presented in [46] models the image gradients as a generalized Gaussian

distribution. The parameters of the distribution were learned from a database of noise-

free images. In [47] Roth and Black proposed the Field of Experts (FoE) model for

natural images. There the authors proposed a parametric model for natural images

based on Markov random fields (MRF) and sparse coding techniques.

The advantage of learning image priors from training samples is that the learned

model can be used in many image processing applications, including denoising. How-

ever, the training phase is usually time consuming, requiring a large vocabulary of

images to ensure substantial variety. Care must also be taken to ensure that images

chosen as training samples are not themselves noisy or degraded in any other way.

Until now we have summarized various spatial-domain methods. While such

methods have shown promise in suppressing noise in natural images, a large section

of denoising literature is devoted to transform-domain methods. In the next section,

we discuss some of those approaches.

1.3.2 Transform-domain Methods

The main motivation of denoising in some transform domain is that in the

transformed domain it may be possible to separate image and noise components. The

basic principle behind most transform-domain denoising methods is shrinkage - trun-
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cation (hard thresholding) or scaling (soft thresholding) of the transform coefficients

to suppress the effects of noise, as shown in Fig. 1.6. For such thresholding, the chal-

lenge is to develop a suitable coefficient mapping operation that does not sacrifice the

details in the image. The final denoised image is obtained by performing an inverse

transform on the shrunk coefficients. Apart from the choice of the thresholding oper-

ator, the choice of the transform domain is also critical. In the image processing liter-

ature, a variety of such transform domains or bases have been proposed. Examples

of such bases include two dimensional extensions of the well-studied discrete cosine

(DCT) bases used in [49], as well as those developed specifically for image modeling

purposes, namely curvelets [50], ridgelets [51], contourlets [52], etc. Of the many trans-

form bases used in literature, the space-frequency localization property of the wavelet

domain makes it the most popular choice.

Since the seminal work by Donoho and Johnstone [53], the wavelet basis has

been at the core of many transform-domain denoising methods [54–58]. Of these, the

denoising method proposed by Portilla et al. [59] has shown considerable promise.

There the authors proposed a denoising approach based on the scale mixture of Gaus-

sians (GSM) model for the wavelet coefficients [60]. The noisy image is first broken

into multiple sub-bands in the wavelet domain, and in each sub-band the wavelet co-

efficients within a local neighborhood are modeled as a Gaussian scale mixture [61]. A

Wiener filter is then used to denoise the wavelet coefficients in a Bayesian least squares

framework. The denoised coefficients across sub-bands are then inverse transformed

to form the final denoised image. Recently, Lyu and Simoncelli [62] extended this local

framework by incorporating a global model for natural images using Gaussian MRFs
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House Peppers Lena Boat

Barbara Man Stream Mandrill

Figure 1.7: Some popular benchmark images used for different experiments in this thesis.

to form a Field of GSMs (FoGSM). Such a global model was shown to improve upon

the performance of the BLS-GSM method of [59].

The Wiener filter forms the basis of another celebrated denoising method pro-

posed by Dabov et al. [49]. There the authors proposed BM3D - a two step denoising

method which exploits both spatial and frequency information of an image. The first

step involves a shrinkage-based transform domain operation. The initial denoised im-

age is then used as a guide or pilot estimate of the ground-truth for a Wiener filtering

operation. What makes this approach unique is that in each step it exploits patch re-

dundancy within the image to improve performance. This is done by first identifying

photometrically similar patches in the spatial domain. This group is then used to per-

form adaptive thresholding in the shrinkage step. This allows them to process the

entire group of patches simultaneously. A similar grouping on the pilot estimate is

used to perform a transform-domain Wiener filtering. The transform domain of choice

for strong noise was the DCT basis, although the wavelet basis was recently shown to
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improve performance somewhat [63]. Use of a group of patches to adaptively estimate

the threshold and parameters of the Wiener filter lends robustness to the process in

presence of strong noise. As such, this hybrid approach showcases the performance

benefits of the non-local framework, first presented in [12].

In our survey of image denoising literature, we distinguished between the

different approaches based on their domain of denoising. However, we point out here

that many of these so-called transform-domain denoising methods have equivalent

spatial-domain interpretations. Specifically, in [54,64,65], many wavelet domain meth-

ods have been shown to have a maximum a posteriori (MAP) based pixel-domain in-

terpretation. A thorough analysis showing such equivalence for a more general class

of shrinkage-based estimators was presented in [48]. More recently, Milanfar [21] also

cast the hybrid approach of BM3D in a spatial-domain weighted averaging framework.

Consequently, such distinction based on the domain of denoising can often be based

on how a specific filter is implemented.

1.4 The State-of-the-Art

As discussed in the previous section, a plethora of methods have been pro-

posed with widely varying approaches. In keeping with the traditional estimation

framework, the performance of these algorithms are quantified using mean squared

error (MSE) or peak signal-to-noise ratio 4 (PSNR). The MSE of the denoised image is

computed as

MSE � E
�pz � ẑq2� � 1

M

M̧

i�1

pzi � ẑiq2, (1.15)

4PSNR, measured in decibels (dB), is related to the MSE as 10 log10
�

2552

MSE

	
for images with an intensity

range of r0� 255s. An improvement of 1 dB corresponds to approximately 20% reduction in MSE.
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Figure 1.8: State-of-the-art in image denoising: MSEs obtained by some popular methods (BLS-
GSM [59], NLM [12], OSA [19], K-SVD [37], SKR [22], BM3D [49], NLSM [43], PLOW [68,
69]) averaged over 4 different images corrupted by WGN of standard deviation 25 show that
performance improvement in terms of MSE is not phenomenal. Is denoising dead?

where ẑi is the estimate of the pixel zi at location i, and M is the total number of pixels

in the image. Although MSE is a useful fidelity measure, it does not always serve as a

good indicator of the visual quality of the output image. Consequently, considerable

research has been devoted to quantifying perceptual quality, leading to the SSIM mea-

sure [66] and the Q-metric [67], to name a few. For evaluation of denoising quality in

this thesis, we will use the MSE (PSNR) in conjunction with SSIM [66], Q-metric [67]

and visual inspection. However, in keeping with convention, we study the perfor-

mance of various methods based on output MSE (PSNR).

Since it is impractical to evaluate the vast number of methods addressing the

image denoising problem, we restrict ourselves to a few prominent ones proposed over

the last decade. The first method that advanced the state-of-the-art considerably can

be attributed to BLS-GSM [59] proposed in 2003. In Fig. 1.8 we study the denoising

performance of some popular denoising methods proposed since then. The plot there

shows the average MSE obtained on 4 benchmark images (house, peppers, Lena and

boat images of Fig. 1.7) corrupted with WGN of standard deviation 25. In the subse-
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quent years, various other methods (OSA [19], K-SVD [37], SKR [22], to name a few)

were proposed. These can be seen to perform comparably to BLS-GSM. Building on the

non-local concept of [12], the BM3D [49] method improved upon these to advance the

state-of-the-art. More recently, Mairal et al. [43] incorporated a non-local formulation

within the K-SVD [37] framework to achieve similar denoising performance.

Recently, in [68, 69], we proposed a patch-based spatial-domain method that

extends the popular Wiener filter by exploiting patch redundancies. In our method,

both geometrically and photometrically similar patches are used to infer different pa-

rameters of the locally optimal filter. Our patch-based locally optimal Wiener (PLOW)

filtering method achieves denoising performance that is quantitatively and visually

on par or even better than the other recently proposed methods. The average MSE

achieved over 4 test images are shown in Fig. 1.8. As an added benefit, our method

has a sound statistical basis that explains such performance. In [69] and Chapter 5, we

present our proposed method in detail, drawing motivation from our study presented

in the following chapters of this thesis.

The comparisons in Fig. 1.8 illustrate that the non-local frameworks (OSA,

BM3D, NLSM, PLOW) enjoy a distinct advantage over other localized approaches,

even though the original method of NLM [12] does not fare well for strong noise. The

plot also demonstrates that there has been some performance improvement, in terms of

MSE, over the last decade. Surprisingly, however, this improvement, an average gain

of 10 in terms of MSE, has not been very significant. Naturally, this raises the question:

Is denoising dead? Have we reached the limits of denoising performance? [70]. We

explore the answers to these questions in the following chapter.
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Summary – In this chapter, we discussed why image denoising is still a relevant prob-

lem even though it has been studied quite extensively. We discussed a variety of al-

gorithms that have been proposed in the last decade and pointed out their inherent

similarities and dissimilarities. We pointed out some of the measures that are used

to evaluate denoising performance and showed that the state-of-the-art has improved

over the years, albeit not substantially. This motivates us to analyze the problem of

denoising further in an effort to understand if we have reached some theoretical limits.

We present our findings in the next chapter.
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Chapter 2

Fundamental Limits for Image Denoising

Abstract – In this chapter we study the fundamental limits of denoising any given

image. We derive a general expression to lower bound the performance (in terms of

MSE) of any patch-based method. Our bounds predict that denoising performance is

limited by the noise statistics, the complexity of image patches, as well as the level

of patch redundancy that is observed in the given image. We also analyze the MSE

bounds formulation in relation to the performance of some well-known estimators.

2.1 Introduction

In the previous chapter, through a simple experiment we demonstrated that

many of the recently proposed methods achieve comparable denoising performance,

even though the approaches are quite varied. This begs the following questions: Has

the problem of denoising already been solved? If not, how much improvement can

be expected? In this chapter, we answer these questions through a statistical analysis

of the denoising problem. Specifically, we pose the denoising problem as that of esti-
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mating the underlying image patches and formulate lower bounds on the MSE for this

estimation in a Bayesian Cramér-Rao bound framework [71]. The developed lower

bound is independent of any particular denoising method. The bounds framework

presented here offer some nice insights that will be exploited later in Chapter 5 where

we design a practical denoising method to achieve near-optimal performance.

Although literature on performance limits exists for some of the more com-

plex image processing tasks, very few works address the problem of denoising. One of

the earliest such studies was presented by Unser et al. [72] where the authors study the

best signal-to-noise ratio that can be obtained from multiple noise-corrupted electron

micrographs. In [73], Voloshynovskiy et al. briefly analyzed the performance of MAP

estimators to define performance limits. Another study presented in [74] analyzed the

bounds of denoising performance under a simplistic model where any given image is

modeled as a union of constant regions separated by sharp edges. These works were,

however, limited to analyzing bounds for pixel-wise restoration and do not take into

account the patch-based frameworks that the best performing methods employ. Per-

formance limits to object or feature recovery in images in the presence of pointwise

degradation was studied by Treibitz et al. [75]. There, the effect of noise corruption is

studied along with other degradations to formulate optimal filtering parameters that

define the resolution limits to recovering any given image feature. Although interest-

ing, their work does not define any fundamental limits to denoising general images.

Moreover, none of these works account for the performance improvement from using

a good image prior.

Recently, Levin and Nadler [76] introduced a non-parametric method of es-

timating the (lower and, in certain cases, upper) Bayesian MSE bounds for image de-
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noising. In contrast to other analyses discussed so far, they specifically accounted for

the effect of prior information. In their work, the prior distribution of image patches

was learned from a vast collection of patches from noise-free natural images. How-

ever, learning such priors can be cumbersome [76]. While all these works do address

the issue of finding limits for denoising performance, they do not readily apply to

patch-based non-local methods where patch redundancies within the specific image

are exploited to improve performance. As these methods have been shown to achieve

the best denoising results (see Fig. 1.8), it is important to account for such advantages.

Our bounds formulation [70] takes into account such non-local redundancies and are,

therefore, developed in a more general setting. To the best of our knowledge, no such

study currently exists for the problem of denoising.

We study the performance limits for patch-based approaches as they define

the state-of-the-art. The problem of denoising can then be framed as that of estimating

the underlying image patches zi from their respective noisy observations

yi � zi � ηi, @ i � 1, . . . ,M, (2.1)

where ηi is a noise patch assumed to be independent of zi, and M is the number of

patches in the image. Typically, such patches are overlapped so as to share pixels be-

tween neighbors. This is done to avoid artifacts at the estimated patch boundaries.

The pixels in the overlapping regions are thus estimated more than once, and the fi-

nal estimate is usually obtained from a second averaging process, resulting in further

suppression of noise. However, for the purposes of this theoretical study, we will ne-

glect this secondary averaging process and treat the patches as non-overlapping. This

simplification allows us to assume that each of the zi, ηi and, as a result, yi patches

are independent realizations of random vectors z, η and y, respectively. For the sake
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of clarity of presentation, we assume that the zi vectors are all sampled from some un-

known probability density function (pdf) ppzq. For the purposes of our study, namely

the calculation of performance limits, we assume that the noise-free image is available

and our aim then is to find out how well, in terms of mean squared error (MSE), the

random variable z can be estimated.

Our purpose in this chapter is to introduce the bounds formulation and iden-

tify parameters that need to be estimated from any given image. In the next chapter,

we deal with how such parameters can be estimated accurately to compute the bounds.

In Sec. 2.2, we show that most denoising methods produce a biased estimate of the zi

vectors. There we study the bias characteristics of these successful methods and de-

velop a simple but accurate model for the bias. In such a scenario, studying perfor-

mance limits for unbiased estimators will not provide us with practical bounds on the

MSE. Our MSE bounds are therefore developed in Sec. 2.4 through an Optimal Bias

Bayesian Cramér-Rao Lower Bound (OB-CRLB) formulation for biased estimators, ex-

plained in Sec. 2.3. This requires us to model the bias for denoising methods and such

models are structure specific, as will be clear shortly. The lower bound is, thus, initially

developed assuming geometric homogeneity among patches in the latent image. Since

patches in any given image can exhibit widely varying geometric structures, we extend

our lower bound to general images in Sec. 2.5.

2.2 Bias in Denoising

In this section we study the bias in some of the most popular (non-linear) es-

timators used to date. In estimation theory, it is well known that unbiased estimators

do not always exist. Even when they do exist, it is often advantageous to work with
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(a) Box image (b) Noisy image (c) BM3D bias (d) K-SVD bias

Figure 2.1: Example of bias in denoising produced by some modern denoising methods: (a)
Box image, (b) noisy image of standard deviation 15, and bias produced by (a) BM3D [49], and
(d) K-SVD [37].

biased estimators as they may result in a lower MSE [77, 78]. Moreover, unbiased esti-

mators for a difficult problem such as denoising will tend to have unacceptably large

variance, and, therefore, result in visually unpleasant processed images. Hence, bias

in high quality image denoising is to be expected. It is for these reasons that we focus

our attention on general estimators that may be biased.

The MSE of an estimator is determined by the covariance of the estimate as

well as its bias. For any particular patch, the (conditional) bias, defined as1

bpzq � E rpz� z | zs , (2.2)

is, in general, a function of the parameter to be estimated. This is easily verified

through a simple experiment in Fig. 2.1, where we show the bias from denoising a

synthetic box image corrupted by WGN of σ � 15 with two very different approaches

(BM3D [49] and K-SVD [37]). Observe that the bias in each case is a function of the

underlying image patches. Interestingly, the structure of the bias is in keeping with

that of the underlying patches. That is to say that, in flat regions, the bias is largely
1At first glance, the definition of the conditional bias used here may appear to be different from that

used in [70] where we defined bpzq � Erpz|zs�z. However, Eq. 2.2 is a more general definition of the bias
which, for a specific realization of z, is indeed identical to the expression used in [70]. That is to say, for a
particular realization zi, bpziq � E rpzi � zi | zis � E rpzi | zis � zi.
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(a) Stripes (b) Cloth (c) Towel (d) Grass

Figure 2.2: Some images consisting of geometrically similar patches that we use for our study.

flat, with discontinuities appearing at the edges and corners. We can therefore study

the bias through a localized model, where locality is defined by (not necessarily con-

tiguous) regions of similar geometric structure, as shown in Fig. 2.1. We claim that it is

reasonable to approximate this local behavior of the bias function as affine. Namely,

bpzq � Fz� u, (2.3)

where the matrix F and the vector u are parameters of the affine bias model. Such a

model for the bias has been justified and used to study the MSE bound for estimation

problems in [79]. In Appendix 2A, we provide further mathematical justification for

using such an affine model of the bias.

For general images made up of geometrically non-homogeneous patches, we

have to use a different F and u for each geometrically similar region or cluster. That is

to say, the bias is modeled as a different affine function for each cluster. For clarity of

presentation, we will, for now, restrict our study to only consider images containing ge-

ometrically similar patches, a few (synthetic and natural) examples of which are shown

in Fig. 2.2. The developed theory is later generalized to natural images of varied patch

structures in Sec. 2.5.

Dealing with patches that are geometrically similar also allows us to consider
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z as a random vector that has a particular (as of yet unknown) pdf ppzq such that the

model of Eq. 2.3 holds for every instance of zi sampled from this (unknown) distri-

bution. That is to say, for any particular patch within the structurally homogeneous

image, the bias model bpziq � Fzi � u holds. As we will demonstrate, this model,

while simple, is reflective of the behavior of essentially all the leading state-of-the-art

algorithms. So this provides us a good starting point. In Appendix 2C, we study the

case where the bias function is modeled with higher order terms. There, we show that

such a generalization makes little difference to our bounds formulation under certain

reasonable and physically meaningful assumptions on ppzq.

To further substantiate the claim that the bias can be modeled to be approx-

imately affine, we perform experiments where the model parameters (F and u) are

estimated to fit to the bias from some leading denoising methods. This is done by solv-

ing the system of equations obtained using Eq. 2.3 for each of the zi vectors. Before

describing this experimental demonstration, it is worth noting that our interest here

does not lie specifically with the actual values of the bias function for such leading

algorithms. Rather, we simply aim to convince the reader that the affine model is a

reasonable overall local model for the bias.

As can be expected, different denoising methods will have different bias char-

acteristics (that is, different F and u). Fig. 2.3 shows the bias of the denoised intensity

estimates obtained using 10 runs of BM3D [49] and K-SVD [37] respectively and illus-

trates how well the model, learned individually, fits the actual bias. In these exper-

iments, we simulate noisy images by corrupting the 512 � 512 textured grass image

with 10 different realizations of WGN with standard deviation 25. The noisy images

are then denoised with each of the methods (using the default parameter settings in
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(a) Original (b) Noisy (c) BM3D denoised (d) K-SVD denoised

M
et

ho
d

Bi
as

Pr
ed

ic
te

d
Bi

as
M

od
el

in
g

Er
ro

r

(e) BM3D bias (f) Histograms for (e) (g) K-SVD bias (h) Histograms for (g)

Figure 2.3: Visual comparison of the actual bias obtained from BM3D [49] & K-SVD [37] and
reconstructed bias using affine model fit for the 512 � 512 grass image using 11 � 11 patches.
Note how the histograms for the modeling errors are centered around zero and have short tails.

each case) and the mean denoised image is obtained for each method. From this, the

bias vectors bpziq are obtained for each method using non-overlapping 11�11 patches.

The bias vectors of all such patches are tiled to form the method bias images shown in

Fig. 2.3. The bias for each method is then modeled by Eq. 2.3 and the model parameters
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(pF and pu) are fit using least squares. The predicted bias patches pbpziq are then com-

puted for each patch in each case. These vectors are tiled to form the predicted bias

images in Fig. 2.3. The difference between the actual and predicted bias is also shown

as the error in modeling in each case. For a good fit, the difference between the actual

bias and that predicted by the model can be expected to be a random variable sampled

from some short tailed distribution centered around zero. This can be qualitatively

verified by examining the histogram of the difference.

While the model performs quite well visually, we also present a quantitative

measure for the goodness of fit of the model. For the quantitative evaluation, we use

the coefficient of determination [80] which can be defined as

R2 � 1�
°
i

���bpziq � pbpziq���2
2°

i

��bpziq � bpzq��2
2

, (2.4)

where i indexes all patches in the image, bpziq is the actual bias of the estimated inten-

sity of the i-th patch, bpzq is the mean bias obtained by the denoising method across

all patches in the image and pbpziq � pFzi � pu is the predicted bias obtained from the

estimated parameters pF and pu of the affine model. As such, the R2 value indicates

the level of variability in the data that is explained effectively by the regression model.

A higher value of R2 thus indicates a higher level of predictability of the bias by the

affine model. In Table 2.1 we obtained high R2 values for the examples in Fig. 2.3 with

various denoising methods [22,24,37,49]. Our experiments with these denoising meth-

ods on other images2 have yielded comparable results that confirm the goodness of the

affine model (Table 2.1).
2For general images, such as the house image (Fig. 1.7), that contain patches of diverse geometric

structure, the R2 values are computed separately on clusters of geometrically similar patches. This will
become apparent later in Sec. 2.5 where we discuss the bound calculation process for natural images. The
mean R2 values across 5 such clusters are reported in Table 2.1.
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Table 2.1: R2 values for the affine model fit of the bias produced by different methods for
different images.

Image BM3D [49] K-SVD [37] SKR [22] K-LLD [24]

Grass 0.863 0.801 0.833 0.810
Towel 0.913 0.928 0.864 0.880
House 0.916 0.955 0.959 0.963

To provide further empirical evidence that the affine model is a good fit for

the bias and that it holds true only when the patches considered have roughly simi-

lar geometric structure, we performed experiments with general images such as those

shown in Fig. 1.7, where we randomly selected patches from a given image and tried

to model the bias for such patches by estimating a single set of parameters (F and u).

For such images, we consistently obtained much lower values (R2   0.6) for the good-

ness of fit. However, when only patches of similar structure were considered for the

same images, the R2 values for the fit were considerably higher (Table 2.1). These ex-

periments indicate that the affine model is a good local fit, where locality is defined by

similarity in patch geometry.

However, the question of higher order models still remains. For the sake of

completeness, we refer the interested reader to Appendix 2C where we show that the

MSE bounds formulation for a more sophisticated (higher order) bias model remains

unchanged from the affine case under certain symmetry constraints on the density ppzq.

In the remainder of this chapter, we will assume an affine model for the bias to derive

the theoretical performance limits of denoising.
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2.3 Optimal Bias Bayesian Cramér-Rao Lower Bound

For the purposes of deriving bounds on denoising performance, we pose the

problem of denoising as that of estimating a multivariate random vector. In the statis-

tics and signal processing literature, a number of bounds exist to evaluate performance

limits of such estimation. While some bounds were developed for the estimation of

a deterministic parameter (for instance, those proposed by Seidman [81], Cramér [82]

and Rao [83,84]), others, such as the Ziv-Zakai bound [85], address the Bayesian setting

where the parameter of interest is a random variable. One primary difference between

the two cases lies in the meaning of MSE for which the lower bound is established. In

the deterministic case, the bound is a function of the parameter of interest, whereas

in the Bayesian case it is a numerical value obtained by integrating over the random

parameter [78] (z in our case). As a result, Bayesian versions have been derived for

many of the bounds developed for the deterministic case [86]. In our work, we build

on a Bayesian version of the classical Cramér-Rao lower bound (CRLB) [71].

In its simplest form, the CRLB is a lower bound on the variance of any unbi-

ased estimator of z, subject to the regularity condition

E

�B ln ppy|zq
Bz

�
� 0, @ z (2.5)

on the conditional probability density function ppy|zq. Here, we assume that ln ppy|zq

is twice differentiable with respect to z. An important point to note here is that our

CRLB formulation differs from that defined by van Trees [86, 87] where the joint pdf

ppy, zq is directly used. The two pdf’s are related by

ppy, zq � ppy|zqppzq, (2.6)

where ppzq is the probability density function on z. We work with the conditional pdf
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ppy|zq to formulate a bound on the MSE in the conditional sense and integrate it to get

the overall (Bayesian) MSE, as we illustrate below in (2.11). Assuming, for now, that

an unbiased estimator pz exists, the bound on the (conditional) covariance Cpz|z of the

estimate is given by the CRLB as

Cpz|z � E
�
ppz� E rpz|zsq ppz� E rpz|zsqT �� z� ¥ J�1, (2.7)

where the operator ¥ in the matrix case implies that the difference of the two ma-

trices has to be positive semi-definite. Here J is the conditional Fisher information

matrix (FIM) given by

J � �E
�B2 ln ppy|zq

Bz BzT
�
. (2.8)

The estimator which achieves this lower bound is said to be efficient. While this pro-

vides us with a simple method for evaluating performance limits for an estimation

problem, it cannot be applied directly to our denoising problem. As illustrated previ-

ously, most denoising methods are biased in nature and this bias needs to be taken into

account to obtain a useful lower bound. For such cases, the CRLB on the covariance of

the biased estimate pz is given by

Cpz|z ¥
�BErpz|zs

Bz



J�1

�BErpz|zs
Bz


T
� pI� FqJ�1 pI� FqT , (2.9)

where I denotes the identity matrix and (2.9) follows from making use of our affine bias

model of Eq. 2.3. It is useful to note here that the estimator covariance for the affine

model is only influenced by the parameter F (which can also be interpreted as the gra-

dient of the bias) and not by the constant term u. As such, a negative definite gradient

on the bias lowers the minimum achievable estimator variance compared to that of the

unbiased case given by (2.7). Placing constraints on the bias gradient, Fessler et al. [88]
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used this property to explore the performance limits for image restoration problems in

a biased CRLB setting.

Using the relation in (2.9), we can calculate a lower bound on the conditional

MSE in estimating z as

E
�}z� pz}2 | z� � Tr

�
Cpz|z

�� }bpzq}2 ¥ Tr
�
pI� FqJ�1 pI� FqT

�
� }bpzq}2, (2.10)

where Trr.s denotes the trace of a matrix. Now, by the law of total expectation, the

overall Bayesian MSE can be expressed as

E
�}z� pz}2� � »

z
E
�}z� pz}2 | z� ppzqdz

¥
»

z

�
Tr

!
pI� FqJ�1 pI� FqT

)
� pFz� uqT pFz� uq

�
ppzqdzloooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooon

Q

. (2.11)

It is interesting to note that in the above formulation the pdf ppzq can be thought of as

the prior information on z. Most denoising methods make use of informative priors in

the form of smoothness or sparsity penalties and other constraints to achieve improved

performance. Our Bayesian approach thus takes into account the effect of such priors

in calculating the lower bound on the MSE. When ppzq is known a priori, the expression

in (2.11) can be used directly to evaluate the Bayesian MSE bound for estimating z, as

was done by Young et al. [89]. The scalar parameter of interest there was assumed to

lie within a known interval. Their results were later generalized for an unconstrained

vector case by Ben-Haim et al. in [90].

It would appear that the effective calculation of the above Bayesian bound

necessitates the complete knowledge of the prior density ppzq, as is the case for [89,

90]. This is related to the subject of statistical modeling of images, which has seen

much activity [39, 62, 91–95] and is still the subject of some controversy. Levin and
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Nadler [76] took an alternate non-parametric approach where they learn the prior (pdf)

from a vocabulary of image patches. However, such an approach is cumbersome as

the database needs to contain sufficient variety to cover the gamut of natural patches.

Moreover, as with any such prior learning technique, care must be taken to ensure

that patches used are themselves free of degradations from noise and blur. Happily, as

described in Sec. 2.4.1 below, we are able to avoid the need for complete knowledge of

such priors. More specifically, only a few low order moments of the density ppzq are

needed for our calculations, and, as we will show, these can be effectively estimated

directly from a given (noise-free) image.

An important point to note is that the bound formulation of (2.11) is related to

those used in [89,90] but differs from the Bayesian CRLB (B-CRLB) of van Trees [86,87],

as alluded to earlier. The FIM used in the B-CRLB formulation there is calculated from

the joint pdf ppy, zq whereas in our case (and also [89, 90]) it is calculated from the

conditional pdf ppy|zq. Hence, the B-CRLB of [87] is more restrictive in the sense that

ppy, zq has to be twice differentiable. In our case, twice differentiability is necessary

only for the conditional pdf. To disambiguate the two, we refer to our formulation as

the Optimal Bias B-CRLB (OB-CRLB). We calculate the lower bound on the MSE based

on the OB-CRLB formulation in the next section.

2.4 Lower Bound on the MSE

In this section, we derive the bound using expressions for the bias model

parameters (F and u) that minimize Q in (2.11). We also derive an analytical expres-

sion for the FIM and discuss how we estimate the covariance of image patches that is

needed to derive the MSE bound.
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2.4.1 Deriving the Bayesian MSE bound

The MSE of any estimator is a function that depends on the variance as well as

the bias term. To obtain the lower bound on the MSE, we thus need to establish optimal

values for F and u that minimize (2.11). This is in line with the approach advocated

in [90]. We can thus obtain the optimal F and u (denoted as F� and u� respectively) by

solving the optimization problem

tF�,u�u � arg min
tF,uu

»
z

�
Tr

 pI� FqJ�1pI� FqT(� pFz� uqT pFz� uq
�
ppzq dz.

(2.12)

The optimum parameters F� and u� can be obtained by differentiating Q (defined in

(2.11)) with respect to F and u and solving the simultaneous system of equations

BQ
Bu � 0,

BQ
BF � 0. (2.13)

Solving these simultaneous equations results in the following expressions for the opti-

mal parameters

F� � �J�1
�
J�1 �Cz

��1
, (2.14)

u� � �F�E rzs � J�1
�
J�1 �Cz

��1
E rzs . (2.15)

The derivations are detailed in Appendix 2B. It is important to note that the covari-

ance is not of any estimated z vectors but the second moment from the pdf ppzq of the

random vector z. Thus, we are able to obtain expressions for F� and u� that result in

the theoretical lower bound on the MSE for any affine-biased denoiser3. Note that it is

not necessary that any denoiser with the said bias and variance characteristics actually

exist. That is to say, no “Bayes-efficient” estimator that achieves this derived lower

3It is interesting to note that this optimization indeed yields a negative definite F� (see Eq. 2.14).
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bound may actually exist. Next, we obtain an expression for the lower bound on the

MSE using the optimized parameters for our bias model by inserting F� and u� in the

expression for Q (Eq. 2.12).

Once we obtain expressions for the FIM and the parameters for the affine

model of the optimal bias function, we can proceed to find an expression for the opti-

mal lower bound on the MSE. We rewrite the right hand side of (2.11) by plugging in

the obtained expressions of the parameters from Equations 2.14 and 2.15 as

Qmin �
»

z

�
Tr

 pI� F�qJ�1pI� F�qT(� pF�z� u�qT pF�z� u�q
�
ppzq dz

� Tr
 pI� F�qJ�1pI� F�qT(� »

z
pz� ErzsqT F�TF� pz� Erzsq ppzq dz

� Tr
 pI� F�qJ�1pI� F�qT(� E

�
pz� ErzsqT F�TF� pz� Erzsq

�
� Tr

 pI� F�qJ�1pI� F�qT(� E
�
Tr

!
F� pz� Erzsq pz� ErzsqT F�T

)�
� Tr

 pI� F�qJ�1pI� F�qT(� Tr
!
E
�
F� pz� Erzsq pz� ErzsqT F�T

�)
� Tr

 pI� F�qJ�1pI� F�qT(� Tr
!
F� E

�
pz� Erzsq pz� ErzsqT

�
F�T

)
� Tr

 
F�J�1F�T � 2F�J�1 � J�1 � F� CzF

�T
(

� Tr
 
F�

�
J�1 �Cz

�
F�T � 2F�J�1 � J�1

(
� Tr

!
J�1

�
J�1 �Cz

��1
J�1 � 2J�1

�
J�1 �Cz

��1
J�1 � J�1

)
� Tr

!
J�1 � J�1

�
J�1 �Cz

��1
J�1

)
(2.16)

� Tr
!�

J�C�1
z

��1
)
, (2.17)

where the last equality is derived from the matrix inversion lemma [96]. Note that

Eq. 2.17 can be computed only when Cz is well-conditioned. For smoother patches,

this may not be the case. In practice, we use the expression in Eq. 2.16 to compute the

bounds. Eq. 2.17, however, allows us to get a neat expression for the lower bound and
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provides useful insights that we discuss later in this section and in Chapters 4 and 5.

For its simplicity, we will denote the bound on the MSE for the denoising problem by

the expression in Eq. 2.17 as

E
�}z� pz}2� ¥ Tr

��
J�C�1

z

��1
�
. (2.18)

It is interesting to analyze the implications of the obtained expression. This

lower bound is a function of both the FIM J and the covariance of the parameter vector

z. Within a cluster of geometrically similar patches, the covariance of z is an indication

of the variability of the geometric structures encountered in the image. For images

that are mostly smooth, we can expect z to have a smaller variance whereas images

containing more geometric variability will yield larger Cz. This is also in keeping with

our expectations and experimental findings that smooth images lacking much detail

are easier to denoise than those containing much texture.

Our bounds are derived assuming an affine-biased estimator. One type of

estimator having this bias is an affine estimator which, in the case of Gaussian noise,

can be shown to be the only class of estimators having an affine bias function [79].

Moreover, the expression for the lower bound is precisely that of the linear minimum

mean square error (LMMSE) estimate for the problem [71]. In theory, this bound is

achievable by an affine estimator with exact knowledge of the first and second order

moments of ppzq. Later, in Chapter 5, we use this insight to design a practical denoising

method aimed at achieving the lower bounds. However, as the moments can only be

estimated from the given noisy image, loss of efficiency is observed.

Interestingly, the expression for the lower bound corresponds to the MSE of

the Bayesian minimum mean square error (BMMSE) estimate of z when the prior pdf

ppzq is assumed to be Gaussian [71]. We, of course, make no such assumption on the
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prior. Moreover, the bounds formulation does not even assume complete knowledge

of the entire distribution of z, unlike the Bayesian MSE bound derived by Ben-Haim

et al. [90]. Our affine model of the bias allows us to assume only the availability of

the first and second order moments of z for the computation of the lower bound. In

Appendix 2A, we show that the bias of any patch-based weighted averaging filter

is necessarily an affine function of the image patches. Moreover, our experiments in

Sec. 2.2 show that the affine-bias model is quite general, and provides a good fit for

the bias of more complicated denoising methods (namely, K-SVD [37] and BM3D [49])

as well. Therefore, our performance analysis of affine-biased patch-based methods is

quite general.

Of course, we cannot altogether rule out the possibility of an optimal de-

noising method for which the affine-bias model may be inadequate. Extending our

approach to the case where the bias is higher order will incorporate correspondingly

higher order moments of the distribution of z, as shown in Appendix 2C. However, for

natural images, the higher order moments such as skewness are typically small [97]

and, therefore, have less significant effects on the denoising bounds. As a result, in

spite of assuming a lower order bias model, the MSE bounds expression in (2.18) de-

pending on only the first and second order moments applies to a broad class of patch-

based denoising methods. While the moments of z are dependent on image patches,

the noise statistics dictates the analytical expression for the FIM, which we derive next.

2.4.2 Fisher Information Matrix

The expression for the MSE bound in (2.18) holds true for any noise distri-

bution. Noise statistics influence denoising performance. Its effect on the bound is
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captured by the FIM J which takes into account the noise pdf. Hence, our framework

can be used to derive bounds for any noise distribution. In this thesis, however, we

only consider the case of additive white Gaussian noise4 (WGN). Although we assume

the noise to be iid pointwise, this does not allow us to immediately claim statistical

independence of all the noise patches across the entire image. In fact, if the patches are

allowed to overlap, data from one patch may be duplicated in neighboring patches.

To make our derivation of the FIM simple, we will assume the image patches to be

non-overlapping. This allows us to assert that the ηi noise patches are mutually in-

dependent. Since the corrupting noise patches of size
?
n � ?

n are sampled from a

multivariate Gaussian, we can write the pdf as

ppy|zq � 1

p?2πσnqM exp

#
M̧

j�1

�}yj � zj}2
2σ2

+
, (2.19)

where M is the total number of (non-overlapping) patches.

As explained earlier, z is a random variable and zi vectors are instances of the

variable sampled from a certain (unknown) distribution. In the denoising problem,

one is required to estimate each of the zi instances in an image and, hence, the FIM

is calculated on a per patch basis. Many denoising algorithms [12, 20, 49, 69] infer in-

formation about a single patch by taking into account multiple photometrically similar5

patches that exhibit similar pixel intensities in addition to geometric structure. Such

algorithms, in essence, estimate each zi vector from multiple photometrically similar

noisy yj vectors, assuming each of these yj vectors to be a different noisy observation
4WGN assumption will be used in different aspects of our study in Chapters 3 and 4. In Chapter 5,

we develop a practical denoising method motivated by the bounds framework presented here. Although
designed specifically for WGN, we will show that the method is quite effective in removing noise from
images where the noise characteristics are unknown.

5We use the notation zi � zj to denote the photometric similarity between two patches zi and zj .
Later in this chapter, we provide a more formal definition for such similarity (2.22), and also describe
how to identify similar patches to compute denoising bounds.
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of zi. The dissimilarities between yj (yi included) and zi are then mainly due to noise.

In such a scenario, we obtain an expression for the FIM as

B ln ppy|zq
Bzi �

¸
j

pyj � zjq
σ2

where zj � zi (2.20)

ñ J � �E
�B2 ln ppy|zq

Bzi BzTi

�
� N

I

σ2
, (2.21)

assuming that N similar patches are taken into account in denoising any given patch.

Note that Eq. 2.21 is only an approximate expression for the FIM. The FIM takes this

exact form only whenN identical patches are considered. It is also important to reiterate

that Eq. 2.21 holds only when we assume that the patches are non-overlapping. In the

case where the image patches are considered to be overlapping, the calculation of the

FIM becomes more complicated and the issue of it being singular arises. In this paper,

we only deal with the non-overlapping case where the noise patches can be considered

to be iid.

The expression for the FIM and, hence, the bound in (2.18) takes into account

the strength of the noise as well as the number of photometrically similar patches (N )

that are considered in denoising any given patch. In general, the level of such redun-

dancy will vary widely from image to image, and also from patch to patch within the

same image. For example, the corner regions of the box image (Fig. 2.1(a)) have fewer

matching patches than the smoother regions. Consequently, using a fixed value of N

for the entire image is unwise. This value thus needs to be calculated patch-wise by

identifying the number of patches that are photometrically similar to each reference

patch in the image.

To determine the level of photometric redundancy, we first need to define a

measure of similarity between two patches. We consider two patches zi and zj to be

44



similar if they can be expressed as

zj � zi � εij such that }εij}2 ¤ γ2, (2.22)

where γ is a small threshold. Later, in Chapter 3, we detail how such a threshold

is chosen so as to ensure few false positives and negatives. Denoting the number of

patches similar to a reference zi as Ni, we obtain a patch-wise FIM

Ji � Ni
I

σ2
, (2.23)

where Ni photometrically similar patches are taken into account in denoising a noisy

patch yi. The MSE bound can then be calculated with a corresponding FIM for each

patch, and the MSE bound for the entire set of M structurally similar patches can be

calculated as the aggregate of the patch-wise MSE bounds as

E
�}z� pz}2� ¥ 1

M

M̧

i�1

Tr
��

Ji �C�1
z

��1
�
. (2.24)

Although the FIM is derived for non-overlapping patches, to be more realistic,

we consider overlapping patches in our calculation of Ni. This leads to a practical

estimate of the number of patches that is available to any denoising algorithm. Fig. 2.4

shows the spatial distribution of Ni values for the house and Barbara images (shown

in Fig. 1.7) calculated with 11 � 11 patches and a suitable γ threshold (discussed in

Chapter 3). As can be expected, Ni takes much larger values for the smoother regions

than the edge and textured regions.

Until now, we have assumed that the image patches we deal with are geomet-

rically similar across the entire image (that is, samples from a single ppzq), although the

patch intensities may differ. This was necessary only for the sake of clarity of the pre-

sentation. In the next section, we extend our bounds framework to general images that

usually contain varied patch structures.
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(a) House image (b) Barbara image

Figure 2.4: The spatial distribution of Ni values for a patch size of 11 � 11 on (a) house image,
and (b) Barbara image, shown in Fig. 1.7.

2.5 Bounds for General Images

Although natural images do not exhibit uniform structural composition, the

diversity of geometric structure of patches within an image is usually limited. To make

our formulation applicable to such geometrically heterogeneous images (Fig. 1.7), we

can group together patches of similar patterns and the analysis of denoising perfor-

mance can be considered independently for each such segment. The performance lim-

its on denoising a particular image can then be calculated as an aggregate of the MSE

bounds for each of the clusters.

The first step in computing the denoising bounds is thus a clustering mech-

anism that groups patches based on their geometric similarities. Fig. 1.5 illustrates an

example of such clustering for a synthetic box image consisting mainly of smooth re-

gions, separated by horizontal and vertical edges and corners. In Chapter 3, we give

a brief description of our automatic “geometric” clustering first developed for denois-

ing in [24]. In the present scenario, however, we are chiefly interested in extending
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Figure 2.5: Clustering results by K-Means algorithm on the box image. Notice how edges and
patterns of a certain kind are clustered together even though the patches may have different
intensities.

our bounds framework to general images. Therefore, we will assume an ideal “oracle”

clustering method (which may be user-defined) to characterize the various clusters in

a given image. Assuming availability of such a clustering, we proceed to calculate the

MSE bound for any general image that is composed of K such (not necessarily con-

tiguous) clusters.

Clustering the given image decomposes it into multiple segments such that

patches of similar geometric structure are captured in the same cluster (see Fig. 2.5.)

In such a case, we can assume that the zi vectors corresponding to patches belonging

to a particular cluster (say Ωk) are realizations of a random vector sampled from an

unknown pdf pkpzq. This allows us to model the bias to be an affine function of z

in each cluster resulting in cluster-wise optimal bias model parameters F�
k and u�

k .

Consequently, the bounds formulation of (2.24) holds separately for each cluster. The

final bound on the MSE for the entire image can then be obtained as a weighted average

of the bounds for each cluster. Mathematically, this can be derived by observing the

sum of squared error (SSE) for the entire image:

SSE �
Ķ

k�1

SSEk �
Ķ

k�1

MkQk

ñ Q � 1

M
SSE �

Ķ

k�1

Mk

M
Qk �

Ķ

k�1

αkQk, (2.25)
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where pQ is the estimate of the bound for the entire image, pQk and SSEk are the estimates

of the bounds on the MSE and the SSE respectively for the k-th cluster, Mk denotes the

cardinality of the set Ωk and Ω denotes the set of all patches in the image, and αk is the

weight corresponding to the k-th cluster in the averaging process.

We now have an expression for the MSE bound from an independent anal-

ysis of each cluster. Referring to our discussions on the achievability of the bound in

Sec. 2.4.1, we expect the bound to be theoretically achievable by a linear MMSE esti-

mator in each cluster. Later in Chapter 5, we will use this as the motivation for our

patch-based denoising framework. However, in addition to perfect knowledge of the

first and second order moments of pkpzq, such an estimator now has to have access to

“perfect” clustering as well. Moreover, the bounds formulation takes into account the

effect of photometric redundancies. In practice, identifying such similar patches can be

non-trivial, especially under strong noise. Due to all these nuances one can only hope

to come up with an affine estimator with performance close to the bound, as will be

demonstrated in Chapter 5. Thus, our formulation presents a valid lower bound.

The focus of our work in this chapter was restricted to developing an expres-

sion for the fundamental limits for denoising any given image. The parameters of this

lower bound, however, need to be estimated from the image itself. In the next chapter

we describe methods for estimating the different parameters, and hence, the bounds.

Summary – In this chapter, we developed a formulation to lower bound the per-

formance of any patch-based denoising method. We showed that the bounds can be

calculated even without knowledge of the exact distribution of the underlying patches.
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The resultant bounds depend on the noise statistics, complexity of image patches to be

estimated, as well as the number of photometrically similar patches that can be ex-

ploited to perform denoising. In the next chapter, we discuss how these parameters of

the bounds can be estimated to compute bounds for denoising any given image.

2A Mathematical Justification for Affine Bias

Most current state-of-the-art methods perform denoising of any given patch

yi by searching for similar patches yj in the noisy image. Here, we show that such

class of non-linear denoising methods produce biased estimates and that the bias for

such methods can be shown to be an affine function of the underlying patch zi. In this

derivation we assume that for two patches yi, yj to be similar, their noise-free versions

will have to be similar and can be written as

zj � zi � εj such that }εj}2 ¤ γ2, (2.26)

where γ is some small threshold and εj is a vector. The denoised estimate pzi of the

patch zi is obtained by performing a weighted averaging over all (say N ) such similar

noisy patches. In general, this can be written as

pzi � Ņ

j�1

Wijyj , (2.27)

where Wij is a (data-dependent) weight matrix that measures the similarity between

patches yi and yj . Using the data model of Eq. 2.1, and Eq. 2.26 above, we can express

Eq. 2.27 as

pzi �¸
j

Wijyj �
¸
j

Wijpzj � ηjq �
¸
j

Wijpzi � εj � ηjq. (2.28)
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The expected value of this estimate can then be written as

Erpzi|zis � E

�¸
j

Wijpzi � εj � ηjq
�
� E

�¸
j

Wij

�
zi �

¸
j

E
�
Wij

�
εj � ηj

��
. (2.29)

For a specific patch zi, the above expression allows us to calculate the (conditional)

bias for such non-linear weighted averaging methods as

bpziq � Erpzi � zi|zis

�
�
E

�¸
j

Wij

�
� I

�
zi �

¸
j

E
�
Wij

�
εj � ηj

�� � Fizi � ui, (2.30)

where Fi �
�
E
�°

j Wij

�
� I

	
and ui �

°
j E

�
Wij

�
εj � ηj

��
.

As can be seen from the above derivation, to first order, the bias is an affine

function of zi. While the parameters of the affine bias (namely, Fi and ui) are different

for each patch, we make the simplifying assumption that the same F and u provide

an adequate approximation of the bias for all patches exhibiting a common geometric

structure. This assumption is also statistically justified in Sec. 2.2 of this chapter.

2B Optimal Parameters for Affine Bias Function

In this section we derive expressions for F and u that minimize the cost func-

tion of Eq. 2.12. This can be obtained by solving a system of simultaneous equations

(Eq. 2.13). To do this we first solve for u

BQ
Bu � B

Bu
»

z

�
Tr

 pI� FqJ�1pI� FqT(� pFz� uqT pFz� uq
�
ppzq dz � 0

ñ
»

z

� B
BuTr

 pI� FqJ�1pI� FqT(� B
Bu pFz� uqT pFz� uq

�
ppzq dz � 0

ñ
»

z

� B
Bu pFz� uqT pFz� uq

�
ppzq dz � 0
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ñ u

»
z
ppzq dz � �F

»
z
z ppzq dz

ñ u � �F

»
z
z ppzq dz � �F E rzs . (2.31)

Similarly, taking the derivative with respect to F, we get

BQ
BF � B

BF
»

z

�
Tr

 pI� FqJ�1pI� FqT(� pFz� uqT pFz� uq
�
ppzq dz � 0

ñ
»

z

�
2 pI� FqJ�1 � 2 pFz� uq zT � ppzq dz � 0

ñ pI� FqJ�1

»
z
ppzq dz�

»
z
pFz� uq zT ppzq dz � 0

ñ F

�
J�1 �

»
z
zzT ppzq dz

�
� �

�
J�1 � u

»
z
zT ppzq dz

�
ñ F � �

�
J�1 � uE rzsT

� �
J�1 � E

�
zzT

� ��1
. (2.32)

Now, substituting u from Eq. 2.31 in Eq. 2.32, we get the optimal F� as

F
�
J�1 � E

�
zzT

� � � �
�
J�1 � F E rzsE rzsT

�
ñ F

�
J�1 � E

�
zzT

�� E rzsE rzsT
�
� �J�1

ñ F� � �J�1
�
J�1 �Czq

��1
, (2.33)

where Cz � pE �
zzT

��E rzsE rzsT q is the covariance of z. Thus, we obtain the optimal

bias parameters that minimize the function Q as

F� � �J�1
�
J�1 �Cz

��1
, (2.34)

u� � �F�E rzs � J�1
�
J�1 �Cz

��1
E rzs . (2.35)

2C Higher Order Bias Model

In Sec. 2.2, we assumed that the bias can be modeled reasonably well by an

affine function of z. This allows us to derive the corresponding optimal bias function
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in Sec. 2.4.1 and, finally, an expression for the MSE bound. Although we have shown

experimentally that the bias from some of the recent denoising methods can be effec-

tively modeled as affine, the question about the effect of higher order models remains.

In this section, we briefly study the implications of such a higher order model for the

bias. For simplicity, we model the bias function to be a restricted second order model:

bpzq � r b1pzq . . . blpzq . . . bnpzq sT , and

blpzq � alz
T z� fTl z� ul, (2.36)

where al is a scalar, fTl is the l-th row from a matrix F, ul is the l-th entry of a vector u

and n is the number of pixels in a patch. Now, we can express the Bayesian bound as

Q �
»

z

�
Tr

#�BErpzs
Bz



J�1

�BErpzs
Bz


T+
� bT pzqbpzq

�
ppzq dz

�
»

z

�
1

σ2
Tr

#�BErpzs
Bz


�BErpzs
Bz


T+
�

ņ

l�1

b2l pzq
�
ppzq dz

�
»

z

�
1

σ2
Tr

#�
I� Bbpzq

Bz

�

I� Bbpzq
Bz


T+
�

ņ

l�1

b2l pzq
�
ppzq dz, (2.37)

assuming J � σ�2I without any loss of generality. Next, it can be seen that

Tr

#�
I� Bbpzq

Bz

�

I� Bbpzq
Bz


T+
� Tr

$'''''&'''''%

�������
...�

cl � Bblpzq
Bz

�T
...

�������

�������
...�

cl � Bblpzq
Bz

�T
...

�������
T,/////./////-

�
ņ

l�1

p2alz� fl � clqT p2alz� fl � clq, (2.38)

where cl is the l-th column of the identity matrix containing all zeros except a one at

the l-th position and Bblpzq
Bz � p2alz� flq. We can then write Eq. 2.37 as

Q �
»

z

ņ

l�1

�
1

σ2
p2alz� fl � clqT p2alz� fl � clq � palzT z� fTl z� ulq2

�
ppzq dz. (2.39)
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As before, we take the derivatives of the right hand side of Eq. 2.39 with re-

spect to the unknown parameters (al, fl and ul) and solve the equations to get expres-

sions for the optimal parameters that minimize Q. Differentiating the right hand side

of Eq. 2.39 with respect to al, fl and ul, we get three simultaneous equations

ul � �alErzT zs � fTl Erzs, (2.40)

fl � �
�

I

σ2
� ErzzT s


�1� 1

σ2
cl � 2

al
σ2
Erzs � alErzzT zs � Erzsul



(2.41)

al � �
�

4

σ2
ErzT zs � ErzT zzT zs


�1�2cTl
σ2

� fTl p
2

σ2
� ErzzT zsq � ulErzT zs



. (2.42)

Now, using the expression for ul from Eq. 2.40 in Equations 2.41 and 2.42 we get the

system of equations in two variables

fl � �
�

I

σ2
�Cz


�1� cl
σ2

� alp 2

σ2
Erzs � ErzzT zs � ErzsErzT zsq



, (2.43)

al

�
4

σ2
ErzT zs � ErzT zzT zs � �

ErzT zs�2� � �fTl

�
2

�
I

σ2
�Cz



Erzs � Sz

�
� 2cTl

σ2
Erzs,

(2.44)

where we denote Sz � E
�
pz� Erzsq pz� ErzsqT pz� Erzsq

�
to be the higher order

moment that is related to the multidimensional skewness of the pdf of z. Now, we use

the expression for fl as given in Eq. 2.43 and plug it in Eq. 2.44 to obtain

al

�
4

σ2
ErzT zs � ErzT zzT zs � �

ErzT zs�2�
� �

�
�cTl
σ2

� al

"
2

�
I

σ2
�Cz



Erzs � Sz

*��
I

σ2
�Cz


�1 �
2

�
I

σ2
�Cz



Erzs � Sz

�
� 2cTl

σ2
Erzs

� cTl
σ2

�
I

σ2
�Cz


�1 �
2

�
I

σ2
�Cz



Erzs � Sz

�
� 2cTl

σ2
Erzs
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�
2

�
I

σ2
�Cz



Erzs � Sz

�T � I

σ2
�Cz


�1 �
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�
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Erzs � Sz

�
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Erzs

�4ErzT sSz � STz

�
I

σ2
�Cz


�1

Sz

�
� cTl

σ2

�
I

σ2
�Cz


�1

Sz. (2.45)

This equation can be written in a much simpler form by making use of the relation

4ErzT zs
σ2

� ErzT zzT zs � 4ErzT s
�

I

σ2
�Cz



Erzs � 4ErzT sSz

� Tr pKzq � Tr2 pCzq , (2.46)

where Kz is related to the multidimensional kurtosis (fourth order moment) of the pdf

ppzq and is defined as

Kz � E
�pz� Erzsqpz� ErzsqT pz� Erzsqpz� ErzsqT � . (2.47)

This allows us to rewrite Eq. 2.45 as

al

�
Tr pKzq � Tr2 pCzq � STz

�
I

σ2
�Cz


�1

Sz

�
� cTl
σ2

�
I

σ2
�Cz


�1

Sz, (2.48)

which leads to the expression for the optimal al parameter as

a�l �
cTl

�
I
σ2 �Cz

��1
Sz

σ2
!

Tr rKzs � STz
�

I
σ2 �Cz

��1
Sz � Tr2 rCzs

) . (2.49)

Skewness is a very good indicator of reflectance properties of surfaces such

as albedo and gloss [98, 99]. As such, the image of a well-exposed scene will generally

have small skew such that the histogram of the image is more or less symmetric [97].

This principle is, in fact, behind the tried and true method of histogram equalization

which is used often to improve contrast in images. So, for typical natural images,
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the term Sz related to the skewness is close to zero and the optimal bias model then

collapses to the affine model that we have used earlier.
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Chapter 3

Estimation of Denoising Bounds

Abstract – In the previous chapter, we formulated an expression for the fundamental

limits for denoising a given image using any patch-based method and identified the

parameters for the bound. In this chapter we present practical methods using which

the various parameters, and, hence, the bounds can be estimated. We consider both

noise-free and noisy cases and show that the bounds can be estimated quite accurately

from a single noisy image, even under considerable noise corruption. The bounds

computed for various images are compared to the state-of-the-art in image denoising

to show that the formulation provides meaningful lower bounds for denoising perfor-

mance.

3.1 Introduction

In the previous chapter, we analyzed the performance limits of patch-based

denoising methods. Since such methods currently achieve state-of-the-art performance

(see Fig. 1.8), the expression in (2.18) can be considered to formulate the lower bounds
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Figure 3.1: Outline of the bounds estimation process.

on the MSE for denoising any given image. The performance limits were shown to be

dictated by the strength and characteristics of the corrupting noise (captured by the

FIM), as well as image content (captured by the covariance Cz) as

E
�}z� pz}2� ¥ Tr

��
Ji �C�1

z

��1
�
, (3.1)

where Ji � Ni
I
σ2 when WGN is considered. The influence of image content is captured

by patch complexity (Cz) as well as photometric redundancy (Ni). In this chapter, we

deal with the issue of accurately estimating the denoising bounds through estimation

of these parameters. Since the bounds are defined by the latent (noise-free) image,

we first consider the case of estimating the bounds for noise-free images. Later, in

Sec. 3.3, we discuss the more practical issue of estimating bounds given any noisy

image. However, in either case, the overall framework for bounds estimation remains

the same, as illustrated in Fig. 3.1.

As mentioned in Chapter 2, structurally similar patches are assumed to be

sampled from the same pdf. The covariance matrix Cz of Eq. 3.1 is, thus, estimated

from the entire set (or cluster) of geometrically similar patches. Consequently, the first

step in estimating the bounds is identifying patches of similar structure and grouping
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them together. Once such a geometric clustering is performed, we estimate the covari-

ance matrix Cz for each cluster Ωk. Then, using each patch in the image as reference,

we identify all photometrically similar patches. Considering this number to be Ni, the

bound for denoising each patch is computed using Eq. 3.1. These patch-based bounds

are then averaged to obtain the overall bound for the cluster, and, hence, the image

itself. In estimating the bounds, we will assume that the noise variance is known a

priori or is estimated accurately using any of the methods outlined in [44, 100, 101].

Although the framework for estimating the bounds remains the same for

noisy and noise-free images, the effect of noise must be taken into account for the

latter case. In the next section, we detail these estimation processes for noise-free im-

ages. They are then extended to the more practical case of noise-contaminated images

in Sec. 3.3.

3.2 Estimating Denoising Bounds from Ground Truth

The bound in denoising any given image is dependent on noise statistics as

well as image content. This image complexity is essentially defined by the latent noise-

free image. Although in practice access to such clean images cannot be guaranteed,

in this section we assume availability of such ground truth from which the parame-

ters that define the denoising bounds are estimated. As mentioned earlier, the input

image is first clustered into geometrically similar regions. In deriving the bounds we

assumed such segmentation to be provided by some oracle. Next, we describe how

such clustering can be achieved in practice.
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Figure 3.2: Steering kernels at different locations of the house image. The patch size is chosen
to be 11 � 11. Note how the kernels adapt to the underlying image structure.

3.2.1 Practical (“Non-Oracle”) Geometric Clustering

Clustering is a much studied research problem that has led to a number of

different methods [102, 103] (see [104] for a nice survey). Image clustering is a subset

of this huge field where researchers have devoted considerable attention to the choice

of a clustering method, the features to use to achieve the intended segmentation, as

well as choosing a meaningful distance metric that captures similarities between the

chosen features. The choice of features to work with is particularly important as they

need to effectively portray the property on which the clustering is to be based. For

our purposes, we need to identify features that capture the underlying geometry of

the image patches, without regard to their absolute intensities. For this, we make use

of the locally adaptive regression kernels (LARK) developed by Takeda et al. [22]. As

an added benefit, such features are also quite robust to the presence of noise. This

property of the LARK features makes it very useful for clustering noisy images, as is

required in estimating the bounds for noisy images, and later for our work in Chapters
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4 & 5. In Fig. 3.2, we see that the LARK features are indicative of the underlying image

geometry. These kernels, normalized such that the elements sum to one, form excellent

descriptors of the underlying image geometry [24, 25]. We use these as feature vectors

to perform clustering.

Before we proceed to perform clustering on the weights, we need to spec-

ify a metric to calculate the distance between LARK features. The easiest measure of

distance to use is the `1 or `2 distance between the features. Other measures such as

the Mahalonobis, some weighted distance metric, Kullback-Leibler divergence [105] or

matrix cosine similarity [25] are equally applicable. The choice of the optimal distance

metric to use for the LARK features remains an open question. Our experiments with

few of the above mentioned metrics show that the final bounds estimate for different

images are largely insensitive to the metric chosen. As a result, we refrain from delv-

ing deep into this metric selection problem and use the simple `2 metric to compute

distances between the normalized LARK features.

The next question in performing our geometric clustering is to select a partic-

ular clustering method. Although many clustering methods are suitable for our clus-

tering purposes, we use K-Means [102] due to its simplicity and efficiency. K-Means

requires as input the features (normalized LARK vectors in our case) and the num-

ber of clusters. For our work, we require the user to specify the number of clusters to

segment the image into. The number of clusters will vary across images based on the

variance in the edge orientation and strength that an image exhibits. The choice of the

number of clusters is important to us since too few members in a particular cluster will

lead to erroneous estimation of the covariance matrix for z and as a result an erroneous

MSE bound. On the other hand, too few clusters will result in patches of widely vary-
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(a) Clustering of box image

(b) Clustering of house image

Figure 3.3: Clustering using K-Means for the box and house images. Notice how edges and
patterns of a certain kind are clustered together even though the patches may have different
intensities.

ing geometric structures being grouped together, again resulting in an inaccurate MSE

bound. This is especially true for K-Means which tends to prefer similar sized clusters.

Fortunately, variations in patch patterns within a given natural image are usually lim-

ited and our bounds can be computed effectively with a fixed number of clusters (K)

for most natural images. The effect of K on the predicted MSE bounds is discussed

later in Sec. 3.4.

Fig. 3.3 illustrates the effectiveness of using K-Means with our choice of LARK

features and the `2 distance metric. There we see that regions similar in geometry are

clustered together, even though the pixel intensities may widely differ in any particu-

lar cluster. Note how even finer textures such as the facade of the house are correctly

captured by the features and are, hence, differentiated from the largely smooth back-

ground. This shows that with our choices of features and distance metric, a simple

clustering method such as K-Means is able to perform geometric clustering accurately.
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3.2.2 Covariance Estimation from Ground Truth

Once the image is segmented into regions of similar structure, we compute

the covariance of z within each cluster. This covariance is the second moment of pkpzq

from which the geometrically similar latent patches zi are assumed to be sampled.

The sample covariance matrix is known to be the maximum likelihood estimate (MLE)

for the second moment, approaching the actual covariance as the number of sample

patches tends to infinity. However, presence of sufficiently large number of geomet-

rically similar patches cannot always be guaranteed. This occurs, for example, in the

cluster containing the corner regions for the box image in Fig. 3.3(a) where only a few

patches are present when compared to the other clusters. Consequently, we need to

use an estimator that is robust with respect to possibly limited number of samples.

Estimating the covariance matrix from a limited sample set has been an active field

of research with applications spanning diverse disciplines (see [106] and references

therein). Of them, perhaps one of the best studied methods is bootstrapping [107]. In

our work, we use this approach to estimate the distribution moments.

Bootstrapping is a method of estimating parameters of an unknown distribu-

tion from its empirical distribution formed from a finite set of samples (zi in our case).

This well-studied statistical method performs sampling with replacement from the set

of observed samples to form multiple empirical distributions. The parameters of in-

terest (in our case, the first and second order moments) are then calculated from each

such empirical distribution. The final estimate of the covariance is then obtained as

an average of all the calculated parameters. This final estimate converges to the actual

second moment when re-sampling is performed sufficiently many times [108]. Since

the covariance itself is calculated through an estimation process, it has associated with
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it a confidence interval. This means that ultimately our lower bound is, in practice, a

stochastic one with a corresponding confidence interval. Since the parameter of in-

terest is the covariance matrix Cz, the associated confidence interval itself will be of

similar dimensions. To simplify matters, we instead use the bootstrapping mechanism

to directly estimate the MSE bound (Qmin) from each empirical distribution and obtain

an associated confidence interval for it. This is done using the following steps :

1. Given the noise-free image, make non-overlapping patches zi.

2. Generate M samples (zB,j) with replacement from the pool of available zi sam-

ples (empirical distribution) to generate a bootstrap sample set B.

3. Estimate Cz from the bootstrap sample set using the formula

pCz � 1

pM� 1q
M̧

j�1

pzB,j � z̄BqpzB,j � z̄BqT , (3.2)

where z̄B is the mean of all the zB,j vectors that make up set B.

4. Compute Qmin with the estimated pCz using (3.1).

5. Repeat steps 2 through 4, R times.

In each of the R iterations, an estimate of the covariance of z and a corresponding

estimate of Qmin are obtained as the bootstrap estimates. Finally, these bootstrap esti-

mates of Qmin are averaged to obtain the estimated MSE bound (denoted as pQmin). The

confidence interval of the MSE bound estimate can be readily calculated as the 95%

confidence interval given by the Normal interval1 formulation [109]:

pQmin � 2σQ, (3.3)
1This interval formulation is accurate only if the distribution of Qmin is close to Normal. Our exper-

iments indicate that the histograms of the bootstrapped Qmin values for different images indeed closely
approximate a Gaussian.
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(a) Query patches (b) p � 5 (c) p � 7 (d) p � 10

Figure 3.4: Some query patches and their respective least similar neighbors as defined by (3.4)
with various values of p found from a dictionary of approximately 450, 000 noise-free patches
from 4 different images.

where σQ is the standard error of the bootstrapped estimate pQmin.

3.2.3 Calculating Patch Redundancy (Ni)

While the covariance matrices are learned on a cluster-by-cluster basis, the

level of photometric redundancy Ni is learned patch-wise. To determine Ni, we first

need to define a measure of similarity between two patches. We consider two patches

zi and zj to be similar if they can be expressed as

zj � zi � εij such that }εij}2 ¤ γ2, (3.4)

where γ is a small threshold. This threshold needs to be chosen carefully, to ensure few

false positives and negatives. Further, the threshold should also take into account the
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number of pixels present in each patch. For our experiments, we choose γ to be such

that all zj patches that are identified to be similar to zi differ (on average) in less than

p% of the range of intensity values in each pixel location. Assuming this range to be

within 0 to 255, an expression for the threshold is

γ2 �
�
p� 255

100


2

� n, (3.5)

where n is the number of pixels in each image patch.

The value of p is empirically chosen such that photometric similarity of patches

that satisfy (3.4) can be guaranteed for all patches. For this, we devised an experiment

where 11�11 patches from 4 different images were used to form a database of approx-

imately 450, 000 photometrically (and geometrically) diverse patches. We then ran-

domly chose some patches from the database and searched for similar patches using

various values of p. Fig. 3.4 shows some reference patches with interesting structure

and the corresponding least similar patches that satisfied (3.4) for different values of p.

The results there show that p � 5 is a reasonable choice for the threshold. That is to say,

similar patches are allowed to vary, on average, in less than 5% of the intensity range

for each pixel. In what follows, we fix p � 5 throughout the rest of this thesis.

We have now described how to estimate the parameters from which the bounds

can be obtained for each patch within a cluster and, hence, the cluster as a whole. The

estimated cluster-wise bounds ( pQk) can then be aggregated to obtain the bound pQ for

the entire image as (Eq. 2.25)

pQ � 1

M
SSE �

Ķ

k�1

Mk

M
pQk � Ķ

k�1

αk pQk, (3.6)

where αk � Mk
M . The covariance in each cluster being an estimated parameter, the es-

timated bound pQk has an associated confidence interval, as shown in Eq. 3.3. An ex-
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(a) House image (b) Barbara image

Figure 3.5: The spatial distribution of Ni values for a patch size of 11 � 11 on (a) house image,
and (b) Barbara image, shown in Fig. 1.7.

pression for the 95% confidence interval for the overall bounds can then be obtained

by calculating the standard deviation (σQ) of the pQ estimate as

σQ �
gffe Ķ

k�1

α2
k σ

2
Qk
, (3.7)

where σQk
is the standard deviation of the pQk estimate. The 95% confidence interval,

as shown before in (3.3), is then given by the Normal interval

pQ� 2σQ. (3.8)

3.3 Bounds Estimation for Noisy Images

Until now, we have outlined a method of estimating the bounds from noise-

free images by estimating the parameters of the bound. However, in practice, such

ground truth is not available. To make our method practical, it is necessary to account

for the presence of noise when estimating the bounds. In this section, we extend each
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(a) Noise-free case (b) Noisy case

Figure 3.6: Clustering of Barbara image into 5 clusters based on geometric structure of patches.
Clustering is performed with features calculated from (a) clean image, and (b) noisy image of
noise standard deviation 15. Note how the kernel features can capture structural information
and thereby properly cluster majority of patches even in the presence of noise.

parameter estimation process by considering the effects of noise contamination. We

begin by estimating the covariance matrix from noisy image patches.

3.3.1 Covariance Estimation

To estimate the covariance matrix, we need to first identify patches of similar

structure from the given noisy image. As with the noise-free case, this requires us to

cluster the image patches based on the underlying geometric structure. Such clustering

from noisy data can be challenging. To avoid this, in [110] we presented a method of

learning the covariance matrix without performing any explicit clustering on the noisy

image. For that, we made use of a vast database of varied noise-free patches that were

processed off-line to form a look-up table from which the covariance matrix for any

noisy patch was estimated. However, methods employing such off-line databases are

restrictive as they require a very large and relevant set of clean image patches, the (lack

of) quality and variety of which can strongly influence the results.
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Instead, here we compute the LARK features [22, 24, 25] for each patch in the

noisy image and then perform clustering using K-Means [102], much in the same way

as done for the noise-free case in Sec. 3.2. In [24], we demonstrated that such normal-

ized kernels can be quite robust to the presence of noise, leading to relatively robust

clustering performance. This is illustrated in Fig. 3.6 where we show the overall simi-

larities between the (color-coded) clusters of the noise-free and noisy Barbara images.

However, inaccuracies do appear, especially when dealing with strong noise. In such

cases, one can pre-filter the noisy image to reduce the effect of noise and perform clus-

tering on the denoised image. As will be apparent from the experimental results in

Sec. 3.4, the covariance estimate obtained using such a clustering leads to quite accu-

rate estimates of the denoising bounds, even for substantially noisy images (σ � 25).

Once the image has been clustered, we proceed to compute the covariance

of the noisy patches in each cluster. For this, we employ the bootstrapping method of

Efron [107], although other stable and computationally efficient methods (such as [106]

and references therein) are equally applicable. This allows us to estimate the covariance

Cy of the noisy patches within a given cluster, from which we need to estimate the

covariance matrix Cz. From the data model of Eq. 2.1, it is easy to see that

Cz � Cy �Cη, (3.9)

where Cη � σ2I is the covariance of the iid noise, assumed to be independent of the

patch intensity. However, directly using Eq. 3.9 can lead to an estimate of Cz that may

not be positive semidefinite, a necessary property of covariance matrices. To avoid

such problems in the estimation of the covariance, we use a modified plug-in estima-

tor [55, 111, 112]

pCz � rpCy � σ2Is�, (3.10)
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where pCy is the covariance estimated from the noisy image patches and rXs� denotes

a matrix with the negative eigenvalues of X replaced by θ � 0. Note that it may still be

the case that pCz is rank deficient and, hence, not invertible. Therefore, we compute the

bounds using an alternate formulation based on the matrix inversion lemma [96] as

E
�}zi � pzi}2� ¥ Tr

��
Ji � pC�1

z

	�1
�

� Tr
�
J�1
i � J�1

i

�
J�1
i � pCz

	�1
J�1
i

�
, (3.11)

where the covariance estimate pCz need not necessarily be invertible.

Another point to note is that we assume knowledge of the noise variance in

our estimation of the covariance matrix in Eq. 3.10. However, in practice, this needs

to be estimated from the given noisy image. In this case, one can employ methods

outlined in [44, 100, 101] where it is shown that noise variance can be quite accurately

estimated from a single noisy image.

One disadvantage of the shrinkage-based maximum likelihood estimator of

Eq. 3.10 is that they can lead to inaccuracies when only a few patches (compared to

the number of pixels in each patch) are present in a cluster, as demonstrated in [113].

In such cases, the estimation process can be modified based upon observations in [113,

114]. Luckily, such structural singularities are not very common among natural images.

As a result, the estimation process outlined above allows us to estimate the bounds

quite accurately, as we demonstrate in Sec. 3.4. There we also show that the estimated

pCz matrices are quite robust to minor inaccuracies in noise variance estimation, as well

as to the presence of outliers that appear due to errors in clustering a noisy image. As

such, these estimates are sufficiently accurate for us to estimate the bounds from any

given noisy image.
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3.3.2 Photometric Redundancy from Noisy Images

Next, we need to calculate the FIM from the noisy image. Considering the cor-

rupting noise to be additive white Gaussian with known (or estimated [44, 100, 101])

variance and zero mean, estimating the FIM reduces to estimating the redundancy fac-

tor Ni for each patch. We obtain a k-nearest neighbor based estimate for Ni from the

noisy input image, similar to the case where the MSE bounds were estimated from

noise-free images [70]. However, the similarity measure of Eq. 3.4 needs to be modi-

fied to account for the effects of the corrupting noise. In the present context, given any

noisy patch yi, we wish to identify patches yj in the noisy image, such that their cor-

responding noise-free counterparts zi and zj satisfy the similarity condition defined in

Eq. 3.4. Thus, we define a measure of similarity between noisy patches as

zj � zi � εij

ñ yj � ηj � yi � ηi � εij [from Eq. 2.1]

ñ yj � yi �
�
ηj � ηi � εij

�loooooooomoooooooon
rεij

, (3.12)

where }rεij}2 � }εij}2 � }ηj � ηi}2 � 2εTijpηj � ηiq

ñ Er}rεij}2s � Er}εij}2s � 2σ2n, (3.13)

considering
?
n � ?

n patch dimensions. The last expression of Eq. 3.13 is obtained

assuming the noise patches are iid. A noisy patch yj can then be considered photomet-

rically similar to yi if it satisfies the condition

yj � yi � rεij such that }rεij}2 ¤ γ2 � 2σ2n, (3.14)

where γ is the threshold defined in Eq. 3.4. Note that, as with the estimation of the co-

variance matrix, we make use of the known (or estimated [44, 100, 101]) noise variance
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in identifying similar patches. With a similarity measure defined, we can now estimate

Ni values for each patch within the given noisy image.

Once an estimate of the Ni values for each patch (denoted by pNi) and its as-

sociated covariance matrix (pCz) are obtained, we can estimate the MSE bound for de-

noising from the input noisy image as

Er}zi � pzi}2s ¥ 1

M

M̧

i�1

Tr
�pJ�1

i � pJ�1
i

�pJ�1
i � pCz

	�1 pJ�1
i

�
, (3.15)

with pJi � pNi
I
σ2 and M � °

kMk is the total number of patches in the image. This

proposed estimation method can be used to accurately predict the denoising bounds

for images corrupted by considerable levels of noise, as we will demonstrate in the next

section. However, as expected, the accuracy degrades when the input signal-to-noise

ratio is severely low. In our experiments with different images (Fig. 1.7), this breaking

point occurs when the corrupting noise has a standard deviation σ greater than 15. In

such cases, it is useful to pre-filter the noisy image to reduce the effects of noise. TheNi

values can then be estimated directly from the noise-suppressed version of the given

image. Next, we compute the bounds for various (noisy and noise-free) images and

compare them to the state-of-the-art denoising performance.

3.4 Denoising Bounds and State-of-the-Art

In this section we describe experimental results where we calculate the MSE

bounds for various images and compare these to the performance of several state-of-

the-art denoising algorithms. We begin with estimating the bounds from ground truth

images to show how well a given image can be expected to be denoised. For this, we

first perform experiments on simulated images of simple repeating patterns. We then
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(a) Stripes (b) Cloth (c) Towel (d) Grass

Figure 3.7: Some images consisting of geometrically similar patches that we use for our study.

show results obtained using uniform texture images and on more general images that

consist of both smooth and texture regions. Finally, we show that the bounds can be

estimated quite accurately even when presented with a single noisy image using the

approach outlined in Sec. 3.3.

Denoising performance is often dependent on many intrinsic parameters of

any given method. Similarly, for the purposes of estimating the bounds, we need to

take into account the influence of certain implicit parameters such as the size of the

patches and the number of clusters used. Therefore, before any meaningful bounds

can be estimated, we need to identify suitable choices for such intrinsic parameters.

We begin with studying the effect of patch size which plays an important role

in calculation of the MSE bounds. Too large a patch size might capture regions of

widely varying geometric structure in a single patch and also result in fewer similar

patches being present in the image. On the other hand, too small a patch size can lead

to degraded denoising performance resulting from the lack of geometric structure cap-

tured by each patch. In practice, noise greatly impairs the search for nearest neighbors

when too small a patch size is considered. In our work, search for similar patches is

carried out on the noise-free image resulting in larger values of Ni when using smaller
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(a) Effect of patch size (b) Effect of K

Figure 3.8: MSE bounds for noise standard deviation 25 as a function of (a) varying patch size
with K � 1 for the grass and cloth images (Fig. 3.7), and K � 5 for the house and Barbara
images; and (b) varying number of clusters with patch size 11 � 11.

patches. As a result, the MSE bounds for smaller patches are quite small, which con-

tradicts the performance we observe in practical denoising methods which only have

access to the noisy observations. But this effect is typically stabilized with patch sizes

of 11 � 11 or beyond. Fig. 3.8(a) illustrates this effect on different images. Note how

the bound on the predicted MSE increases at different rates as the patch size grows

from 5� 5 to 19� 19 for the images. In our comparisons, we will calculate the bounds

with a fixed patch size of 11 � 11 which is a reasonable choice for denoising as it is

can capture the underlying patch geometry while offering sufficient robustness in the

search for similar patches.

The other parameter that influences our predicted lower bound is the number

of clusters. Clustering ensures that patches of similar geometric structure are grouped

together. In Fig. 3.8(b), we show the effect of the predicted bounds as a function of

increasing number of clusters. Note how, in most cases, the MSE bounds change little

once the number of clusters is chosen to be K � 5 or higher. This may encourage one
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to think that it might be best to use a much larger number of clusters (K � OpMq).

However, with a smaller K, we can ensure the presence of enough patches in the clus-

ters so as to obtain a reasonably accurate estimate of the covariance matrix for each

cluster. At the same time, we do not compromise on the requirement that patches of

similar geometric structure be grouped together in each cluster. On the other hand,

choosing too small a value for K results in an erroneous bound as dissimilar patches

may be clustered together and the covariance matrix is then learned assuming that all

zi vectors are sampled from a single ppzq. For the natural images of Fig. 1.7 clearly

K � 1 is not a good choice. As a general rule, choosing a value of K to lie within 5 and

10 leads to a stable estimate of the bound without incurring unnecessary time penalty

in clustering. Such a choice is also roughly in keeping with the number of clusters used

for denoising various images in [24, 40, 69].

In Fig. 3.8(b), we observe that for typical natural images such as the house

and Barbara images that exhibit variations among patch patterns, using K � 1 always

results in a lower bound than for higher values of K. This is somewhat contrary to

intuition where one would expect the intra-cluster variation among the structurally

dissimilar patches forced to lie within a single cluster to increase the average patch

complexity resulting in a higher bound for smaller K. However, it should be noted

that the bounds are also influenced by the level of photometric redundancies (Ni) for

each patch. When the effect of Ni is nullified by forcing Ni � 1 for all zi, the bound

obtained with K � 1 is indeed higher than those for K ¡ 1.

Having established specific choices for patch size and number of clusters and

their effects on the computed bounds, we now proceed with estimating the bounds for

various images. We begin our experimental analysis of the bounds with the simulated
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(a) Bounds for stripes image (b) Bounds for box image

Figure 3.9: MSE bounds computed on simulated images and compared with the performance
of some state-of-the-art methods (BM3D [49], K-SVD [37], SKR [22], K-LLD [24], NLSM [43]).
The bounds are calculated using 11 � 11 patches.

stripes image (of size 220�220) that we generated to provide a proof of concept for our

MSE bounds calculation. The image (shown in Fig. 3.7(a)) consists of simple repeating

patterns (stripes), each 2 pixels wide, made up of two gray levels (75 and 200). It is

very easy to see that for our choice of 11 � 11 patches, the image patches will all be

similar in geometric structure and, hence, no clustering is necessary for this particular

image. Fixing the patch size to be 11 � 11, we calculate the performance bounds of

denoising this particular image under WGN of different strengths (σ � 5, 15, 25). We

compare the lower bound to the MSE obtained using various state-of-the-art denoising

methods ( [22,24,37,43,49]). From the plots in Fig. 3.9(a) we see that our MSE bound is

quite small as a result of larger number of identical patches being available. Also, the

image consists of a very simple repeating pattern leading to rather small variability in

geometric structure of the image patches. This makes it easier to denoise as opposed to

more complex natural images. Our bounds formulation takes into account these factors
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(a) Bounds for grass image (b) Bounds for cloth image

Figure 3.10: Bounds for texture images compared to denoising performance of some state-
of-the-art denoising methods. A single cluster of 11 � 11 patches are considered for this
experiment.

and predicts a lower bound on the MSE that is rather lower than the performance of

the state-of-the-art denoising algorithms.

As a next step, we calculate the MSE bounds for another, more interesting,

simulated image. Fig. 2.1(b) shows the box image (of size 200�200) where, as opposed

to the stripes image, the edges vary in directionality. Clearly, such an image requires

the use of multiple clusters to capture the different geometric structures. As shown

earlier in Fig. 2.5(a), we make use of 4 clusters to capture the smooth, horizontal and

vertical edges, and the corner regions. Fig. 3.9(b) shows the calculated MSE bounds

for the box image for different noise standard deviations and compares them to the

performance of denoising methods. This image is more difficult to denoise than the

stripes image and the predicted MSE bound is also considerably lower than the MSE

obtained by any of the state-of-the-art denoising methods.

We now present experimental results obtained using images containing rel-

atively uniform natural texture. These images (example, the grass image) typically
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(a) House image (b) Barbara image

Figure 3.11: Comparison of some state-of-the-art methods with our bounds formulation for
some general images. The patch size is fixed at 11 � 11 and the number of clusters (K) used is
5 in all the cases.

contain semi-stochastic repetitive patterns. Patches from such images can be consid-

ered to be geometrically similar and, hence, form a single cluster. However, the patches

typically contain more natural variability in their structure than the synthetic stripes

image. For such heavily textured images, most methods perform quite comparably to

the predicted bounds (see Fig. 3.10(a)). The bound for another texture image (cloth)

in Fig. 3.10(b) is lower than the best performing method (BM3D), but not significantly

so. These seem to indicate that, theoretically, the performance cannot be vastly im-

proved for such class of images. Also note that the MSE for each of the methods (and

our bounds prediction) are much higher than those obtained for the simulated im-

ages. This is because the (semi-stochastic) variability in the image patches makes them

harder to denoise than the simpler simulated images. This fact is captured by our

bounds formulation as well.

Next, we evaluate the bounds for some natural images, namely the house and

Barbara images. Such images typically consist of both smooth and textured regions.
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Thus, clustering is needed to group together patches of similar geometric structure. In

our experiments, we cluster each image into 5 clusters using the technique outlined in

Sec. 3.2.1. The MSE bound is then calculated on a per cluster basis from which a final

estimate of the MSE bound is obtained for the entire image, along with a confidence

interval for the estimate. Fig. 3.11 shows the MSE bounds obtained for two natural

images using a patch size of 11� 11 and its comparison to performances of some state-

of-the-art methods.

The bounds for different images also give us an indication of the relative diffi-

culty in denoising images. In Table 3.1 we rank various images based on the predicted

denoising bounds, considering WGN with σ � 25. The predicted bounds shown there

agrees with the intuition that images that are relatively smooth and devoid of much

texture (e.g. house image) are easier to denoise than those containing fair amounts of

semi-stochastic textures (e.g. stream and Mandrill images). This relative difficulty is

also largely in keeping with the performance of some recent denoising methods.

Apart from the relative denoising difficulty, the bounds when compared to

the state-of-the-art can also serve as an indicator of the room for improvement in de-

noising performance that we can hope to achieve. Table 3.1 shows that images contain-

ing a fair amount of non-stochastic texture are denoised quite well as compared to the

predicted bounds and little room for improvement exists. One probable reason for this

is that for naturally occurring textures, few similar patches may exist. Moreover, iden-

tifying such patches under noise contamination is also not trivial. These contribute

towards a higher MSE for the denoised estimate. As an extreme case, consider im-

ages where, on average, Ni is close to 1. Denoising then has to be performed from

essentially a single observation of each patch and, hence, not much denoising can be
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Table 3.1: Some images ranked according to the predicted denoising bounds showing their
relative denoising difficulty. The noise standard deviation is 25 and the bounds are calculated
using 11 � 11 patches.

Image
K-SVD SKR K-LLD BM3D NLSM

Bound
[37] [22] [24] [49] [43]

Stripes 13.56 21.83 25.15 4.16 3.36 0.55
Box 57.78 77.17 53.93 49.56 52.49 3.42
House 40.05 47.57 42.82 33.57 31.56 14.82
Lena 48.09 44.09 46.02 40.46 42.57 19.66
Boats 78.39 78.44 77.45 67.17 69.20 38.70
Barbara 72.39 87.91 111.58 55.62 60.13 50.24
Cloth 104.36 103.42 104.68 91.33 101.97 72.98
Grass 161.74 150.39 147.13 153.64 150.16 145.58
Mandrill2 185.60 196.20 195.75 188.84 178.94 181.61

expected. Our formulation also cannot be expected to predict an informative bound

for such extreme cases. However, for most general images, our formulation predicts

meaningful bounds, as justified by various experiments shown in this section. In Chap-

ter 6, we analyze this further and show that improvement in denoising performance

can still be expected, particularly for a class of smoother images.

While the predicted bounds were used to rank images based on their relative

denoising difficulty in Table 3.1, the cluster-wise calculation process allows us to ob-

tain such ranking for different clusters within the same image as well. This we demon-

strate later in Chapter 4 where we present information-theoretic interpretations of the

bounds formulation. The bound for each cluster can then be used to adaptively control

the amount of smoothing to be performed by any denoising method based on the un-

2NLSM achieves an MSE that is slightly lower than the bounds for this case. This anomaly can be
explained by analyzing the bias characteristics for this non-linear method, on such images. Our bounds
are derived for affine-biased methods, and the method bias in most cases conform to this model. Further,
the bounds here are estimated by restricting Ni ¤ 100 as a practical consideration. With a more relaxed
maximum (say, 1, 000), we obtain a bound of 176.24 which is lower than the MSE for NLSM.
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derlying image content. However, for such a system, the cluster-wise bounds needs to

be accurately estimated from a single noisy image. Such a mechanism was presented

in Sec. 3.3. Employing the estimation processes detailed there, we estimate the bounds

for some noisy natural images next. To verify the accuracy of such comparisons we

compare the bounds estimated from the noisy images to those computed from their

corresponding clean versions (ground truth).

Since the bounds are estimated by estimating the parameters independently,

we analyze the accuracy of estimating each parameter as well. As a first step, we

consider the accuracy of the covariance estimates from a given noisy image. The co-

variance estimates also depend on the clustering performance, which in turn is also

influenced by the presence of noise (see Fig. 3.6). However, our experiments reveal

that the covariance estimation process is quite robust to the presence of outliers within

each cluster. This can be inferred from Fig. 3.12 where we plot the bounds for the co-

variance test case withNi values computed from the clean images. Even in the presence

of strong noise (σ � 25) the estimated bounds are quite close to the ground truth com-

puted from clean images. The small error bars representing the standard deviations

about the mean for the bounds estimates over 5 different realizations of noise illustrate

the fact that the covariance estimation process is quite robust to the presence of outliers

that occur due to errors in clustering.

Next, we consider the case where the bounds are calculated entirely from

the noisy image. That is to say that both Ni and Cz are estimated from the noisy

image. The mean of the bounds estimates obtained for various images over 5 different

realizations of noise are shown in Fig. 3.12. We observe that when the noise standard

deviation σ ¤ 15, the bounds are estimated quite accurately from the noisy image. This
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(a) House image (b) Lena image

(c) Barbara image (d) Stream image

Figure 3.12: MSE bounds estimated from a given noisy image (labeled estimated bounds) com-
pared to the ground truth [70] where the bounds are calculated from clean images. We also test
the accuracy of covariance estimation (labeled covariance test) by calculating the bounds using
Ni values estimated from the clean image. For all the images, theNi estimates used to compute
the estimated bounds are obtained directly from the noisy images for noise standard deviation
σ ¤ 15, and from the pre-filtered images for σ � 25.

is verified for a variety of natural images in Table 3.2 where the bounds estimated from

noisy images are compared with those estimated from ground truth. However, when

stronger noise is considered, our experiments indicate that the bounds estimates can be

quite inaccurate. In particular, we noted that estimation ofNi is severely affected when

strong noise corrupts the image. However, the same is not the case for the estimation
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Table 3.2: Comparison of bounds from noisy and noise-free images considered to be ground
truth. The noise is WGN with standard deviation 15. The mean bounds from 5 different real-
izations of noise are shown, along with standard deviations about the means in braces.

Image
Bounds from Error

Ground truth Noisy image Percentage

House 7.54 8.55 (0.042) 13.40
Peppers 9.93 9.53 (0.052) 4.03
Lena 10.13 10.55 (0.042) 4.15
Boats 19.68 19.41 (0.069) 1.37
Barbara 24.58 26.22 (0.041) 6.67
Man 33.56 28.32 (0.035) 15.61
Stream 74.30 65.25 (0.037) 12.18
Mandrill 92.56 83.78 (0.123) 9.49
Mean 34.04 31.45 7.61

of Cz. This is not surprising since the Ni values are estimated patch-wise, whereas the

covariance matrices are computed from a much larger number of patches within each

cluster.

Robust identification of photometrically similar patches is important for many

denoising methods that rely on such redundancies to perform denoising. In fact, one

of the most popular denoising algorithms, BM3D [49], performs an initial pre-filtering

of highly noisy images to reduce the effects of noise before comparing patches to de-

tect similarities. Along similar lines, we can pre-filter for our Ni estimation. How-

ever, strong denoising leads to considerable over-estimation of Ni values, especially

for patches containing fine texture, resulting in considerable under-estimation of the

bounds. To avoid this, we perform only mild pre-filtering in such a way so as to retain

the texture in the image. For this preprocessing step we make use of the successful

BM3D [49] algorithm, setting the parameter (input noise variance) of the algorithm

such that the denoising process leaves behind sufficient noise so as to bring the pre-
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filtered image to within effective range of the bound estimate (σ̂ ¤ 15). In particular,

using the residual of the estimate, we set the BM3D parameter so as to ensure that a

noise-suppressed image is obtained for which the estimated noise standard deviation

σ � 5 in the smoother regions of the image. Using such a method, the bounds are esti-

mated more accurately even for images corrupted by strong noise (σ � 25), as shown

in Fig. 3.12. For the case where the noise standard deviation σ ¤ 15, we compute the

bounds parameters directly from the noisy images. However, for the strong noise case

(σ � 25) the pre-filtered images are used in estimating the Ni values. The patch covari-

ance matrices, however, are still computed from the noisy images. The results show

that using a pre-filtering step, we are able to estimate the bounds quite accurately even

in the presence of strong noise.

We have thus demonstrated, with a variety of experiments, that (3.1) presents

a meaningful lower bound on the performance (in terms of MSE) of denoising any

given image. We also showed that the bounds can be estimated directly from any

noisy image without the need for any explicit modeling of image patches. In our opin-

ion, this makes the formulation practical and easily applicable to natural images. The

bounds here were derived as that of the fundamental limits in estimating the image

patches from their noisy observations. In the next chapter, we provide further analy-

sis of the formulation and show that photometric redundancy is related to the patch

covariance and these parameters, along with the bounds, have information-theoretic

interpretations as well.
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Summary – In this chapter we presented a method of estimating the lower bounds on

denoising performance. First, we restricted ourselves to estimating the bounds from

the latent image as they define the bounds on denoising. This was done through es-

timating the different parameters of the bound independently. These estimation pro-

cesses were then generalized to account for the presence of noise in the input image

for which the bounds need to be estimated. Experimentally, we showed that the for-

mulation provides a meaningful lower bound that can be estimated directly from any

noisy image. We also showed that these bounds can be used to predict the relative

denoising difficulty between images and such rankings were largely in keeping with

the denoising performance of current state-of-the-art denoising methods.
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Chapter 4

Information Theoretic Interpretations of

the MSE Bound

Abstract – In this chapter we continue our analysis of the MSE bound expression that

we derived from an estimation theoretic point of view in Chapter 2. We show that the

bound and its parameters have interesting information-theoretic interpretations. We

also demonstrate that information-theoretic measures such as the mutual information

and, in the limiting case, the entropy can be used to predict relative denoising difficulty

between images that are similarly corrupted by noise.

4.1 Introduction

In Chapter 2, we derived a lower bound on the MSE for denoising any given

image. The expression for the bound was derived as that of estimating the underlying

noise-free patches zi from their noisy observations. We showed that the formulation

is the performance of a linear MMSE estimator when the corrupting noise is known

to be zero mean white Gaussian. However, such an LMMSE estimator requires us to
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Figure 4.1: Illustration of the modified data model considering all patches that are photomet-
rically similar to any given reference patch zi in the image.

take into account the contribution of allNi patches that are photometrically similar to a

given reference patch zi, as we shall see in Chapter 5. To derive the LMMSE estimator

for this case, we first need to rewrite the patch-wise data model by considering all Ni

similar patches as (see Fig. 4.1)

y
i
� zi � ηi, (4.1)

where y
i
� ryT1 . . .yTi . . .yTNi

sT P RnNi�1,

zi � rzT1 . . . zTi . . . zTNi
sT P RnNi�1,

η
i
� rηT1 . . .ηTi . . .ηTNi

sT P RnNi�1.

The above data model, written for each underlying patch zi, accounts for theNi similar

patches that exist for any given zi. The y
i

vector, as shown in Fig. 4.1, is formed by con-

catenating all yj vectors corresponding to the zj patches (zi included) that are similar

to the reference patch zi, where similarity is defined in Eq. 3.4. Making a simplifying
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assumption that these Ni patches are identical1, we can express zi � Aizi and rewrite

Eq. 4.1 as

y
i
� Aizi � ηi, (4.2)

where Ai � rI . . . IsT P RnNi�n with I denoting the n � n identity matrix. The cor-

responding noise patch η
i

formed from independent ηj vectors then has covariance

Cη � σ2InNi where InNi is the nNi � nNi identity matrix. The LMMSE estimator

for each zi then has the form pzi � Erzi|yis. This estimator has zero expected error

(Erzi � pzis � 0) and an error covariance (discussed in more detail in Sec. 5.2)

Qi � Erpzi � pziqpzi � pziqT s � �
C�1

z � σ�2AT
i InNiAi

��1

�
�

C�1
z �Ni

I

σ2


�1

. (4.3)

Note that the error covariance above is the MSE of the LMMSE estimate. Moreover,

comparing to Equations 2.18 & 2.8, we observe that the trace of Qi is, in fact, the lower

bound derived for the denoising problem, assuming WGN. The error covariance ma-

trix Qi above is, thus, the MMSE matrix for the estimation of zi.

Interestingly, although derived purely from an estimation theoretic point of

view, the MSE bounds for denoising can be shown to be related to information-theoretic

measures. In Sec. 4.3, we show that, in the limiting case when considering noise-free

ground truth images, the expression for the MSE bound is related to the entropy of

the image. Further, in such cases, the parameters of the bound (Ni and Cz) that we

estimated independently in the previous chapter, can be shown to be inter-dependent

1By identical we mean zi � zj . The expression for the FIM in Eq. 2.21 makes an implicit assumption of
Ni identical patches being present in the image, although in practice only similar patches satisfying Eq. 3.4
may actually exist. Later, in Chapter 5, we derive an LMMSE estimator for a more practical data model
where this identical constraint is relaxed and the underlying patches are considered to be similar.

87



through their relation with the entropy. However, we start our study of such information-

theoretic interpretations with the more practical case when the input image is cor-

rupted by noise. In such cases, we can show that the MMSE matrix of Eq. 4.3 is related

to the mutual information of the noisy y and noise-free z patches.

4.2 Denoising Bounds and Mutual Information

The mutual information (MI) of random variables y and z is a measure of the

information that one variable contains about the other. Considering the patch-based

data model of Eq. 2.1, the MI can be mathematically expressed as [115]

Ipy; zq � Hpyq �Hpy|zq

� Hpyq �Hpz� η|zq [7 y � z� η (Eq. 2.1)]

� Hpyq �Hpη|zq

� Hpyq �Hpηq, (4.4)

where Hpyq and Hpηq denote the entropy of y and the noise η respectively2. The

entropy of a random variable y (or equivalently its pdf ppyq) is defined as

Hpyq � �Erln ppyqs � �
»
ppyq ln ppyqdy. (4.5)

WhileHpyq can be estimated from the observed noisy image patches (see Appendix 4A),

the noise entropy may be analytically calculated if the noise statistics are known. Specif-

ically, for Gaussian noise with given covariance Cη, the entropy is given by

Hpηq � ln
�
p2πeqn{2|Cη|1{2

�
� 1

2
lnp|Cη|q � n

2
r1� lnp2πqs , (4.6)

2We will alternately denote the entropy of a random variable x with a pdf ppxq as Hppq or Hpxq, as
necessary for clarity of presentation. The notation used will be clear from context.
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where | . | denotes the determinant.

In [116], Palomar et al. studied the relationship of the mutual information

between the noisy and noise-free image patches and the minimum mean squared error

(MMSE) on the estimation of the input given the output of a Gaussian channel. For the

multivariate case (Eq. 4.2), the authors show that the gradients of the MI with respect to

the signal and noise covariance can be written in terms of the MMSE matrix of Eq. 4.3

as

d

dCz
Ipyi; ziqCz � AT

i C�1
η AiQi, and (4.7)

d

dCη
Ipy; zq � �C�1

η AiQiA
T
i C�1

η . (4.8)

When dealing with iid noise, where Cη � σ2InNi , the above relations can be written

for each cluster as (see Appendix 4B for derivation)

d

dCz
Ipy; zqCz � 1

Mk

Mķ

i�1

d

dCz
Ipyi; ziqCz � 1

Mk

Mķ

i�1

Ni

σ2
Qi, and (4.9)

d

dσ2
Ipy; zq � 1

Mk

Mķ

i�1

d

dσ2
Ipyi; ziq � � 1

nMkσ4

Mķ

i�1

TrpQiq. (4.10)

These then establish direct relationships between the denoising bound of (2.24) and

the MI (Eq. 4.4). As with the bound, the MI too is a function of both the input signal

characteristics and the noise. This can be seen by further expansion of Eq. 4.9 as

d

dCz
Ipy; zqCz � 1

Mk

Mķ

i�1

Ni

σ2

�
C�1

z �Ni
I

σ2


�1

ñ d

dCz
Ipy; zq � 1

Mkσ2

Mķ

i�1

Ni

�
C�1

z �Ni
I

σ2


�1

C�1
z

� 1

Mkσ2

Mķ

i�1

�
I

Ni
� Cz

σ2


�1

, (4.11)

assuming invertibility of Cz. A positive definite gradient with respect to the covariance

here implies that the MI is an increasing function of patch complexity. Further, as patch
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Table 4.1: Clustering of the house image and the cluster-wise mutual information estimates
when corrupted by various levels of WGN.

σ
Noise Estimated MI Îpy; zq Overall

Entropy Ω1 Ω2 Ω3 Ω4 Ω5 MI
0 - 430.76 365.15 212.71 375.09 345.91 322.49
5 366.43 119.25 80.53 27.88 87.00 60.52 63.93
15 499.37 62.94 43.17 21.63 47.31 30.59 37.64
25 561.18 45.77 33.50 20.35 36.46 25.03 33.05
35 601.89 35.58 27.92 17.81 30.36 22.31 23.97
45 632.30 27.80 23.42 13.47 25.18 19.55 19.74
55 656.58 21.07 19.06 8.59 19.97 16.13 15.23

complexity captured by Cz increases (with a corresponding drop in the expected Ni,

as we shall see later in Sec. 4.3), the magnitude of the gradient decreases. This implies

that the rate of increase of MI drops as the underlying patch complexity increases.

However, with increase in noise strength, the MI can be expected to decrease, as is

implied by the negative gradient of the MI with respect to the noise variance in Eq. 4.10.

Using Eq. 4.3 to expand Eq. 4.10 as

d

dσ2
Ipy; zq � � 1

nMk

Mķ

i�1

Tr

�
1

σ4

�
C�1

z �Ni
I

σ2


�1
�

� � 1

nMk

Mķ

i�1

Tr
��
σ4C�1

z � σ2NiI
��1

�
, (4.12)

we can see that the rate of such decrease is also expected to drop as the noise strength

increases.

We study this behavior of the mutual entropy as a function of the noise strength

and patch complexity through a simple experiment. For this, we make use of the House

image and estimate the MI Îpy; zq for each cluster containing geometrically similar

patches (color-coded in Table 4.1) for various levels of additive WGN. For meaningful

comparisons, we perform clustering on the noise-free image and use the same cluster

membership in computing the MI estimates for the noisy cases. In Table 4.1, cluster Ω3
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Figure 4.2: Effect of noise on different parts of the House image. Note how in regions of strong
edges the underlying image content is visually discernible even when corrupted by strong
noise, whereas regions lacking strong structure are largely indistinguishable from noise.

consisting of the much smoother background patches has a much lower complexity

than that of clusters Ω2 and Ω4 which capture the edge regions. This relative complex-

ity is also captured by the MI estimates for the clusters (see Table 4.1) as illustrated by

clusters with higher complexity exhibiting higher MI. This is in keeping with Eq. 4.11

which implies an increase of MI with increase in patch complexity. Further, the MI of

each cluster is decreasing as the noise increases, and the rate of such a decrease also

drops with higher noise. This is in keeping with the relationship between the MI and

noise variance captured by Eq. 4.12.

Although the MI is clearly related to the parameters of the bound, it is impor-

tant to note that one cannot be used directly to predict the other. The formulation of

Eq. 2.24 predicts an increase in the MSE bound for denoising as the image complexity

and noise variance increases. However, the MI, which quantifies the relative informa-

tion between a noisy patch y and its noise-free counterpart z, increases with increasing

image complexity, but has quite the opposite effect as noise variance increases. This
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is in keeping with intuition that as noise increases the noisy patches increasingly re-

semble noise, resulting in a reduction of information that y conveys about z (and vice

versa). However, as the complexity of the noise-free patch increases, stronger noise is

needed for the noise to overwhelm the patch characteristics (see Fig. 4.2), thus justify-

ing an increase in MI. These relations are captured analytically in Equations 4.11 and

4.12 and experimentally in Table 4.1. It is also important to note that Equations 4.11

and 4.12 relate the rate of change of MI as a function of changing image complexity and

noise variance respectively. Thus, it is the magnitude of the rate of change of MI (and

not the MI itself) that is inversely related to the bounds. Consequently, with only a sin-

gle noisy observation the MI cannot be used to predict the denoising bound. However,

the MI can be used to study the relative denoising difficulty of different images that

are corrupted by similar levels of noise.

As before, we consider additive Gaussian noise to illustrate the effectiveness

of the MI measure in studying relative complexity of images containing patches of

diverse geometric structure. For this we need to first estimate the entropy of the entire

noisy image from its cluster-wise entropy estimates as (see Appendix 4C)

Hpyq �
Ķ

k�1

ωkHpy P Ωkq �
Ķ

k�1

ωk lnωk, (4.13)

where ωk �Mk{M is the fraction of total patches that belong to cluster Ωk. For WGN,

the noise entropy is calculated analytically (Eq. 4.6) using the known noise covariance

matrix. The overall MI can then be estimated using Eq. 4.4. In Table 4.2, we show

the estimated mutual information obtained for some images (Fig. 1.7) when corrupted

by WGN of different strengths. The MI there is indicative of the relative denoising

difficulty between images. This can be seen by comparing it to the relative ranking

obtained by the MSE of one of the best performing denoising methods (namely, BM3D
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Table 4.2: Ranking of images based on denoising difficulty as indicated by the MI, compared
to the entropy, the denoising bound and MSE of BM3D denoising algorithm for WGN.

Images Size
Noise-free Mutual Information Ipy; zq Denoising BM3D

Entropy σ � 5 σ � 15 σ � 25 Bounds [70] MSE [49]

House 2562 322.49 63.92 37.65 33.06 14.82 33.57
Lena 5122 350.17 67.39 38.55 31.88 19.66 40.46
Peppers 5122 374.29 72.56 38.37 30.53 19.21 42.96
Barbara 5122 376.74 89.32 49.95 37.81 50.24 55.62
Boats 5122 398.36 89.75 45.75 35.04 38.70 67.17
Man 5122 407.16 94.28 43.49 29.25 62.97 96.46
Stream 5122 473.65 136.18 63.67 43.52 135.46 158.26
Mandrill 5122 498.75 153.67 74.50 51.59 181.61 185.60

[49]). In fact, this ranking (for σ � 5) is more in keeping with the relative denoising

difficulty exhibited by the practical methods than that obtained from the denoising

bounds calculated from the clean images.

In the limiting case when the image is noise-free, the mutual information be-

comes the same as the Shannon entropy of the noise-free image.3 In Table 4.2 we show

that the relative denoising difficulty prediction of the entropy in that case is also in

keeping with those obtained by the MI and the MSE of BM3D. This indicates that the

entropy of the image is also related to the denoising bounds. In the next section, we

explore this relationship further.

4.3 Relationship between Denoising Bounds and Entropy

The bounds formulation of Eq. 3.1 depends on two parameters, namely the

FIM Ji and the covariance matrix Cz that corresponds to the cluster of which patch zi

is a member. For WGN, estimating the FIM amounts to estimating the number (Ni) of

3Images considered to be “noise-free” can often contain noise as well [101]. However, the noise in such
images is typically quite small and, hence, we consider them to be noise-free in our study.
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Figure 4.3: Density estimation of points sampled from an unknown pdf at a reference point (in
red). Ni is the number of (orange) samples that lie within the ball of radius γ whereas the blue
samples lie outside. The pdf at the reference can then be approximately evaluated by Eq. 4.14.

similar patches that exist for each patch zi, assuming accurate knowledge of the noise

variance. In general, one can expect to find fewer similar patches in any given image if

the variability between patches within a cluster is high. In Sec. 3.2 (and [70]), both these

parameters were estimated from the noise-free image, in which case the MI of Eq. 4.4

reduces to the Shannon entropy of the noise-free image. In this section, we establish

how each of these two parameters of the bounds formulation are related to the Shannon

entropy, and as a result, to each other. Our interest here lies solely in analyzing the

information-theoretic interpretations of the parameters and relating the two. As such,

this relationship between the two does not translate to one being estimated from the

other in practice, as will be apparent from the following discussions.

In Sec. 3.4, Ni is estimated for each patch zi P Ωk by searching over the entire

image. This ensured that errors in clustering did not result in ignoring any photomet-

rically similar patches. Assuming oracle clustering, one can then expect to obtain a

good estimate of Ni by limiting the search for patches similar to any given zi P Ωk to
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patches within the same cluster Ωk. Let Ni then denote the number of similar patches

that lie within the cluster Ωk, where similarity is defined in Eq. 3.4. We then approx-

imate Ni by performing a nearest neighbor search within patches in Ωk with a search

radius of γ. Considering zi P Rn, an estimate of the Ni-nearest neighbor probability

density function can then be calculated as the fraction of total patches that are present

within a ball of radius γ centered at zi, as shown in Fig. 4.3. The pdf at zi can then be

approximated as [117]

pkpziq � Ni{pMk � 1q
Vipγq � Ni

pMk � 1q νn γn �
Ni Γp1� n{2q

pMk � 1q πn{2 γn , (4.14)

where Vipγq is the volume of the ball centered at zi with radius γ and νn is the volume

of the unit ball in Rn. Solving for Ni we have

Ni � pMk � 1q πn{2 γn
Γpn{2� 1q pkpziq, (4.15)

where Γp.q denotes the Gamma function. Unfortunately, the relation of Eq. 4.14 is ac-

curate only when a considerably large number of patches are present [117]. This is

especially true when considering high dimensions (e.g. n � 121 arising from choos-

ing patch sizes of 11 � 11 which have been shown in Sec. 3.4 to be a good choice for

obtaining meaningful bounds.) Moreover, this requires us to know or estimate the mul-

tivariate pdf pkpzq. However, Eq. 4.14 is still useful as it establishes a relation between

the pdf pkpzq and the number of similar patches that exist within the cluster Ωk.

We now extend the relationship of Eq. 4.15 by considering the average patch

redundancy level within each cluster. Let sNpkq � ErNi P Ωk|γs be the conditional

expected value of Ni for patches within the k-th cluster for a given value of γ, with the

expectation taken over z P Ωk. From Eq. 4.15, we can then express sNpkq as

sNpkq � E

�
pMk � 1q πn{2 γn

Γpn{2� 1q pkpziq
�
� pMk � 1q πn{2 γn

Γpn{2� 1q
»
rpkpzqs2dz. (4.16)
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Interestingly, sNpkq here is related to the Rényi α-entropy [118] which is defined as

Rαppkq � 1

1� α
ln

�»
pkpzqαdz



. (4.17)

Choosing α � 2, we can then express Eq. 4.16 as

ln
� sNpkq� � ln

�
pMk � 1q πn{2 γn

Γpn{2� 1q

�
�
�
� ln

�»
pkpzq2dz


�

� ln

�
pMk � 1q πn{2 γn

Γpn{2� 1q

�
�R2ppkq. (4.18)

This provides a relationship between sNpkq and the Rényi entropy. Namely, as the

Rényi entropy increases, the expected number of similar patches within a cluster de-

creases. The Rényi entropy being a measure of uncertainty of a random variable,

Eq. 4.18 then fits with the intuition of lower patch redundancy in clusters with more

complicated structure.

Alternately, we can think of the level of redundancy within any cluster to be

measured by the mean distance from any patch to its most similar patch (nearest neigh-

bor). An overall smaller distance would then indicate the presence of a larger number

of similar patches. Generalizing this alternate measure by considering the distance to

the rNpkq-most similar patch, one can then expect a smaller average distance for clus-

ters exhibiting higher levels of redundancy for any fixed rNpkq. Denoting γ
i, rNpkq as the

distance from zi to its rNpkq-th nearest neighbor in Ωk, we express the (conditional)

mean distance to the rNpkq-th nearest neighbor using Eq. 4.15 as

Erγ
i, rNpkq| rNpkqs � E

��# rNpkq Γp1� n{2q
pMk � 1q πn{2 pkpziq

+1{n
��

�
� rNpkq Γp1� n{2q

pMk � 1q πn{2

�1{n »
pkpzqp1�

1
n
qdz, (4.19)

96



where, as before, the expectation is taken over z P Ωk. Evans et al. [119] derived a more

general expression for the distance to the rNpkq-th nearest neighbor as

Erγ
i, rNpkq| rNpkqs � Γp rNpkq � 1

nq
rνnpMk � 1qs1{nΓp rNpkqq

»
pkpzqp1�

1
n
qdz, (4.20)

where using the approximation

ΓpX � 1
nq

ΓpXq � X
1
n (4.21)

one obtains the same relation as in Eq. 4.19. Note that in our case, we consider a fixed

search radius of γ which is chosen independent of the image patches. Hence, we set

Erγ
i, rNpkq| rNpkqs � γ and evaluate the corresponding rNpkq for which the mean rNpkq-

nearest neighbor distance is γ. We are, thus, interested in determining the value of

rNpkq for which the mean distance to the rNpkq-nearest patch is γ. Intuitively, we can

then expect a larger rNpkq for clusters with relatively simpler patches that are known to

exhibit higher redundancy levels. Denoting

Inppkq �
»
pkpzqp1�

1
n
qdz, (4.22)

we can then rewrite Eq. 4.19 as

γ �
� rNpkq Γpn2 � 1q

pMk � 1q

�1{n
Inppkq?

π

ñ rNpkq � pMk � 1q
Γpn2 � 1q

� ?
πγ

Inppkq

n

. (4.23)

From Eq. 4.23, we see that the expected number of similar patches that exist within

the given cluster is directly proportional to the total number of member patches and

the radius of the ball of similarity; and inversely proportional to the n-th power of the

integral Inppkq. Eq. 4.17 shows that Inppkq is directly related to the Rényi entropy for
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the pdf pkpzq, where now α � p1� 1
nq   1. Denoting the Rényi entropy for this choice

of α as Rnppkq, we obtain

Rnppkq � 1

1� p1� 1
nq

ln pInppkqq � n ln pInppkqq

ñ ln
� rNpkq	 � ln

�
Mk � 1

Γpn2 � 1q


� n ln

� ?
πγ

Inppkq



� ln

�
Mk � 1

Γpn2 � 1q


� n lnp?πγq �Rnppkq. (4.24)

Eq. 4.24 thus provides a direct relationship between the number of γ-similar

patches that can be expected for patches within any given cluster, and the Rényi en-

tropy for that cluster. We can then relate rNpkq to the Shannon entropy [120] by using

the fact that as α Ñ 1, the Rényi entropy closely approximates the Shannon entropy.

For large n (such as n � 121), we obtain a value of α � p1 � 1
nq � 0.992 which is quite

close to 1. Substituting the Shannon entropy, Hppkq, for the Rényi entropy, we obtain a

relation between rNpkq and Hppkq as

lnp rNpkqq � ln

�
Mk � 1

Γpn2 � 1q


� n lnp?πγq �Hppkq. (4.25)

The higher the variability of patches within a cluster, the higher is its entropy. Keeping

with intuition, Eq. 4.25 predicts an inverse relationship between the number of simi-

lar patches and the entropy of the cluster being considered. That is to say, when the

entropy of z within a particular cluster is high, a lower level of redundancy can be ex-

pected from the image patches. This is illustrated in Fig. 4.4 where for clusters lacking

complex structure (for example, the background region), the average Ni tends to be

higher than those containing patches of more complicated patterns.

The entropy of a pdf is also dependent on the second order moment that

captures the variability between patches within a cluster. This relationship has been
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(a) (b)

(c) (d)

Figure 4.4: Illustration of the relation between Ni and cluster complexity: (a) Clustering of
House image based on patch structure, (b) eigenvalues of Cz for each cluster, (c) spatial distri-
bution of Ni, and (c) cluster-wise average Ni. Note how the smoother background (Ω3) has a
higher average Ni than the finely textured facade (Ω5) or the edge regions of Ω4. The eigenval-
ues of Cz, on the other hand, are larger for the more complex clusters.

documented for many of the most popularly used multivariate density functions by

Zografos et al. [121]. Specifically, for the entropy maximizing n-dimensional Gaussian

density function N pµ,Cq, the entropy can be expressed as a function of the covariance

C (see Eq. 4.6). Further, an increase in entropy corresponds to the existence of fewer

similar patches (lower rNk in Eq. 4.25). Plugging this (maximum) entropy for the Gaus-

sian pdf into Eq. 4.23 then provides us with an estimate of the minimum number of
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similar patches within an expected distance γ as

rNminpkq � pMk � 1qγn
p2eqn2 Γpn2 � 1q|C| 12

. (4.26)

This rNminpkq can then be taken to be the lower bound on rNpkq that can be expected

for any cluster with a covariance C. Eq. 4.26 also indicates that as the variance of

the Gaussian increases in any of the n dimensions, the minimum number of similar

patches that can be expected decreases. Further note that the redundancy measure is

not dependent on the mean µ, which implies independence of the rNminpkq value from

the mean intensity of the patches within the cluster.

For the case of any general (unknown) pdf pkpzq, Eq. 4.25 establishes a relation

between the number of similar patches that one can expect in a cluster and the corre-

sponding covariance matrix Cz that captures the cluster complexity. Eq. 4.25 provides

the useful insight that the bounds formulation of (2.24) and the entropy are similarly

related to patch redundancy and cluster complexity. Thus, the entropy can serve as

a measure of denoising complexity when noise-free images are considered. Ranking

of images according to their entropies is consistent with the relative denoising perfor-

mance by practical methods (example, BM3D [49]), as shown in Table 4.2.

Although predominantly devised to support the theoretical analysis of the

bounds formulation, our experiments point to some useful practical applications of

the entropy measures by exploiting the relationship between the denoising bounds

and the mutual information. Namely, the entropy (more generally, MI) can be used

as indicators of the relative performance of denoising that one can hope to obtain for

different images. In practice, this can be used to automatically set parameters in a de-

noising framework to control the level of smoothing required based on image content

and the level of noise corruption. In general, such tasks can also be performed using
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the bounds estimated from the noisy image. However, the entropy based approach can

be computed faster and has been shown in Table 4.2 to be better representative of the

practical difficulties in denoising any given noisy image.

Summary – In this chapter we presented further theoretical analysis of the bound

formulation by relating it to information measures, namely mutual information and

entropy. For noisy images, we established that the MSE bound is related to the mutual

information between the noisy and the corresponding noise-free image. In the limiting

case when clean images are considered, the mutual information reduces to the Shan-

non entropy of the image. We demonstrated the relation between the entropy and the

parameters of the bound. In the process, we also established a connection between the

two parameters.

4A Entropy Estimation

As mentioned earlier, the entropy for any given cluster is related to its com-

plexity, and can, therefore, serve as a measure of denoising difficulty for that cluster.

The entropy could be calculated if the prior pdf pkpzq could be ascertained or modeled

accurately at all zi P Ωk. Although many have proposed various models for natural

images [93–95], they are not directly applicable to our case since we consider the patch

vectors to be geometrically similar within each cluster. As a result, we need to estimate

the entropy in each cluster from the available zi vectors. For this we make use of order

statistics of the nearest-neighbor distances. Let γi,N denote the distance between the
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patch zi and itsN -most similar (“nearest”) patch. We then obtain a set of γi,N measures

for i � 1, . . . ,Mk patches in the k-th cluster. An estimator for the entropy can then be

obtained by using Eq. 4.25 for a fixed N as

ĤN ppkq � � 1

Mk

Mķ

i�1

ln pp̂kpziqq

� 1

Mk

Mķ

i�1

ln

�
pMk � 1q πn{2 γni,N
N Γp1� n{2q

�
. (4.27)

Such an estimator based on the nearest neighbor distance (N � 1) with added bias

correction terms was proposed by Kozachenko et al. [122] as

Ĥ1ppkq � 1

Mk

Mķ

i�1

ln

�
pMk � 1q πn{2γni,1

Γp1� n{2q

�
� ψ,

where ψ � 0.5772 is the Euler constant. This was later extended by considering N -

nearest neighbor distances in [123–125] (see also [126]) where the generalized bias-

compensated entropy estimator takes the form

ĤN ppkq � 1

Mk

Mķ

i�1

ln
�pMk � 1qνnγni,N

��ΨpNq

� 1

Mk

Mķ

i�1

ln

�
pMk � 1qπn{2γni,N

Γp1� n{2q

�
�ΨpNq. (4.28)

Here ΨpNq � d
dN ln ΓpNq is the digamma function.

The entropy estimator of Eq. 4.28 is based on the N -th most similar patch

and, thus, can vary with the choice of N . Estimators of the Shannon (and Rényi) en-

tropy based on a combination of such estimates obtained using multiple values of N

have been proposed in [127, 128]. However, such estimators require computation of

distances to the N -most similar patches for each patch in the cluster, a process that can

be quite time consuming. Instead, we make use of only the most similar patch, that is

N � 1. In that case, the digamma function Ψp1q � �ψ. The entropy estimate obtained
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(a) Entropy vs data dimensions (b) Entropy estimate vs sample size

Figure 4.5: Estimation of entropy (Eq. 4.28) for data sampled from a multidimensional Gaus-
sian density function N p0, Iq as a function of : (a) dimensions with 20, 000 samples, and (b)
number of samples with n � 121, where actual entropy is 171.64. These show that the nearest
neighbor entropy estimate (N � 1) achieves a slightly better estimate of the entropy than using
N � 4. Moreover, the entropy estimates are more accurate for lower dimensions. However, the
estimate gets better as the number of samples increases.

using only the distance to the most similar patch is very similar to that obtained us-

ing larger N for the high dimensional case. We show this in Fig. 4.5(a) where we plot

the entropy estimates obtained with different values of N for samples from Gaussian

density functions N p0, Iq of various dimensions. Observe that most estimates are quite

accurate when the data is relatively low dimensional.

The accuracy of the entropy estimator is also dependent on the sample size

Mk. This is especially true for higher dimensions where exponentially increasing num-

ber of samples are required for stable entropy estimation. In Fig. 4.5(b) we demon-

strates this for n � 121, by plotting density estimates using Eq. 4.28 with N � 1 as a

function of sample size. As the number of samples increases, the estimate comes closer
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to the actual entropy value4 of 171.64. However, as Fig. 4.5(b) illustrates, this conver-

gence as a function of sample size is quite slow. This behavior is to be expected as these

estimators are essentially asymptotically unbiased, converging to the true value of the

entropy as Mk Ñ8.

4B Relation between Mutual Information and MMSE Matrix

In [116], the authors derive expressions for the gradient of the mutual infor-

mation between the input and output of a general multivariate Gaussian channel. The

gradients are derived with respect to the model parameters specifically for the Gaus-

sian channel model of the form

y
i
� Aizi � ηi, (4.29)

where zi P Rn and y
i
P Rq are the input and output of the Gaussian channel respec-

tively, Ai is a q � n deterministic matrix, and η
i

is iid Gaussian noise. The authors

in [116] show that the gradients of the MI with respect to the signal and noise covari-

ances Cz and Cη respectively are related to the MMSE matrix Qi as

d

dCz
Ipy

i
; ziqCz � AT

i C�1
η AiQi, and (4.30)

d

dCη
Ipy

i
; ziq � �C�1

η AiQiA
T
i C�1

η . (4.31)

The Gaussian channel model of Eq. 4.29 can be thought of as a generalization

of the patch-wise data model in Eq. 2.1, where in Eq. 4.29 we account for the number

(say Ni) of similar patches that exist in the cluster for each zi. The vector y
i

is then

4Our experiments with iid samples drawn from Gaussian pdfs with different covariance matrices in-
dicate that the bias of the entropy estimator of Eq. 4.28 is a function of the dimensionality and the number
of samples present, and is independent of the covariance matrix of the Gaussian pdf.
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formed by concatenating all yj patches that are similar to any given yi, and Ai takes

the form of Ni identity matrices stacked together, as shown in Eq. 4.2 (and Fig. 4.1).

Thus, in our case, q � nNi. Assuming iid noise, we have the nNi�nNi noise covariance

Cη � σ�2InNi , and

AT
i C�1

η � σ�2 rI . . . Is InNi � σ�2 rI . . . Is (4.32)

ñ QiA
T
i C�1

η � σ�2 rQi . . . Qis (4.33)

ñ C�1
η AiQiA

T
i C�1

η � σ�4

�������
I

...

I

������� rQi . . . Qis � σ�4

�������
Qi Qi . . .

Qi
. . .

...

������� . (4.34)

Now, we can rewrite Eq. 4.30 as

d

dCz
Ipy

i
; ziqCz � AT

i C�1
η AiQi � σ�2 rI . . . Is rI . . . IsT Qi � Ni

σ2
Qi, (4.35)

and Eq. 4.31 as

d

dCη
Ipy

i
; ziq � �σ�4

�������
Qi Qi . . .

Qi
. . .

...

�������
ñ Tr

�
d

dCη
Ipy

i
; ziq

�
�

nNi̧

j�1

d

dσ2
Ipy

i
; ziq � �σ�4NiTrpQiq

ñ d

dσ2
Ipy

i
; ziq � � 1

nσ4
TrpQiq. (4.36)

Until now we have shown how the MMSE matrix is related to the MI between

zi and the vector y
i

that contains all patches similar to yi. To relate the MMSE matrix

to Ipyi, ziq, we derive a relation between Ipy
i
, ziq and Ipyi, ziq by writing

Ipy
i
; ziq � Hpy

i
q �Hpη

i
q rfrom Equations 4.4 & 4.29s
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� Hpry1 . . . yNisq �Hprη1 . . . ηNi
sq

� Hpy1q �
Ni̧

j�2

Hpyj |yj�1 . . . y1q �
�
Hpη1q �

Ni̧

j�2

Hpηj |ηj�1 . . .η1q
�
. (4.37)

Now, for every yj similar to yi, we can relate their corresponding noise-free patches

as zj � zi � εij . Using this relation and the data model of Eq. 2.1, we get

Hpyj |yj�1 . . . y1q � H
�pzj � ηjq | pzj�1 � ηj�1q, . . . , pz1 � η1q

�
� H

�pzj � ηjq | pzj � εj j�1 � ηj�1q, . . . , pzj � εj1 � η1q
�

� H
�
ηj | pεj j�1 � ηj�1q, . . . , pεj1 � η1q

�
� Hpηjq, (4.38)

where the last step is a result of ηj vectors being independent of εij and from each

other. From the latter property, we also obtain

Hpηj | ηj�1 . . . η1q � Hpηjq. (4.39)

Plugging the above relations into Eq. 4.37, and replacing y1 and η1 with yi and ηi

respectively (without loss of generality), we get

Ipy
i
; ziq � Hpyiq �Hpηiq � Ipyi;ηiq. (4.40)

Equations 4.35 & 4.36 can then be written as

d

dCz
Ipyi; ziqCz � Ni

σ2
Qi, and (4.41)

d

dσ2
Ipyi; ziq � � 1

nσ4
TrpQiq. (4.42)

Note that the MMSE matrix is a function of Ni which can vary across patches

within a cluster, where the zi patches are considered to be realizations of the random
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variable z. We write the above relations in terms of the MI of the random variables y

and z and the MMSE matrix Qi as

d

dCz
Ipy; zqCz � 1

Mkσ2

Mķ

i�1

NiQi, and (4.43)

d

dσ2
Ipy; zq � � 1

nMkσ4

Mķ

i�1

TrpQiq (4.44)

by taking the average over all patches within the cluster Ωk.

4C Derivation of Overall Entropy

In this section we derive an expression for the overall entropy from the cluster-

wise entropy. Our choice of features lead to patches in any given cluster being geomet-

rically similar, thus allowing us to assume that such patches are realizations of some

random variable z sampled from some unknown pdf pkpzq in each cluster. To esti-

mate the entropy of the entire image, we thus need to derive an expression relating

the entropy of the clusters with that of the entire image. For this, without loss of gen-

erality, we assume that the image consists of K � 2 disjoint clusters Ω1 and Ω2 with

corresponding pdfs p1 and p2. The overall pdf of z can then be written as

ppzq � ω1p1 � ω2p2, (4.45)

where ωk is the probability of zi being sampled from pk, and ω1 � ω2 � 1. The overall

entropy can be derived as

Hppq � �
»

Ω
ppzq ln ppzqdz

� �
�»

Ω1

ppzq ln ppzqdz�
»

Ω2

ppzq ln ppzqdz
�

(4.46)
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In our case, any given patch is assumed to belong to either Ω1 or Ω2, resulting in

pkpziq �

$''&''%
pk, if zi P Ωk

0, otherwise,

(4.47)

for k � 1, 2. This allows us to write Eq. 4.46 as

Hppq � �
�»

Ω1

ω1p1 lnpω1p1qdz�
»

Ω2

ω2p2 lnpω2p2qdz
�
. (4.48)

The above expression can be further simplified by writing

�
»

Ω1

ω1p1 lnpω1p1qdz � ω1

�
�
»

Ω1

p1 ln p1dz�
»

Ω1

p1 lnω1dz

�
� ω1Hpp1q � ω1 lnω1. (4.49)

Thus, the overall entropy can be derived as

Hppq � ω1Hpp1q � ω2Hpp2q � rω1 lnω1 � ω2 lnω2s

�
2̧

k�1

ωkHppkq �
2̧

k�1

ωk lnωk, (4.50)

where
°
k ωk � 1. In our derivation, the only assumption we have made is that of

the clusters being disjoint, which is true in our case where the clustering is based on

geometric similarity of patches. The above expression in Eq. 4.50, derived with K � 2

clusters, can then be generalized to an arbitrary number (K) of disjointed clusters as

Hppq �
Ķ

k�1

ωkHppkq �
Ķ

k�1

ωk lnωk.

This provides us with an expression to calculate the overall entropy of an image from

its K cluster-wise entropy estimates.
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Chapter 5

Patch-based Locally Optimal Wiener

(PLOW) Denoising

Abstract – This chapter deals with the practical application of the bounds framework

to image denoising. We show that the formulation of the bound in Chapter 2 implies

that, for Gaussian noise, a cluster-wise LMMSE estimator is optimal. However, such

a patch-based estimator needs to account for the presence of photometric redundan-

cies. Here we derive such an estimator, the parameters of which are estimated from

the given noisy image. Experimentally we show that our proposed method achieves

performance that is comparable or exceeding the current state-of-the-art methods.

5.1 Introduction

In Chapter 2 we analyzed the performance bounds for the problem of image

denoising. In our study, we specifically considered patch-based methods, where the
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observation model was posed as (Eq. 2.1)

yi � zi � ηi, (5.1)

with yi representing the vectorized patch centered at i. Using a Bayesian Cramér-Rao

bound [82–84] analysis, we showed that the MSE of denoising (estimating) any given

patch in the image is bounded from below by Eq. 2.17 as1

E
�}zi � pzi}2� ¥ Tr

��
Ji �C�1

z

��1
�
, (5.2)

where pzi is the estimate of zi, Ji is the Fisher information matrix (FIM), and Cz is

the patch covariance matrix. This covariance matrix captures the complexity of the

patches.

The FIM, on the other hand, is influenced by the noise characteristics. When

additive WGN is considered, the FIM takes the form (Eq. 2.23)

Ji � Ni
I

σ2
, (5.3)

where I is the identity matrix, σ is the noise standard deviation, and Ni is the level of

photometric redundancy for patch zi. Considering noisy observations, such similarity

was defined between noisy patches in Eq. 3.12 as

yj � yi � rεij such that }rεij}2 ¤ γ2n � γ2 � 2σ2n, (5.4)

where γ is a small threshold. This allowed us to identify similar patches and estimate

Ni directly from the noisy image in Sec. 3.3.2.

The bounds expression of (5.2) takes into account the complexity of the image

patches as well as the redundancy level and the noise variance corrupting the image.
1We re-iterate here that, in practice, the bounds are calculated using Eq. 2.16. We use Eq. 2.17 for its

simplicity and the insights that it presents.
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In Chapter 2, the bound was shown to characterize the performance of the optimal

affine-biased denoising method. In particular, for WGN, the right-hand side of (5.2)

is the performance achieved by the optimal LMMSE estimator, with Ji and Cz being

the parameters of the estimator. The Wiener filter is, in fact, the LMMSE estimator

that achieves this lower bound [71]. Thus, a patch-based Wiener filter, where the pa-

rameters are estimated accurately, can lead to near-optimal denoising. This forms the

motivation behind our approach. However, such an optimal filter also needs to exploit

photometric redundancies, as will be made apparent in the next section.

5.2 Patch-based Wiener filter

Irrespective of the noise characteristics, the expression in (5.2) leads to the

lowest MSE theoretically achievable by any patch-based denoising method. This ex-

pression was derived in Chapter 2 assuming that the underlying unknown image

patches zi are (independent) realizations of a random variable z. Further, image patches

that are geometrically similar were considered to be sampled from the same (unknown)

probability density function (pdf) pkpzq. When the corrupting noise is WGN, the LMMSE

estimate of zi obtained by the patch-based Wiener filter from its noisy observation yi

takes the form [71]

pzi � sz�CzC
�1
y pyi � szq , (5.5)

where sz and Cz are the first and second moments of the pdf pkpzq from which all

patches geometrically similar to zi P Ωk are assumed to be independently sampled.

The covariance of the (geometrically similar) noisy image patches can be expressed as

Cy � Cz � σ2I. (5.6)
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Thus, the parameters of the LMMSE filter remain the same for all patches that are

considered to be similar in structure. A similar approach was applied to the problem

of super-resolution and demosaicing by Shao et al. [129].

In Chapter 2, we showed that the optimal denoiser is (conditionally) biased

and the bias in estimating a particular zi patch can be modeled as an affine function of

zi (Eq. 2.3). It is easy to see that the (conditional) bias of the estimator in Eq. 5.5 is in

keeping with that observation:

E rpzi|zis � sz�CzC
�1
y pE ryi|zis � szq

� sz�CzC
�1
y pzi � szq p7 Eryi|zis � zi when Erηi | zis � 0q

� CzC
�1
y zi �

�
I�CzC

�1
y

�sz (5.7)

ñ bpziq � E rpzi � zi | zis �
�
CzC

�1
y � I

�looooooomooooooon
F

zi �
�
I�CzC

�1
y

�szloooooooomoooooooon
u

. (5.8)

Further, as sz, Cz and Cy are the same for all zi P Ωk, the parameters of the affine model

(F and u) remain the same for all geometrically similar patches. From Eq. 5.8, it also

follows that the LMMSE estimate has zero expected error (that is, E rErzi � pzi|ziss �
0). The MSE of the estimate for all zi P Ωk can then be expressed in terms of the error

covariance as [71]

E
�
pzi � pziq pzi � pziqT � � �

C�1
z � I

σ2


�1

(5.9)

ñ Er}zi � pzi}2s � Tr
�
E
�
pzi � pziq pzi � pziqT �	 � Tr

��
C�1

z � I

σ2


�1
�
. (5.10)

Comparing the MSE above to the expression in (5.2), it is clear that the (cluster-wise)

LMMSE estimator achieves the bounds for Ni � 1, which is the case when photometric

similarities are not observed in the input image.

In general, natural images exhibit some level of photometric redundancies.
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Figure 5.1: Illustration of the data model formed by expressing all photometrically similar
patches. Here yi is the reference patch, and y1 . . . yN are patches that satisfy the similarity
condition of Eq. 5.4. All these patches are then accumulated to form the data model of Eq. 5.11.

Exploiting such repetitions forms the core of many denoising methods [12,19,20,43,49]

where photometrically similar patches are considered to be multiple observations of a

single latent patch, with the differences arising (ideally) due to noise only. Conse-

quently, most similarity-based methods identify photometrically similar patches within

the noisy image to perform denoising, with the most similar patches exerting the great-

est influence in the denoising process. Our framework can also be generalized to ex-

ploit such photometric redundancies within any given noisy image. These patches need

not necessarily be spatially proximal (in keeping with [12]), thereby giving rise to a

so-called non-local patch-based Wiener filter for denoising, as we describe next.

5.3 Patch-based Locally Optimal Wiener Filter (PLOW)

As mentioned earlier, photometric similarity among patches, as required to

exploit redundancy, is a stricter condition than the geometric similarity property used

for clustering. We, therefore, require an additional step of identifying the yj patches

113



that are photometrically similar to any given patch yi. These yj patches all satisfy the

condition of Eq. 5.4 and can be expressed as follows (See Fig. 5.1)

y
i
� Aiyi � rεi
� Aipzi � ηiq � pεi � ηi �Aiηiq

� Aizi � εi � ηiloomoon
ζ
i

(5.11)

where y
i

is a vector formed by concatenating all the yj patches that are photometri-

cally similar to yi, ηi is the corresponding noise patches stacked together, rεi and εi

are vectors consisting of concatenated difference vectors rεij and εij respectively, and

Ai is the matrix formed by vertically stacking Ni identity matrices, each of size n � n.

Letting Cζ
i

denote the covariance matrix for the error vector ζ
i
� εi�ηi, we can write

the corresponding LMMSE (Wiener) filter as [71]

pzi � sz�CzA
T
i

�
ACzA

T
i �Cζ

i

	�1 �
y
i
�Aisz	

� sz� �
C�1

z �AT
i C�1

ζ
i
Ai

	�1
AT
i C�1

ζ
i

�
y
i
�Aisz	 . (5.12)

As before, the parameters sz and Cz are the moments obtained from the geometrically

similar patches within each cluster. The above expression leads to the optimal estima-

tor for the non-local data model of Eq. 5.11.

Under sufficiently strong WGN, ζ is approximately Gaussian since, compared

to the noise ηi, the εij vectors are small by definition (Eq. 3.4). If we assume the com-

ponents of εij vectors to be uncorrelated, the expression in Eq. 5.12 can be further

simplified. Note that the εij vectors are independent of the ηi noise vectors, which
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results in Cζ
i

exhibiting the diagonal form (see derivation in Appendix 5A)

Cζ
i
� Cεi �Cη

i
�

�������
. . . 0

δ2ijI

0
. . .

������� , (5.13)

where δ2ij �
1

n
E
�}zi � zj}2

�� σ2 (5.14)

� 1

n
pE �}yi � yj}2

�� 2σ2nq � σ2

� 1

n
E
�}yi � yj}2

�� σ2. (5.15)

Denoting wij � δ�2
ij , the LMMSE estimate of Eq. 5.12 can be alternately expressed as

(see Appendix 5B)

pzi � sz��
C�1

z �
Ni̧

j�1

wijI

��1 Ni̧

j�1

wij pyj � szq (5.16)

� sz��
C�1

z°Ni
j�1wij

� I

��1 Ni̧

j�1

wij°Ni
j�1wij

pyj � szq . (5.17)

From Eq. 5.16, we see that a weighted contribution of each similar patch is used to

come up with a denoised estimate for each zi where the contributing factor of any yj

gets larger with increasing similarity (δ�2
ij ). The error covariance matrix for such an

estimator is approximately [71]

Ce �
�

C�1
z �

Ni̧

j�1

wijI

��1

. (5.18)

Comparing the above expression to the bounds formulation of (5.2), we see

that when
°
j wij � Ni

σ2 , the estimator achieves the theoretic bounds for denoising2.

2For the sake of clarity, we assume here that sz and Cz in each cluster are known and, wij is essentially
deterministic [21]. Hence, the expected estimator error remains zero and Eq. 5.18 approximates the MSE
of the estimator in Eq. 5.16. In practice, these parameters are estimated from a limited number of noisy
patches resulting in higher MSE than that predicted by the lower bound (Eq. 5.18 or (5.2)).
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Such a scenario arises when the underlying noise-free image contains Ni exact replicas

for a patch zi, that is, whenEr}zi�zj}2s � 0. In practice, such levels of redundancy are

rare, and even if very similar patches exist, identifying such patches can be challenging

under noise contamination, resulting in higher MSE.

Although Eq. 5.17 provides a nice formulation for the estimator, it can lead

to mathematical instabilities in denoising as the covariance matrix Cz can be rank de-

ficient or ill-conditioned. To circumvent the possibility of errors due to inversion, we

make use of the matrix inversion lemma [96] to state an alternate form of the PLOW

filter (see Appendix 5B for entire derivation):

pzi �
�
Ni̧

j�1

wij yj°Ni
j�1wij

�
�

�� Ni̧

j�1

wij°Ni
j�1wij

�
Ni̧

j�1

wijCz � I

��1

psz� yjq
�� . (5.19)

This is an interesting formulation where the first part of Eq. 5.19 is exactly the expres-

sion for the NLM [12] filter. In the second part, since sz is obtained from all geometrically

similar patches in a cluster, it can be considered as a naı̈ve denoised estimate which

is over-smoothened. This latter part of the expression in Eq. 5.19 filters the residuals

between the noisy similar patches and this naı̈ve estimate. These filtered residuals are

then added to the weighted mean of photometrically similar patches. The second part,

thus, forms a “correction term” that improves the NLM estimate by a directional fil-

tering of the residuals based on their shared geometric structure. This suppresses the

noise further, while restoring more of the finer details in the image patches. When

structural information of image patches are ignored (that is, all structures are equally

probable, implying a large determinant of Cz), we obtain the NLM filter as a sub-

optimal approximation (in terms of MSE) of our formulation in Eq. 5.19.

Until now, we have presented and analyzed the theoretical basis for our pro-

posed approach. In the next section, we provide a practical outline for our algorithm
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Figure 5.2: Outline of our patch-based locally optimal Wiener (PLOW) filtering method.

that details the estimation of each parameter of the proposed filter from a given noisy

image.

5.4 Parameter Estimation for Denoising

Eq. 5.19 presents a mathematical formulation for our patch-based locally op-

timal filtering (PLOW) scheme. Two of the filter parameters can be identified as the

first and second moments (sz & Cz) of the unknown pdf from which the geometrically

similar patches are assumed to be sampled. These parameters need to be estimated

from the input noisy image patches. In Chapter 3, we described a way of clustering

geometrically similar patches from a noisy image and estimating the cluster-wise mo-

ments to estimate the denoising bounds. A similar methodology can be employed here

as well. As with the bounds estimation process, we also identify the photometrically

similar patches using each noisy patch as the reference. However, for the purpose of

denoising, we need to additionally quantify the similarity between the noisy patches
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as wij . Since the parameters to estimate are quite similar, the PLOW denoising frame-

work (Fig. 5.2) shares strong similarity with that of the bounds estimation process of

Chapter 3. We discuss the parameter estimation process next.

5.4.1 Geometric Clustering and Moment Estimation

The first step of our denoising method is grouping together patches of sim-

ilar geometric structure. Presence of noise makes identifying of such structure diffi-

cult. Moreover, such grouping needs to be independent of the patch intensities. In

Sections 3.2.1 and 3.3.1, we showed that K-Means clustering using LARK features pro-

vides a reasonably accurate clustering, even when the input image is contaminated by

considerable noise. This is illustrated in Fig. 3.6 where the clusters of the noisy and

noise-free Barbara images are quite similar. For our denoising purposes, we employ

the same clustering mechanism as that outlined in Sec. 3.2.1

Once the image is segmented into regions of structural similarity, we estimate

the moments, namely mean and covariance, from the noisy member patches of each

cluster. Since the ηi noise patches are assumed to be zero mean iid, the mean of the un-

derlying noise-free image can be approximated by the expectation of the noisy patches

within each cluster as

psz � Eryi P Ωks � 1

Mk

¸
yiPΩk

yi (5.20)

where Ωk denotes the k-th cluster with cardinality Mk. Note that the accuracy of this

estimate is dependent on Mk. If too few patches are present, the mean vector will

remain noisy.

The covariance matrix Cz is also estimated from the noisy patches within the

cluster. For this we make use of the relation between the covariance of the noisy (Cy)
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and noise-free patches (Cz) from Eq. 5.6. We, thus, need to first estimate Cy. Co-

variance estimation is an active research area with a wide variety of applications [106,

107, 114]. The simplest of such estimators, the sample covariance, is the maximum

likelihood estimate of the covariance of a pdf estimated from its observed samples.

Although other estimators, for example, bootstrapping [107], shrinkage-based [106]

methods, etc. exist, we found no discernible improvement in denoising performance

when such more complex estimators were used. When the number of samples (patches

in a cluster) are few compared to the dimension (number of pixels in each patch) of the

data, the sample covariance can be inaccurate. For such cases, robust estimators pro-

posed by Kritchman et al. [114] may also be used.

Working with the sample covariance estimate pCy, we estimate the covariance

of the underlying noise-free patches as,

pCz �
�pCy � σ2I

�
�
, (5.21)

where σ2 is the noise covariance and rXs� denotes the matrix X with its negative eigen-

values replaced by zero (or a very small positive value), as done before in Sec. 3.3.1

(also [130]). For this, we need to accurately estimate the noise standard deviation first.

Here we use a gradient-based estimator as [100]

pσ � 1.4826 median p|∇Y �median p∇Yq|q , (5.22)

where ∇Y is the vectorized form of the gradient of the input image Y. The gradient

image ∇Y is calculated as

∇Y � 1?
6

vec

���Y �

��� 2 �1

�1 0

���
��
. (5.23)
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Here vecp.q denotes the vectorization operation (column-wise or row-wise) and the

convolution (�) operation simply implies addition of the forward gradients in the hor-

izontal and vertical directions. In Chapter 3 (and [130]), we showed that the shrinkage

estimator of Eq. 5.21 is accurate enough to compute the bounds directly from the noisy

image. In the present case of denoising a similar observation holds.

5.4.2 Calculating Weights for Similar Patches

In our work, we first identify patches within the noisy image that are photo-

metrically similar to a given reference patch. Once the similar patches are identified,

we perform denoising with the more similar patches exerting greater influence in the

denoising process. This is ensured by the analytically derived weight wij which deter-

mines the contributing factor for a patch yj in denoising the reference patch yi. The

weight wij is related to the inverse of the expected squared `2 distance between the

underlying noise-free patches and a noise term (Eq. 5.14):

δ2ij �
1

n
E
�}zi � zj}2

�� σ2 � 1

n
E
�}yi � yj}2

�� σ2, with wij � δ�2
ij . (5.24)

Although the weight calculation formulation in Eq. 5.14 is statistically well-

motivated, in practice it is difficult to estimate as we need to approximateE
�}yi � yj}2

�
from a single yi and yj pair. Here, we approximate this similarity measure (see Ap-

pendix 5C for derivation) by3

wij � 1

σ2
exp

"
�}yi � yj}2

h2

*
, (5.25)

where the scalar multiplier 1
σ2 also ensures that the denoiser defaults to that of Eq. 5.5

when no photometrically similar patches are observed; that is, when yj � tyiu. The
3Note that the expression in Eq. 5.25 is similar to that introduced in [12]. In Appendix 5C, we motivate

this formulation statistically and derive it as an approximation to the distance metric in Eq. 5.24.
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Figure 5.3: An illustration of how a pixel is estimated multiple times due to overlapping
patches. Here we show 3 such overlapping patches. In each estimated patch pzr (here
r � 1, 2, 3), the same pixel is estimated as its lr-th pixel which we denote as ẑrl. These esti-
mates are finally combined to form the final estimate ẑi.

smoothing parameter h2 is a positive parameter that controls the rate at which the con-

tributing factor is driven to zero as the patches become less similar. Although tunable

in general, for our denoising purposes this parameter is kept fixed at h2 � 1.75σ2n.

This was empirically found to be close to the optimal h2 value for a wide range of

images, across different noise levels.

Note that photometrically similar patches are necessarily geometrically sim-

ilar too, and, hence, we could limit our search to within the cluster of the reference

patch. However, errors in clustering (see Fig. 3.6) can limit the number of similar

patches identified. On the other hand, scanning the entire image can be time consum-

ing. Consequently, we restrict ourselves to a relatively small search window (30 � 30

pixels) in our search for photometrically similar patches. Apart from speed considera-

tions, as the motivation was in [12], this also leads to better denoising performance [18].

121



5.4.3 Aggregating Multiple Pixel Estimates

Until now, we have estimated all the parameters needed to perform the filter-

ing of Eq. 5.19. The filter is run on a per-patch basis (although parameters are estimated

from multiple patches), yielding denoised estimates for each patch of the noisy input.

To avoid block artifacts at the patch boundaries, the patches are overlapping. As a re-

sult, we obtain multiple estimates for the pixels lying on the overlapping regions. This

is shown in Fig. 5.3 where zi is estimated multiple times as a part of different patches.

These multiple estimates need to be aggregated to form the final denoised image.

The simplest method of aggregating such multiple estimates is to average

the estimates for each pixel. However, such naı̈ve averaging will lead to an over-

smoothened image. Alternatively, in keeping with our overall approach, we can com-

bine the multiple estimates in an LMMSE scheme that takes into account the relative

confidence in each estimate as measured by the inverse of the estimator error variance.

The error covariance of our proposed estimator is approximated by (Eq. 5.18)

Ce �
�pC�1

z �
Ni̧

j�1

wijI

��1

. (5.26)

Let us denote ẑrl as the denoised estimate for the l-th pixel in the r-th patch (see

Fig. 5.3). Then, the variance vrl of the error associated with the l-th pixel estimate

is given by the l-th diagonal element of Ce. Concatenating the multiple estimates ẑrl

in a vector pzir, we can write

pzir � 1zi � τ ir, (5.27)

where 1 is a vector of all ones, and τ is the error vector assumed to be zero mean with

covariance Cτ � diagr. . . vrl . . . s. The LMMSE estimate for the i-th pixel of the image
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is then

ẑi �
�
σ�2
z � 1TC�1

τ 1
��1

1TC�1
τ pzir

�
°R
r�1 v

�1
rl ẑrl°

r v
�1
rl � σ�2

z
, (5.28)

where σ2z is the variance of zi which forms the prior information.

Note that although we estimate the covariance (pCz) of the image patches, this

does not provide us with a pixel-wise variance estimate σ2z . This is a result of con-

sidering overlapping patches where any given pixel zi can lie in different locations in

different patches (see Fig. 5.3). Moreover, the overlapping patches may also be struc-

turally different and, hence, lie in different clusters with different corresponding pCz

matrices. In the absence of a particular σz , we consider all possible zi values (within

the intensity range [0-255]) to be equally likely, leading to the variance of the discrete

uniform distribution σ2z � p2562 � 1q{12 ñ σ�2
z � 0. This reduces Eq. 5.28 to the

weighted least squared error estimate

ẑi �
Ŗ

r�1

v�1
rl ẑrl°
r v

�1
rl

, (5.29)

where the number of estimates (R) of the i-th pixel depends on the size of the patch (n),

the amount of overlap4 and the position of the pixel in the the patches (pixels towards

the edge of a patch are more likely to lie in overlapping regions). Note that r indexes

only those R patches that include the i-th pixel of the image and the position l of the

i-th pixel is dependent upon the patch r being considered.

4Note that a larger overlap implies more patches for clustering, moment estimation and higher levels
of redundancy among image patches. This makes the estimation process robust and allows for improved
performance. However, this performance comes at the cost of speed. A reasonable approach is to use all
patches (at one pixel shifts) for parameter estimation, and denoise only every few (overlapping) patches.
The aggregation step can then be used to reconstruct the entire image. Performance of such a scheme,
visually and MSE-wise, is reasonably close to that obtained by denoising densely.
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Algorithm 1: PLOW denoising (see Fig. 5.2)
Input: Noisy image: Y

Output: Denoised image: pZ
Set parameters: patch size n � 11� 11, number of clusters K � 15;1

Estimate noise standard deviation σ̂ (Eq. 5.22);2

Set parameter: h2 � 1.75σ̂2n;3

yi ð extract overlapping patches of size n from Y;4

L ð compute LARK features for each yi;5

Ωk ð geometric clustering with K-Means(L, K);6

foreach Cluster Ωk do7

Estimate mean patch psz (Eq. 5.20);8

Estimate cluster covariance pCz (Eq. 5.21);9

foreach Patch yi P Ωk do10

yj ð identify photometrically similar patches (Eq. 5.4);11

wij ð compute weights for all yj (Eq. 5.25);12

pzi ð estimate denoised patch (Eq. 5.19);13

Cei ð calculate estimate error covariance (Eq. 5.18);14

end15

end16

pZ ð aggregate multiple estimates from all tpziu and tCeiu (Eq. 5.29);17

The entire process of performing denoising with our PLOW framework is al-

gorithmically presented in Algo. 1. As can be expected, the accuracy of estimating the

parameters is dependent on the strength of the noise corrupting the image. Noise af-
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fects different parameter estimation steps differently. The moment estimation steps are

dependent on the ability of the clustering step to classify structurally similar patches.

Although the LARK features are quite robust, errors in clustering due to noise cannot

be fully avoided. This is demonstrated in Fig. 3.6 where differences in clustering the

noisy and noise-free images are apparent.

Although outliers do influence the moment estimates, the process that is most

sensitive to noise is the weight calculation of Eq. 5.25. Identifying photometrically simi-

lar patches becomes challenging in the presence of strong noise [110,130], which in turn

influences the similarity measure calculation of Eq. 5.25. To alleviate such detrimental

effects of noise, we pre-filter the image once before the parameters of the proposed

framework are learned. Note that such pre-filtering is quite typical of competing ap-

proaches [49], and is necessary only for strong noise. For the pre-processing step, we

apply our algorithm once on the input noisy image with a reduced noise variance es-

timate to ensure that finer details are not lost. The necessary filter parameters are then

learned from the resultant noise-suppressed image. These parameters are then applied

to the original noisy image for denoising. In our experiments such an approach betters

the denoising performance considerably. We demonstrate the denoising capacity of

our method in the next section.

5.5 Experimental Results

In this section we evaluate the proposed denoising method through experi-

ments on various images at different noise levels. Since our method is motivated by

our bounds formulation [70], we first compare the ideal denoising performance of our

method (using “oracle” parameters) with the MSE predicted by the bounds. Later, we
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estimate the parameters directly from the noisy images, as outlined in Sec. 5.4 and com-

pare those results to various popular denoising methods. We also apply our method,

with a minor modification, to color images. Finally, we address the practical case of

denoising real noisy images where the noise characteristics are unknown and not nec-

essarily Gaussian, or uncorrelated. In each case, we will show that our results are com-

parable, in terms of MSE (PSNR5), SSIM [66], and the recently introduced no-reference

quality metric Q [67] (wherever applicable), to those obtained by state-of-the-art de-

noising methods, and in many cases visually superior.

Since our method was designed specifically with the aim of achieving the

theoretical limits of performance, we first compare our results to the predicted perfor-

mance bounds [70]. For this first experiment, we compute the “oracle” denoising pa-

rameters from the noise-free images. To be precise, we compute the structure-capturing

LARK features from the noise-free image and perform clustering. These “oracle” clus-

ters are then used to estimate the moments sz,Cz from the latent image. We also use the

ground-truth image to identify the photometrically similar patches and compute the

weights wij for each noise-free reference patch. The final denoising using the “oracle”

parameters is, of course, applied to the noisy image.

Figures 5.4(c) & 5.5(c) show the optimal performance of our method when

considering WGN of standard deviation 25. Not surprisingly, the results are quite im-

pressive in terms of denoising achieved with finer details being retained at the same

time. The MSE obtained are 49.42 and 27.97 for the Barbara and house images respec-

tively. For the Barbara image, the lowest MSE predicted by the denoising bound (MSE

5Peak signal-to-noise ratio (PSNR) is measured in decibels (dB) and calculated as 10 log10

�
2552

MSE

	
for

images with intensity range r0� 255s. An improvement of 1dB reduces the MSE by approximately 20%.
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(a) House (b) Noisy (c) “Oracle” denoised

(d) BLS-GSM [59] (e) SKR [22] (f) K-SVD [37]

(g) BM3D [49] (h) NLSM [43] (i) PLOW

Figure 5.4: Comparison of denoising results for the house image corrupted by WGN of σ � 25.
(a) Original image, (b) noisy input, (c) PLOW with “oracle” parameters (MSE 27.97), (d) BLS-
GSM [59] (MSE 49.16), (e) SKR [22] (MSE 47.69), (f) K-SVD [37] (MSE 40.99), (g) BM3D [49]
(MSE 33.36), (h) NLSM [43] (MSE 32.31), and (i) PLOW (MSE 34.51). High resolution images
can be viewed at http://users.soe.ucsc.edu/~priyam/PLOW/.
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(a) Barbara (b) Noisy (c) “Oracle” denoised

(d) BM3D [49] (e) NLSM [43] (f) PLOW

Figure 5.5: Comparison of denoising results for the Barbara image corrupted by WGN of σ �

25. (a) Original image, (b) noisy input, (c) PLOW with “oracle” parameters (MSE 49.42), (d)
BM3D [49] (MSE 56.17), (e) NLSM [43] (MSE 61.00), and (f) PLOW (MSE 62.64). High resolution
images can be viewed at http://users.soe.ucsc.edu/~priyam/PLOW/.

50.24) is achieved6, while for the house image the bound (MSE 14.82) is still lower. One

reason for such discrepancy between the theoretical prediction and what we obtain in

practice, even with oracle parameters, is that the theory in the bounds (Chapter 2) is

built on the assumption of exact replicas of patches being observed. However, in real-

6It may seem here that the lower bounds are breached, albeit marginally, for the Barbara image. How-
ever, in Chapter 3, the bounds were calculated with 5 clusters, whereas we use 15 clusters here. It was
shown in Fig. 3.8 that using more clusters reduces the bounds further, although the reduction is nominal.
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(a) Original (b) Noisy (c) BM3D [49] (d) NLSM [43] (e) PLOW

Figure 5.6: Comparison of denoising performance with some leading denoising methods for
Lena, man and stream images (Fig. 1.7) corrupted by σ � 25. Cropped regions are shown here.
Full images can be compared at http://users.soe.ucsc.edu/~priyam/PLOW/.

ity, such replicas are rare, even in “noise-free” images7. It is encouraging to note that

in comparison to other methods, the optimal MSE is well below the state-of-the-art for

the house image for which the bounds predict the possibility of improved performance

(see Chapter 6). On the other hand, the optimal performance for the more complicated

Barbara image is comparable to that of BM3D (Fig. 5.5), in keeping with the bounds

predicting little improvement to be gained (see Fig. 3.11).

Having established that our method performs near-optimal denoising with

“oracle” knowledge of parameters, we experiment with the more practical case when

7The term “noise-free” here is an idealization used to imply the original image before noise is added.
In general, images captured are invariably noisy due to the imaging process [1]. That images considered
to be ground-truth also contain noise, albeit in low strengths, has been illustrated in [101].
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the parameters are estimated directly from the noisy image, as outlined in Sec. 5.4.

In Figures 5.4 & 5.5, we compare our results to various high fidelity methods for im-

age denoising. In Table 5.1 we quantify the performances for a variety of benchmark

images, across different noise levels. The results there show that, in terms of PSNR,

SSIM [66] and the no-reference quality metric Q [67], our method is quite comparable

to BM3D [49] and NLSM [43]. While BM3D is quite fast, the algorithm’s high per-

formance has not been well-justified on theoretical grounds as of yet. On the other

hand, NLSM can be quite complicated in terms of the steps involved. In contrast, our

method is well-motivated, and provides a statistical explanation for its performance.

Moreover, when “oracle” filter parameters are used, our method generally improves

on the state-of-the-art performance, especially for strong noise cases. This shows the

true potential of our denoising approach, given improved estimates of the parameters.

In terms of visual quality, our method is comparable to NLSM and BM3D,

even outperforming them in many cases where images exhibit higher levels of redun-

dancy. This can be observed in Fig. 5.5 where our result is more visually pleasing when

compared to NLSM and BM3D, both of which produce more artifacts in the smoother

floor and face regions. As with the quantitative measures, generally the visual qual-

ity is greatly improved when “oracle” parameters are used, though this is of course

not practical. This improvement is more pronounced for the strong noise cases and

for images containing finer details where parameter estimation is more error prone.

This is illustrated in Fig. 5.4, where the “oracle” denoised image retains most of the

brick pattern in the house facade. Later, in Chapter 6, we will see that this agrees with

the conclusions of our performance bounds that expects greater improvement in per-

formance for the class of smoother images. Images containing more semi-stochastic
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Table 5.1: Denoising performance of some popular methods (NLSM [43], BM3D [49]) under
WGN corruption, compared to PLOW, with and without oracle information. Results noted are
average PSNR (top), SSIM [66] (middle) & Q-measure [67] (bottom) over 5 independent noise
realizations for each σ.

σ
House (256� 256) Lena (512� 512) Barbara (512� 512)

NLSM BM3D PLOW Oracle NLSM BM3D PLOW Oracle NLSM BM3D PLOW Oracle
39.91 39.80 39.52 40.00 38.72 38.73 38.66 38.83 38.46 38.30 37.98 38.18

5 0.958 0.957 0.954 0.960 0.945 0.945 0.946 0.947 0.965 0.965 0.946 0.966
42.35 42.58 42.20 43.21 35.18 35.37 34.75 36.13 69.80 69.60 69.14 70.27
35.27 34.95 34.72 35.67 34.17 34.26 33.90 34.43 32.98 33.09 32.17 33.17

15 0.902 0.890 0.893 0.923 0.893 0.895 0.890 0.902 0.920 0.923 0.913 0.926
36.10 36.37 36.98 36.35 21.08 21.07 21.59 21.55 55.41 55.25 55.28 55.04
33.14 32.89 32.70 33.68 31.84 32.07 31.92 32.47 30.34 30.67 30.20 31.21

25 0.866 0.859 0.859 0.898 0.855 0.861 0.859 0.874 0.876 0.886 0.879 0.899
20.07 20.11 20.39 20.14 11.43 11.45 11.69 11.64 37.87 37.80 37.72 37.48
28.99 29.25 29.08 30.68 27.55 28.58 28.32 29.44 25.68 26.75 26.19 28.01

50 0.814 0.802 0.780 0.856 0.774 0.788 0.759 0.825 0.748 0.778 0.755 0.841
– – – – – – – – – – – –

σ
Peppers (256� 256) Boat (512� 512) Stream (512� 512)

NLSM BM3D PLOW Oracle NLSM BM3D PLOW Oracle NLSM BM3D PLOW Oracle
38.14 38.06 37.69 37.89 37.36 37.28 37.24 37.43 35.75 35.75 35.59 35.66

5 0.955 0.956 0.954 0.956 0.941 0.939 0.941 0.943 0.964 0.964 0.962 0.964
76.37 76.17 75.60 76.67 37.21 37.38 36.95 37.73 31.12 30.94 30.58 30.96
32.76 32.65 31.82 32.45 32.17 32.11 31.53 32.23 28.88 28.74 28.71 28.87

15 0.905 0.906 0.899 0.905 0.855 0.854 0.840 0.868 0.852 0.845 0.849 0.852
64.00 64.02 64.99 64.78 27.16 27.47 28.38 27.99 21.51 22.21 19.74 22.32
30.06 30.07 29.53 30.06 29.73 29.83 29.59 30.11 26.27 26.14 26.20 26.45

25 0.864 0.868 0.859 0.869 0.794 0.800 0.794 0.823 0.745 0.735 0.747 0.761
49.55 49.87 50.13 50.16 14.38 14.49 14.19 14.64 12.18 12.54 12.14 12.39
25.16 25.85 26.32 26.84 25.46 26.20 26.13 27.12 22.43 23.08 23.38 24.01

50 0.766 0.775 0.752 0.802 0.656 0.685 0.674 0.742 0.489 0.535 0.571 0.641
– – – – – – – – – – – –

Noisy images are clipped to lie within the [0-255] intensity range.
Reliance on detecting anisotropic regions in noisy images makes Q-measure inapplicable for σ � 50 [67].

texture typically exhibit lower levels of patch redundancy. For such images, BM3D

typically does a better job of denoising. However, even in such cases, our denoising

results are visually comparable to the state-of-the-art, as shown in Fig. 5.6 where we

compare our (croppped) results to NLSM [43] and BM3D [49] for some fairly textured

regions of different images.

As a next step, we apply our method to the problem of denoising color im-

ages. In [131] it was pointed out that optical wavelengths at which the human eye per-

ceives each of the red, green and blue colors have considerable overlap. Consequently,
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(a) Bears image (b) Firemen image

Figure 5.7: Comparison of (cropped) denoising results for color images corrupted by 5%

WGN. The methods compared to are CBM3D [49], segmentation-based denoising proposed
by Liu et al. [44], and denoising with two-color prior by Joshi et al. [45]. Full images at native
resolutions can be viewed at http://users.soe.ucsc.edu/~priyam/PLOW/.

many color denoising methods take into account such dependencies, either implicitly

or explicitly. Mairal et al. [132] illustrated the usefulness of enforcing constraints across

color channels to reduce color washing effects. Other methods, such as [45], account

for such correlation implicitly by modeling the color information at each pixel.

A different approach to treating such correlated color information is through

color-space conversion where the information between color spaces can be largely

decorrelated. Such an approach was employed by Dabov et al. [49] in extending the
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BM3D algorithm for color images (CBM3D). There the authors identify similar patches

using the luminance channel, to which the human visual system is more sensitive. De-

noising is, however, performed on all channels simultaneously. In general, any gray-

scale denoising method can be applied to denoising color images through such trans-

formations. However, such color-space conversions alter the statistical characteristics

of the noise. Consequently, we perform denoising in the RGB color space, but only the

noisy image luminance is used to perform geometric clustering. The parameters for

denoising are, however, learned individually in each color channel.

Fig. 5.7 illustrates the results obtained by our method with its naı̈ve exten-

sion to color images. The noisy images are formed by adding simulated 5% WGN in

each channel8. In terms of PSNR, the best performing method overall is CBM3D [49].

However, our method is visually quite comparable to it, and significantly better than

Liu et al. [44] where there is considerable loss of finer details, and Joshi et al. [45] where

the denoised images still retain some noise. These results are encouraging considering

that CBM3D and [45] are specifically designed to handle color images.

Until now, our experiments involved images corrupted by simulated WGN.

Although the Gaussian pdf makes a good noise model, real noise is signal depen-

dent [1, 44]. To demonstrate our performance in such situations, we apply our method

to denoising some real noisy images with unknown noise characteristics9. For these ex-

periments, an estimate of the noise variance was used as an input to our method. The

best results optimized using the Q-metric [67] are shown in Fig. 5.8 where we com-

8The original images form a part of the Berkeley segmentation dataset [133]. The noisy im-
ages, along with results for methods by Liu et al. [44] and Joshi et al. [45], were obtained
from http://research.microsoft.com/en-us/um/redmond/groups/ivm/twocolordeconvolution/

supplemental_results/denoising.html. 5% noise corresponds to σ � 12 in each color channel.
9The optimality of the LMMSE, and, hence, PLOW filter holds even for non-Gaussian noise, as long as

it is not data-dependent [71]. However, even for signal-dependent noise, PLOW performs quite well.
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Laundry (noisy) Neat Image™ PLOW

JFK (noisy) Neat Image™ PLOW

Figure 5.8: Denoising of some real noisy color images. Closer inspection shows that our pro-
posed method produces results with less residual noise and more textural detail than the com-
mercial Neat Image method (http://www.neatimage.com). High resolution versions of images
shown above can be compared at http://users.soe.ucsc.edu/~priyam/PLOW/.

pare our results to the commercial Neat Image™ denoising method that specifically

handles intensity-dependent noise profiles. Even though the noise is correlated with

the underlying image, our method suppresses the noise effectively, while retaining the

finer details. Such performance encourages us to apply PLOW to denoising images

captured from different sources, under different conditions with widely different noise

characteristics. For example, in magnetic resonance imaging (MRI) and low-light im-

ages the noise statistics are known to be Rician and Poisson distributed respectively.

Moreover, noise in old photographs can also be patterned, as is visible in the flat sky
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(a) Old photograph (b) Brain MRI

(c) Denoised (d) Denoised

(e) Low-light image (f) Denoised

Figure 5.9: Restoration of images with non-Gaussian noise profiles: (a) an old photograph, (b)
MRI of human brain, and (e) a low-light image. (c), (d) and (f) are images denoised by PLOW.
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region of Fig. 5.9(a). Although our method is developed based on an optimality crite-

rion that holds for signal-independent noise, it performs quite well in restoring images

with such diverse noise profiles, as demonstrated in Fig. 5.9.

We point out here that the parameters used for our method are kept fixed

across all noise levels and images. For all our experiments, we use a patch size of

n � 11� 11, with the number of clusters K set to 15. The smoothing parameter, which

controls the amount of denoising, is also kept fixed at h2 � 1.75σ2n. In general, these

parameters can be tuned on a per image basis, manually or using some no-reference

image quality measure [67]. In our opinion, such tunable parameters make a method

less practical. Results presented in here, thus, use the fixed parameter settings men-

tioned above. However, for highly textured images (e.g. boat and stream images), the

noise variance tends to be over-estimated by Eq. 5.22 when considering strong noise

(σ � 25). This results in slightly over-smoothened denoised images. For such cases,

we provided our algorithm with a lower noise variance.

Summary – In this chapter, we proposed PLOW - a patch-based locally optimal

Wiener filter for image denoising. The proposed method was motivated from the for-

mulation of the denoising bound introduced in Chapter 2. By design, the PLOW filter

makes use of both geometrically and photometrically similar patches to estimate differ-

ent filter parameters. We showed that the parameters can be estimated quite accurately

from the given noisy image in a framework which is similar to the bounds estimation

process of Chapter 3. The resulting denoised images were shown to be comparable

or improving upon the state-of-the-art in terms of visual quality and different quan-
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titative measures. We also showed that our PLOW method is capable of effectively

suppressing noise for a wide variety of applications, even when the noise profile is not

intensity-independent iid Gaussian for which PLOW was derived.

5A Derivation of Noise Covariance (Cζ
i
) for Similarity Model

Here we derive an expression for the covariance matrix Cζ
i

based on the data

model (Eq. 5.11)

y
i
� Aizi � εi � ηiloomoon

ζ
i

, (5.30)

where εi �
�
. . . εTij . . .

�T
and η

i
�

�
. . . ηTj . . .

�T
obtained from all patches yj similar

to a given yi. As per definition of εij (Eq. 3.4), εi and η
i

are independent of each other,

which leads to the covariance matrix being

Cζ
i
� Cη

i
�Cεi . (5.31)

Assuming the noise ηi to be iid, the covariance matrix Cη
i

takes the form

Cη
i
� σ2Iq, (5.32)

where Iq is the q � q identity matrix with dimension q � nNi dependent on the level

of redundancy exhibited by the yi patch. Further, assuming that the pixels within a

(noise-free) patch zi and, as a result, εij are iid, we obtain a diagonal form for Cεi . The

diagonal elements for this matrix can be derived from the definition of Eq. 3.4 as

εij � zj � zi � pyj � yiq � pηj � ηiq

ñ Er}εij}2s � Er}pyj � yiq � pηj � ηiq}2s
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� Er}yj � yi}2s � Er}ηj � ηi}2s � 2Erpyj � yiqT pηj � ηiqs

� Er}yj � yi}2s � 2σ2n

� 2
�
Erpzj � ziqT pηj � ηiqs � Erpηj � ηiqT pηj � ηiqs

�
� Er}yj � yi}2s � 2σ2n� 2Er}ηj � ηi}2s

� Er}yj � yi}2s � 2σ2n, (5.33)

where the second-to-last step assumes the noise to be independent of z. As mentioned

before, assuming the εij vectors to be iid, we can write

Cεij �
�

1

n
Er}yj � yi}2s � 2σ2



I (5.34)

ñ Cεi �

�������
. . . 0

Cεij

0
. . .

������� , (5.35)

from which we obtain the covariance matrix Cζ
i

as

Cζ
i
� Cεi �Cη

i
�

�������
. . . 0

δ2ijI

0
. . .

������� , (5.36)

where δ2ij � 1
nEr}εij}2s � σ2 � 1

nEr}yj � yi}2s � σ2. Note that in the above expression,

the covariance for the εi and, hence, ζ
i

are estimated patch-wise, whereas the covari-

ance related to the (homogeneous) noise η
i

only varies in dimensionality depending

on the redundancy level of the patch under consideration.
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5B Derivation of Redundancy Exploiting Wiener Filter

Here we derive the LMMSE estimator for the data model in Eq. 5.11. As

shown in Eq. 5.12, the LMMSE estimator for each patch can be obtained using its Ni

nearest neighbors as

pzi � sz� �
C�1

z �AT
i C�1

ζ
i
Ai

	�1
AT
i C�1

ζ
i

�
y
i
�Aisz	 , (5.37)

where Ai � rI . . . IsT is formed by stacking Ni identity matrices, each of size n � n.

With Cζ
i

having a diagonal form (Eq. 5.13), we can simplify Eq. 5.37 by noting that

AT
i C�1

ζ
i

�
y
i
�Aisz	 � rI . . . Is

�������
. . . 0

rδ�2
ij Is

0
. . .

�������

�������

�������
y1

...

yNi

��������

�������
sz
...

sz

�������

������


�
�
. . . δ�2

ij I . . .
�
�������

...

pyj � szq
...

�������
�

Ni̧

j�1

δ�2
ij pyj � szq , and, (5.38)

AT
i C�1

ζ
i
Ai �

�
. . . δ�2

ij I . . .
�
�������

I

...

I

������� �
Ni̧

j�1

δ�2
ij I. (5.39)

This gives rise to a simplified LMMSE estimator expression having the form

pzi � sz��
C�1

z �
Ni̧

j�1

δ�2
ij I

��1 Ni̧

j�1

δ�2
ij pyj � szq (5.40)

� sz� �
Ni̧

j�1

δ�2
ij

�
C�1
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j�1 δ

�2
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� I

���1 Ni̧

j�1

δ�2
ij pyj � szq
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� sz��
C�1

z°Ni
j�1 δ

�2
ij

� I

��1 Ni̧

j�1

δ�2
ij°Ni

j�1 δ
�2
ij

pyj � szq . (5.41)

Implementing this estimator requires inverting Cz. However, Cz can be ill-conditioned

and even rank deficient, leading to inaccurate estimation of zi. To alleviate this prob-

lem, we make use of the matrix inversion lemma [96] to obtain a form that does not

require inversion of Cz:�
C�1

z°
j δ

�2
ij

� I

��1

� I�
�¸

j

δ�2
ij Cz � I

��1

. (5.42)

This leads to an alternative expression for the LMMSE estimator as
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Note that the first part of the above formulation is closely related to NLM [12] (using

weights wij � δ�2
ij ) with an added term that processes the residuals between the noisy

patches and the estimated mean patch.

5C Derivation of Approximate Similarity Measure

In Sec. 5.3, we derived an extension for the Wiener filter where photometri-

cally similar patches contribute in denoising a given reference patch. This was ana-
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lyzed through a modified per-patch data model. In the final filter formulation, the con-

tributing weights of photometrically similar patches were determined to be wij � δ�2
ij

where (Eq. 5.14)

δ2ij �
1

n
E
�}zi � zj}2

�� σ2. (5.44)

However, computing δij for a pair of zi and zj random vectors is not practical given

only the two observations. Further, this would require access to the noise-free image.

In practice, δij and, hence, wij need to be estimated from the corresponding noisy

observations yi and yj respectively. However, let us first assume that the noise-free

patches are made available to us. Next, we show that the weight formulation employed

in Eq. 5.25 is simply an approximation that can be derived from Eq. 5.44.

Let us re-write Eq. 5.25 in terms of the original noise-free image patches as

wij � 1

σ2
exp

"
�}zi � zj}2

h2

*
(5.45)

ñ δ2ij � w�1
ij � σ2 exp

"}zi � zj}2
h2

*
. (5.46)

Note that the above equation would be the ideal weights that we estimate using the

noisy observations yi and yj in Eq. 5.25. Let us define λ � }zi�zj}
2

h2
. Since we consider

only photometrically similar patches that satisfy the condition in Eq. 3.4, we know that

}zi � zj}2 ¤ γ2 ! σ2n. Thus, by choosing h2 ¥ σ2n, we can guarantee that λ   1.

Consequently, as h2 increases, λ approaches 0. We can then write the Taylor expansion

of the exponential function around λ � 0 as

eλ � 1� λ�Opλ2q � 1� λ rsince λ   1s

� 1� }zi � zj}2
σ2n

ñ δ2ij � σ2eλ � σ2 � 1

n
}zi � zj}2. (5.47)
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Comparing Eq. 5.44 with the above expression, it is easy to observe their similarities.

As mentioned earlier, the expected value of Eq. 5.44 cannot be calculated accurately

from a single pair of zi and zj observations. As a result, it is ignored when computing

the weights.

The above derivation assumed knowledge of the distance between the noise-

free similar patches. As such, these are the “oracle” weights that we would ideally

want to use for denoising. However, in practice only the noisy patches are observed.

Consequently, the actual weight function is approximated by replacing the noise-free

zi, zj patches with their corresponding noisy yi,yj observations, giving rise to the ex-

pression in Eq. 5.25 as

wij � 1

σ2
exp

"
�}yi � yj}2

h2

*
. (5.48)

Note that the distance between noisy patches can be much higher than those between

the underlying noise-free patches. As a result, a larger smoothing term is needed for

denoising. In our work, we set h2 � 1.75σ2n for all noise levels and images.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, we analyzed the problem of image denoising in detail1. We

derived an expression that quantifies the performance limit of any affine-biased de-

noising method in Chapter 2. We showed that such a limit depends on the image

content as well as the statistical characteristics of the corrupting noise. The depen-

dence on image content is accounted for in the form of patch complexity and variabil-

ity, as well as the photometric redundancies for the case of WGN. The formulation,

thus, provides a quantification of the advantage in exploiting patch redundancies that

has found widespread use since it was first proposed in [12, 13]. The obvious advan-

tage of non-local frameworks is demonstrated in Fig. 6.1(a) where we compare the

denoising performance for various methods for the synthetically generated stripes im-

age containing multiple exact replicas of each patch. For strong noise, the non-local

1Parts of this thesis have been published in various refereed journals and conferences which appear
in the bibliography as [24, 29, 68, 70, 110, 130, 134–137]. Work presented in Chapter 5 is currently under
review [69].
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(a) Stripes image (b) Box image

(c) Grass image (d) Cloth image

(e) House image (f) Barbara image

Figure 6.1: Comparison of denoising results with MSE bounds for some benchmark images
corrupted by varying levels of additive WGN.
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methods, namely BM3D [49], NLSM [43] and PLOW [68, 69], clearly outperform the

local approaches. High levels of redundancy as well as low patch complexity result

in our bounds predicting a very small lower bound even for quite strong noise levels

(σ � 25).

On the other hand, images that contain mostly semi-stochastic texture (e.g.,

grass image of Fig. 2.2(d)) demonstrate high variability among its patches, with each

patch itself being structurally quite complex. The bound for this particular image is

much higher in comparison to the simpler stripes image. Low redundancy levels also

translate to indistinguishable performance difference between the local and non-local

methods, as shown in Fig. 6.1(c). Interestingly, for this image, the predicted bound is

very close to the MSE obtained by the methods, implying almost no room for perfor-

mance improvement. A similar observation is made for the somewhat less random

cloth image as well (Fig. 6.1(d)), although in this case some modest improvement is

still possible.

Most natural images consist of a mix of simple and complex patches. In Chap-

ter 4, we showed that patch complexity (captured by the covariance matrix Cz) is re-

lated to patch redundancy. Intuitively, we can expect lower redundancy levels for

more complex patches (e.g., patches in corner and texture regions), whereas more sim-

ilar patches can be expected for smoother patches. This leads to better denoising for

images lacking much texture. Our bound formulation, being data dependent, is in

keeping with this intuition, as illustrated in Fig. 6.1(e) & (f). As expected, the bounds

for the house image is quite lower than those for the Barbara image. This relative de-

noising difficulty is also seen in the performance of the methods to which we have

compared.
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Table 6.1: Some images ranked according to improvement in denoising yet to be achieved, as
predicted by our bounds. The noise standard deviation is 25 and the bounds are calculated
using 11 � 11 patches.

Image
K-SVD SKR K-LLD BM3D NLSM

PLOW Bound
Relative Efficiency1

[37] [22] [24] [49] [43] (RE) (in dB)

Box 57.78 77.17 53.93 49.56 52.49 63.31 3.42 0.069 11.61
Stripes 13.56 21.83 25.15 4.16 3.36 2.79 0.55 0.197 7.05
House 40.05 47.57 42.82 33.57 31.56 34.77 14.82 0.470 3.28
Lena 48.09 44.09 46.02 40.46 42.57 41.79 19.66 0.486 3.13
Boat 78.39 78.44 77.45 67.17 69.20 71.46 38.70 0.576 2.40
Cloth 104.36 103.42 104.68 91.33 101.97 98.82 72.98 0.799 0.97
Barbara 72.39 87.91 111.58 55.62 60.13 62.09 50.24 0.903 0.44
Grass 161.74 150.39 147.13 153.64 150.16 155.26 145.58 0.990 0.05
Mandrill 185.60 196.20 195.75 188.84 178.94 192.66 181.61 – –
1Relative Efficiency (RE) � MSE Bound

MSE of best performing method
dB figures are: �10 log10pREq, which indicate room for improvement.

Of the natural images used as benchmarks in this thesis, the Barbara image

is particularly interesting. Although rich in texture, a majority of the complex patches

follow definite patterns, thus providing higher redundancy levels than the texture re-

gions of most other images. The presence of more similar patches is advantageous to

the non-local methods. Not surprisingly, these methods achieve much better perfor-

mance than the local denoising filters, especially when the corrupting noise is strong

(see Fig. 6.1(f)). That the non-local methods exploit such redundancies efficiently is

demonstrated by the fact that the performance of such methods is comparable to the

bounds. Observe that the room for improvement is much smaller than the smoother

house image indicating the possibility of better redundancy exploitation, but more

than the highly textured grass image where very few similar patches are observed.

Comparing performances of the state-of-the-art methods to the bounds al-

lows us to gauge the room for improvement in denoising performance of any given
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Figure 6.2: Comparison of denoising results with MSE bounds for some benchmark images
corrupted by varying levels of additive WGN.

image. In Table 6.1 we rank various benchmark images based on their relative effi-

ciency (RE) which is calculated as the ratio between the MSE bound and the MSE of

the best denoising method for each image. A graphical representation of the room for

improvement for various images as a function of input signal-to-noise ratios (SNR) is

presented in Fig. 6.2. The plots for various images there indicate possible improvement

for almost all images at higher SNRs which usually corresponds to weak noise. How-

ever, at the lower SNRs (strong noise) the prediction is quite different. Interestingly,

the graph can be split roughly into three regions based on the amount of improvement

that can be expected at the lower SNRs. At one end of the spectrum lie the synthetic

images where many exact replicas exist for each image patch. Although denoising per-

formance for such images are impressive (Fig. 6.1(a) & (b)), the bounds predict large

possible improvements (in terms of dB).

Although the synthetic images are useful to study the effects of patch redun-
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dancies, large numbers of exact replicas present in those images rarely occur in natural

images. As a result, the bounds for natural images are usually much higher. The room

for improvement for natural images can also be seen to be much lower than those for

the synthetic images used in our study. Even for these natural images, the plots at low

SNRs can be segregated into two regions. At one end lie the predominantly textured

images where high patch complexity and variability (and, hence, lower redundancies)

result in high MSE bounds. When compared to the best denoising methods, little to

no room for improvement is predicted for this particular class of images that are rich

in semi-stochastic texture. On the other hand, denoising performance for smoother

images that lack such widespread complex structures (e.g., house image) can still be

considerably improved. Note that such images also typically exhibit higher levels of

patch (photometric) redundancies. Not surprisingly, the non-local approaches enjoy a

clear performance advantage for such images.

From the above discussion, it becomes apparent that image denoising as a

problem is not dead – yet. This is particularly true for the class of smoother images con-

taining sufficiently large number of repeating patterns. On the surface, this may appear

to be in direct contradiction to the observations in [76] where Levin and Nadler com-

pared the bounds to the best denoising methods and concluded that the performance

of current non-parametric approaches cannot be improved upon, unless considerably

larger patches are used. Note that the authors there study the bounds as a pixel-wise

estimation problem, where prior information is learned using a vast database of image

patches. Larger patch sizes then allow information from spatially farther pixels to be

used in denoising a pixel of interest. In a sense, this translates to better performance
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being possible for methods capable of exploiting not necessarily local redundancies

efficiently. This is directly in keeping with our conclusions.

Using this as the motivation, we designed a non-local LMMSE filter (PLOW)

in Chapter 5 where, apart from geometrically similar patches, photometric similarity

was used to achieve impressive denoising performance. The challenge there, as with

any other non-local denoising method, was to accurately identify the similar patches

from their noisy observations. This task becomes non-trivial for patches where the lo-

cal SNR is low; that is, when the corrupting noise overwhelms the underlying patch

structure. For such extreme conditions, inaccuracies in clustering and estimating the

moment parameters (sz, Cz) contributed to further loss of performance. However, our

experiments there show that the PLOW method is quite robust to minor inaccura-

cies and performs considerable image restoration even for strong noise cases that one

may expect to encounter in general imaging applications. Moreover, our experiments

also indicate that our method is capable of effectively addressing images corrupted by

many different noise profiles.

As mentioned earlier, our PLOW filter was designed explicitly to achieve the

performance bounds. Yet, for the smoother natural images, it fails to achieve the theo-

retic limits, even when the various filter parameters are estimated from the noise-free

ground truth. This naturally raises the question of achievability of the bounds. To an-

swer this, we must point out that our bounds were derived assuming that parameters

of the bound such as the clusters and their moments are known a priori. However,

as these parameters themselves are estimated, the practically reachable optimal MSEs

may be somewhat higher than what the bounds predict. One can then expect to obtain

tighter denoising bounds by taking into consideration the limits of estimating these
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parameters as well. However, comparing the bounds for some textured images to the

performance of the denoising methods (Figures 6.1(a), (c), (d) & (f)), it is clear that the

bounds developed here are not overly optimistic.

However, for smoother natural images (example, house image), even the op-

timal denoising method may not achieve the bounds which were derived assuming Ni

photometrically identical patches. These Ni patches would then contribute equally in

the denoising process, i.e. wij � 1{σ2. In practice, however, the patches that appear

similar still contain minor dissimilarities. As a result, thewij weights deviate from their

ideal 1{σ2 values even when computed from the (noise-free) ground truth images. Us-

ing a large number of similar patches increases the contribution of such errors, forcing

us to consider only a few (sayNi ¤ 10) similar patches in denoising any reference patch

using PLOW. Moreover, the weights wij used to compute the contribution of any given

similar patch is only an approximation of the optimal weights (see Sec. 5C). The com-

bination of these practical limitations in dealing with patch redundancies handicaps

even the “oracle” PLOW estimator, resulting in higher MSEs than those predicted by

the bounds. This is especially true for the class of smoother images. Note that these

different practical limitations affect the performance of all non-local estimators, mak-

ing our bounds formulation an effective lower bound. This highlights the need for

combining similar patches through intelligent handling of their minor dissimilarities

to improve denoising performance for smoother images. This should be the focus in

designing the next generation of denoising filter.
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Figure 6.3: Image formation model showing the different degradation steps that the image goes
through due to camera hardware limitations. The captured (raw) signal undergoes further in-
camera processing before it is finally stored.

6.2 Future Works and Extensions

In this thesis, we analyzed the problem of image denoising. This study was fo-

cused on non-local patch-based methods, particularly for grayscale images. Although

this in itself is important and interesting, it is restrictive and not completely indicative

of real world scenarios. In this section, we discuss possible extensions to make our

work applicable to different practical applications.

6.2.1 Extending PLOW to Different Degradation Models

The problem of denoising requires us to estimate the underlying image patches

given their noisy observations. In formulating the problem as such, we neglect the ef-

fect of other factors that degrade the quality of captured images. The input signal can

be thought to be some (unknown) ideal image that represents the scene being captured.

As illustrated in Fig. 6.3, each patch from the actual or ideal image undergoes various

degradations before it is stored in the camera. Since images are stored in digital form

with a fixed sampling frequency, it is important to ensure that the input signal is band-

limited so as to avoid unwanted aliasing effects. The captured image can therefore be

considered to be a blurred version of the ideal sharp image whose patches are zi. This
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blurring process can be modeled by a matrix operator H which is dependent on the

point spread function (PSF) of the camera.

The blurred image is then downsampled according to the finite grid of sensor

elements in the camera. This downsampling process can be thought of as selecting

every few pixels of the blurred image and can be modeled by a decimation operator D.

For color images, each sensor (or pixel) captures information pertaining to a particular

range of wavelength (color) forming a mosaiced image sampled according to some

color filter array of which the Bayer pattern [138] is the most popular. Denoting this

sampling process as another matrix operation (B), we can mathematically express each

observed image patch as

yi � BDHzi � ηi, (6.1)

where ηi is the noise that arises from various sources within the camera. The degraded

image that is formed at this stage is often referred to as the raw image. The final full-

color image that is finally seen by the user undergoes many different in-camera pro-

cesses that include demosaicing, color mapping, gamma correction, and compression

among others.

Depending upon the application, it is often necessary to invert the effects of

one or more of the degradations shown in Fig. 6.3. Below we discuss how the PLOW

method and our bounds analysis can be extended for such problems.

Denoising color images – It is easy to see that for the problem of denoising grayscale

images, all the degradations other than noise are neglected and the target image to be

recovered is considered to be grayscale. In that case, the patch-wise observation model
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(a) Color image (b) Red channel (c) Green channel (d) Blue channel

Figure 6.4: Illustration of correlation among the red, green and blue color channels. Observe
that texture and edges in any one channel corresponds to those in other channels.

is written as (Eq. 2.1)

yi � rzi � ηi, (6.2)

where the objective is to recover the rzi � DHzi patches. When considering color

images, it is common practice to assume full-color (or demosaiced) images. The rzi
patches then contain information about red, green and blue color channels. In [131],

Hunt showed that these color channels are correlated. A simple illustration showing

such correlation for the bears image is shown in Fig. 6.4. There we see that edges and

texture regions exist in the same location in all color channels, although the strength of

such edges and intensity of the pixels may differ considerably.

A popular approach of handling such correlations in denoising color images

is to perform some color transformation that reduces the correlation among the differ-

ent channels. Transformation to luminance-chrominance channels, such as Y-Cb-Cr, is

widely used. Since the human vision system is more sensitive to intensity variations

than to changes in chroma, aggressive denoising is usually performed in the Cb-Cr

channels, while the intensity (Y) channel is treated more carefully. This results in re-

duced denoising complexity in comparison to treating each channel equally. However,

one disadvantage of such an approach is that color transforms tend to alter noise char-
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acteristics. Many denoising methods rely on the fact that the corrupting noise is un-

correlated, spatially and across channels. Unfortunately, the latter property no longer

holds in transformed color spaces. It is, thus, useful to address color image denoising

in the RGB color space, taking into account the dependencies across color channels.

Although developed for denoising grayscale images, our PLOW method can

be easily adapted for denoising color images, as shown in Chapter 5. There the input

noisy color image was first transformed to Y-Cb-Cr color space, and the luminance

channel was used to perform geometric clustering of image patches. The motivation

for this was that the structure of the patches remain roughly the same across all color

channels (Fig. 6.4) and, hence, it is not necessary to cluster each color channel indi-

vidually. Once clustering information was obtained, each of the red, green and blue

color channels were denoised independently. This is tantamount to processing each

color channel as a separate grayscale image. Although considerable denoising per-

formance was achieved, this is clearly sub-optimal considering that it disregards the

inter-dependence of structure across color channels. Lukin et al. [139] showed that de-

noising color images taking into account such cross-color information can lead to lower

MSE than what our bounds predict separately for each color channel.

We consider improving denoising performance for color images using cross-

color dependencies as a possible extension to our PLOW method. For color images,

each observed color patch yci can be written in the form of Eq. 6.2 as�������
yRi

yGi

yBi

�������loomoon
yc
i

�

�������
rzRi
rzGi
rzBi

�������loomoon
zci

�

�������
ηRi

ηGi

ηBi

�������loomoon
ηc
i

, (6.3)
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where zci is the underlying color patch formed by concatenating corresponding patches

from the red, green and blue color channels. The PLOW filter can be developed for

color images in exactly the same way as done for grayscale images in Chapter 5. To

account for photometric redundancy, we need to identify patches that have similar

intensity as well as color. An analogous LMMSE filter can be formulated for the color

image patches as

pzci � szc ��
C�1

zc �
Ni̧

j�1

wijI

��1 Ni̧

j�1

wij
�
ycj � szc� . (6.4)

Note that Czc being the covariance matrix estimated for the color patch, it automati-

cally captures the correlation between pixels across the different color components.

In adapting the PLOW filter for color patches, the weighting term wij that

measures similarity between patches yci and ycj also needs careful consideration. The

formulation for the weight can be similar to that used for grayscale images as

wij � 1

σ2
exp

�
�}y

c
i � ycj}2
h2

�
, (6.5)

with h2 � 1.75σ2n being used for our experiments in Chapter 5. When the strength of

the noise affecting the different color channels is similar, the above method for calcu-

lating the weights work well. However, this is not always the case in practice [44,140].

The weight measure, as well as the covariance estimation step, then needs to be suit-

ably modified to account for the different noise variances to prevent over-smoothing

or under-smoothing in any color channel.

Denoising raw images – Denoising of color images, as explained above, involves

estimating the color patches that have already been demosaiced from raw images. Such

demosaicing is usually performed in the camera itself and the process does not usually
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Figure 6.5: Illustration of patch formation in Bayer patterned raw images. The patches with
black borders can be compared as they have the same pattern while those bordered in other
colors should not be considered.

account for the presence of noise in the raw data. Since the demosaicing step involves

interpolation of pixel values in each color channel by taking into account information

from other color channels, it introduces spatial and cross-color correlation between the

noise samples as well. Consequently, it is often advantageous to perform denoising

before any color interpolation is performed [140–142].

Our PLOW method can be used for denoising raw images as well. Note that

the raw image patches can be modeled exactly as that of color patches in Eq. 6.3, and

the corresponding PLOW filter can be derived (Eq. 6.4). As with the color case, the

covariance matrix implicitly takes into account the correlation among color channels

in each patch for denoising. However, care must be taken to ensure that all patches

considered have the same color sampling patterns and only such patches are compared

in our non-local PLOW denoising framework. That is to say that, referring to Fig. 6.5,

we should only make use of patches with black borders to learn the filter parameters

and to compare to a reference patch, while those with different colored borders should
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not be considered in the denoising process. However, in doing so we are forced to

ignore useful information.

Considering only patches of a particular pattern restricts the amount of over-

lap between patches, thus limiting the number of patches within the image. As filter

parameters for PLOW need to be estimated from fewer patches, and the number of

similar patches observed are also reduced, it may well be that the denoised image re-

mains somewhat noisy, especially when the input image is corrupted by strong noise.

A possible way of improving denoising in such situations is to denoise the image mul-

tiple times, each time considering different patterned patches (say, patches with pat-

terns matching the yellow bordered patch in Fig. 6.5). For the Bayer pattern, at most

4 different denoised versions of the raw image need to be obtained, which can then

be combined to further suppress the residual noise. Once the raw image is denoised,

demosaicing and other in-camera operations can be applied to produce a full color

image.

PLOW for demosaicing, interpolation and deblurring – The image formation model

of Eq. 6.1 can be written in a simpler form by combining different degradation opera-

tions into a single matrix operation as

yi � Υzi � ηi. (6.6)

Depending on what operation is assimilated into Υ and what is ignored, different

problems in image processing can be formulated with the above patch model. For ex-

ample, when color information is to be estimated from a (noisy) raw image, the above

problem reduces to that of demosaicing – estimating the full color (RGB) patches zi,

given their partial noisy observations. As with grayscale images, the local patch model
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can be extended to a non-local variant accounting for all Ni patches that are photomet-

rically similar to a reference patch yi as

y
i
� AiΥzi � ζi, (6.7)

where Ai is formed by vertical concatenation of Ni identity matrices, each of size

3n � 3n. Note that, since we are dealing with raw images, all patches in the im-

age must have similar color sampling patterns. The LMMSE filter for the above data

model can be written from Eq. 5.12 as

pzi � sz� �
C�1

z �ΥTAT
i C�1

ζ
i
AiΥ

	�1
ΥTAT

i C�1
ζ
i

�
y
i
�AiΥsz	 . (6.8)

One interesting observation here is that there is no constraint on invertibility

of Υ. The estimator in Eq. 6.8 is, thus, capable of handling many different degradation

models. Following the derivation of the PLOW filter in Chapter 5, we note that:

ΥTAT
i � ΥT rI . . . Is � �

ΥT . . . ΥT
�
,

ñ ΥTAT
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. . .
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. . .

�
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This allows us to rewrite the expression for the estimate in Eq. 6.8 as

ñ pzi � sz��
C�1

z �
Ni̧

j�1

wijΥ
TΥ

��1 Ni̧

j�1

wijΥ
T pyj �Υszq , (6.10)

where wij measures the similarity between the degraded yi and yj image patches.

Going back to the case of demosaicing, when Υ � B, we note that the ex-

pression in Eq. 6.10 allows us to estimate the color patches from the raw observations

by reversing the mosaicing process. In many existing demosaicing approaches found

in the literature the raw image is considered to be noise-free. This implicitly assumes

that the data has been denoised by some method prior to demosaicing. However, in

the image formation pipeline, demosaicing is often applied before denoising. Thus, a

demosaicing method that accounts for the presence of noise is highly desirable. Our

generalized PLOW filter can be applied to demosaic noisy raw images.

The generalized PLOW filter of Eq. 6.10 provides a locally optimal solution

for inversion of other degradations as well. When Υ � H, the problem takes the form

of deblurring the input image. For the case of Υ � HD, we obtain a solution for the

image interpolation problem. However, the challenge in all the cases lies in estimating

the parameters of the filter, namely sz and Cz. We consider the extension of our PLOW

method to different degradation models as a possible future work.

6.2.2 Guided Filtering with Image Pairs

In image denoising, as well as many other applications discussed in the pre-

vious section, estimating the filter parameters from the input degraded image can be

challenging. In Chapter 3, we presented ways of estimating the sz and Cz parameters

from the noisy image itself. However, when the corrupting noise is strong, such es-

timates can be erroneous. One approach of circumventing such errors is through the
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use of image databases from which the parameters can be learned. This approach was

advocated in [110], and also in [76] where the entire prior ppzq was calculated from

multiple noise-free images to compute denoising bounds. The motivation here is to

ensure a rich enough collection of patches such that, for any given patch in the input

(noisy) image, multiple similar noise-free patches are available in the database. Un-

fortunately, this cannot be guaranteed, given the vast variability in local structures of

natural images. This is a limitation of any method employing databases for estima-

tion. However, in applications where the span of patch structures in the input image

is considerably limited, such approaches can be quite successful. That is to say that, if

we were interested in denoising face images only, then a database of ground truth face

images will be likely to be rich enough for the input patches.

A variant of this problem is when a set of images, each differently degraded,

is used to estimate a single ideal image. One such interesting image restoration prob-

lem was framed by Petschnigg et al. [143] where a pair of images of a dark scene,

one captured with flash on and the other with no flash, was used to estimate a single

sharp noise-free image. In general, an image captured under low-light without flash is

blurry and noisy, while the corresponding sharper flash image contains artificial color

and shadows introduced by the flash. Following this work, many authors have pro-

posed solutions to image restoration using pairs of images captured under different

degradation models [144–146].

Our PLOW method can be adapted to be used in a guided filtering mecha-

nism to restore a pair of flash and no-flash images. An LMMSE-based framework for

such guided filtering was used to considerably improve upon the state-of-the-art re-

sults by Seo and Milanfar [147]. A patch-based non-local extension to that approach
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could be employed within the PLOW framework. This can be an interesting possible

application of the PLOW filter.

6.2.3 Accounting for Intensity Dependent Noise

In deriving the expression for the MSE bounds in Chapter 2 we assumed the

noise to be iid and signal independent. The formulation of the bound is still quite

general in the sense that the pdf of the noise is not limited to any specific form, as long

regularity condition of Eq. 2.5

E

�B ln ppy|zq
Bz

�
� 0, @ z (6.11)

is satisfied. The effect of noise characteristics on denoising performance is captured

by the FIM. In Chapter 3, we presented ways of estimating the bounds assuming the

corrupting noise to be WGN.

Although WGN forms a popular noise model for many denoising methods, a

recent trend of increasing interest in addressing signal dependent noise can be seen [3,

44, 140, 142, 148, 149]. Such noise profiles are observed in practice for many imaging

applications such as MRI and low-light imaging. The exact form of the bound, as

shown in (2.24), does not hold in such cases. However, a similar derivation as that

presented in Sec. 2.4.1 can be carried out to derive bounds for intensity dependent

noise, as long as the condition in Eq. 6.11 is satisfied. As with the Gaussian noise case,

the expression for the bounds for signal-dependent noise may also be indicative of the

form of the filter that can achieve optimal performance for such noise profiles. We

consider this to be a very interesting direction where the work in this thesis can be

extended.
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